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Abstract

This paper presents a new convergence analysis of the Lesat Mourth (LMF) adaptive algorithm, in the
mean square sense. The analysis improves previous raaullst it is valid for non-Gaussian noise distributions
and explicitly shows the dependence of algorithm stabitity the initial conditions of the weights. Analytical
expressions are derived presenting the relationship leshilee step size, the initial weight error vector, and mean-
square stability. The analysis assumes a white zero-meassiza reference signal and an independent, identically
distributed (i.i.d.) measurement noise with any even poditya density function (pdf). It has been shown in [1] that
the LMF algorithm is not mean-square stable for referengaadé whose pdfs have infinite support. However, the
probability of divergence as a function of the step size @dknds to rise abruptly only when it moves past a given
threshold. Our analysis provides a simple (and yet pree@sgnate of the region of quick rise in the probability of

divergence. Hence, the present analysis is useful for giiedialgorithm instability in most practical applicat&n

. INTRODUCTION

Adaptive algorithms based on higher order moments of thar eignal have been shown to perform better mean

square estimation than the well known Least Mean Square (LM®yitdgy in some important applications. The
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Least-Mean Fourth (LMF) is one of such algorithms [2]. It seeksninimize the mean fourth error, which is a

convex (and thus unimodal) function of the adaptive weigttor [2], [3]. Over the years, LMF has been shown
to have desirable properties for different applicationfs [2]-[8]. It has been shown that the LMF algorithm can

outperform LMS for Gaussian, uniform and sinusoidal noisgritiutions [2], [9]. These results have increased the
interest in a more detailed analysis of the LMF algorithm b@rasince its practical use has been limited in great
part due to the lack of good analytical models to predict #gsfgrmance. In [9], a statistical analysis has been
presented, which led to accurate analytical models for tearmand mean-square behavior of the LMF algorithm
for small step sizes. Another important aspect of the algars behavior, which was not addressed in [9], is its

stability.

There are several approaches to analyze the convergencagfvadalgorithms: deterministic (worst-case) [10],
[11] and stochastic (in the mean, in the mean-square [14,admost-sure [12], [13]). Deterministic approaches
such as in [10] tend to be very conservative, requiring tep size to be quite small in order to guarantee stability,
while almost-sure analysis may exaggerate, and concluateath algorithm is stable when its performance is not
good at all (an explanation for this can be found in [14]). &¢il and Widrow [2] studied the convergence properties
of the LMF algorithm in the mean-square sense. Their analyagsrestricted to steady-state, and the stability limit
was not expressed as a function of the initial conditionenethough the reported simulation results indicated this
dependence. In [12], the ODE method was used to analyze ajdiexd-step adaptive algorithms, including LMF.
However, no analytical expression is given for the LMF sigbitonditions. In [15], the authors comment on the
dependence of LMF’s stability on its initial conditions. Anpegssion is provided for the maximum adaptation
constant for convergence in the mean. However, the analy$is] does not consider the mean-square case, and
assumes that both the input signal and the measurement aix@s8aussian. Reference [16] has shown that the
stability of the LMF algorithm depends on the initial condits, but such dependence was not explicitly determined.
In [17] it is shown that LMF stability depends on the initialnmbtions, and this dependence is described analytically,
using an elegant argument. However, the analysis in [17@sfricted to Gaussian noise. More recently, a different
approach to stability analysis of the LMF algorithm was pissgabin [1], which shows that there is always a honzero

probability of divergence in any given realization when thput signal has a probability density function (pdf)
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with infinite support. The probability of divergence was apgmmated for white Gaussian inputs.

This paper presents a new convergence analysis of the LMFithigom the mean-square sehs@he analysis
considers a white zero-mean Gaussian reference signalneindependent, identically distributed (i.i.d.) zero-mea
measurement noise with any even pdf. Thus, the derived seatdt also valid for the important applications in
which the LMF algorithm is employed with non-Gaussian measwant noise [2]. Our results agree with [17] in the
particular case of Gaussian noise. The dependence on tfe aanhditions is explicitly shown through analytical

expressions.

Strictly speaking, it has been shown in [1] that the LMF aldworitis never stable in the mean-square sense for
Gaussian regressors. Nevertheless, results based omrstandan-square stability analyses are useful for practica
design purposes. This is because the probability of divemes a function of the step size value tends to rise
abruptly only when it moves past a given threshold. Befoag, e probability of divergence tends to be sufficiently
small to grant the practical applicability of the LMF algbnit’. Moreover, signal amplitudes are necessarily limited
in practical applications, which contributes to reduce pihebability of divergence for step sizes smaller than the
threshold mentioned above. Our analysis provides a singplé yet precise) estimate of the region of quick rise in
the probability of divergence. One important contributiminthis paper is then a useful interpretation of standard

mean-square analyses of LMF in view of the results presemtgd).i

Another relevant aspect of the LMF algorithm behavior is teady-state stability. Depending on the step size
and on the initial condition, the LMF probability of divergs: may increase considerably with the number of
iterations. Our model gives a very precise estimate of tleéulistep size range for the initial algorithm convergence.
However, if the algorithm is initialized close to the optimuwsolution and one chooses a large step-size, it may
have a significant probability of divergence also after aitionvergence. This aspect (which we call “steady-state

divergence”) is not covered in the model presented heredgsenents in Sec. IlI-A).

The paper is organized as follows. In Section Il we presented tdfinition of the estimation problem considered.

In Section Il we derive the analytical model for the secomdes moments of the weight-error vector, which

YInitial results on this work have been presented in [18].
2In practical applications it may be of interest to include a re-initialization mehim case, for instance, the error signal tends to increase
without bound.
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determine the stability of the algorithm. In Section IV we fpem the stability analysis, where the conditions
on the step size and on the algorithm initialization arevéeri In Section V we present simulation examples to
illustrate the application of the theoretical results. Tgieout the paper we use lowercase bold letters to represent
column vectors, capital bold letters for matrices and rag(rion-bold) lowercase letters for scalars. Capital r@gul

letters are used for constants.

II. PROBLEM DEFINITION

Fig. 1 shows a block diagram of the problem studied here. Thetizdafilter attempts to estimate a desired

signald(n), which is linearly related to the input signa(n) by the stationary model

d(n) = w2(n) + 2(n) (1)

wherew® = [wl,w?,...,wq_,]T is the vector of the model parametessy) is assumed stationary, white, zero-
mean and Gaussian with varianeg. z(n) = [z(n),z(n —1),...,z(n — N + 1)]7 is the observed data vector with
correlation matrixR = E[x(n)x’ (n)] = 021, with I being theN x N identity matrix. The sequencen) is a
zero-mean i.i.d. random sequence, with variamg@nd statistically independent of any other signal. Moreaés
assumed that(n) can have any distribution with an even pdf. The sequeitieg in (1) accounts for measurement
noise and modeling errors. Vectas(n) = [wo(n), wa(n), ...,wy_1(n)]” is the adaptive weight vector, andn)

is the error signal.

LMF
Algorithm

Fig. 1. Adaptive system under study.
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The LMF algorithm weight update equation is given by [2]

w(n +1) = w(n) + pe*(n)x(n), 2

where is the step size and

e(n) = d(n) — y(n) = wa(n) + 2(n) — w” (W)2(n). 3

Defining the weight error vectos(n) = w(n) — w® = [vo(n),...,vxy_1(n)]T about the optimal solution, (2)
can be written as

v(n+1) = v(n) + pe’(n)z(n) 4

with

T(n)x(n). ®)

e(n) =z(n) —v

The convergence properties of this algorithm are studiethénfollowing.

IIl. SECONDMOMENT ANALYSIS

Though the conditions for convergence in the mean can prosishee insight on algorithm behavior, second
moment stability is far more important in determining cdiwdtis for algorithm convergence [19], [20]. Thus,
we restrict the analysis to the study of the conditions fommsquare convergence. As shown in [1], under the
assumption of Gaussian regressors, the LMF algorithm is eainasquare stable no matter how small the step size.
However, as the step size decreases (if the initial condiiacclose enough to the optimum weight vecto?), the
probability of good behavior (convergence) of a singleiradion of the algorithm increases, tending to 1 as the
step size decreases to zero. The analysis provided here (amdamalyses in the literature) therefore give a step

size for which the probability of divergence is still smalk our simulations show.

For white inputs and neglecting the statistical dependémeteeenz(n)z” (n) andwv(n), straightforward calcu-

lation using (5) shows that the second order moments of thighteeare related to the mean-square error (MSE)
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through [20]

Ele*(n)] = o + 07 E[v” (n)o(n)], (6)

Hence, the MSE convergence can be studied through the cemeergroperties di[v” (n)v(n)]. The convergence

analysis then reduces to the study of a recursive scalatiegua

A recursive expression for the behavior Bfv’ (n)v(n)] could be easily obtained by taking the trace of
the recursion derived in [9, Eq. (22)] for the weight error retation matrix K (n) = E[v(n)v’(n)] of the
LMF algorithm. However, terms neglected in [9] which were sa@nificant for the analysis done there become
important for a stability analysis, since large values @ $tep size: must be considered in this cds&@he model
derived for the MSE in [9] indicates that the MSE tends-teo when the algorithm becomes unstable, which is
obviously incorrect. The model in [9] is valid only in the silép region. Therefore, a new recursive expression
for E[v”(n)v(n)] must be determined for the convergence analysis by staatjagn from the LMF weight-error

update equation (4).

Pre-multiplying (4) by its transpose, using (5), taking thxpexted value and using the statistical properties of
z(n),* leads to

1) (2)
E[v" (n+1)v(n+1)] = Ef’ (n)v(n)] - 2uB{[z" (n)v(n)]'} - 6pE[2*(n)]E{[z" (n)v(n)]*}
(3) (4)
+ 2 E{ 2" (n)v(n)]°2" (n)z(n)} + 1542 E[2* () E{[z" (n)v(n)]'2" (n)a(n)} ")
(5) (6)

—_——
+ 1502 B[ (n)|E{[z" (n)v(n)*a” (n)2(n)} + p* B[z° (n) Ela” (n)2(n)].

The following analysis assumes that the effects of the $itatisdependence of(n)x” (n) and v(n) can be
neglected. This assumption is weaker than assuneing and v(n) statistically independent [21]. The expected

values in (7) are then calculated as follows:

3The recursion foiK (n) was derived in [9] by neglecting the higher-order teffige” (n)v(n))**(n)x” (n)] for k > 1, and considering
a small step sizg..

“The two important properties af(n) used in evaluating (7) were its independence of any other signal andrehepef, which leads to
zero odd-order moments.
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A. Expected Value 1E[(2” (n)v(n))*]

Forxz(n) zero-mean, Gaussian and independent(af), =7 (n)v(n) is also zero-mean Gaussian when conditioned
onv(n). Thus, we can write [22]
k
E{fe” (n)o(n)]*v(n)} = E{[z" (n)v(n)P|lo(n)}* ] (2m - 1). (8)

m=1

and then

B{le (n)o(w)]v(n)} = 3E{a (m)o(n)]?[v(n)}?
= 3{E['UT(n)m(n)$T(n)U(n)”U(n)]}2
9)
~ 3{vT(n)Rv(n)}2 = 3{U§UT(”)U(”)}2

= 3020 (n)v(n)v? (n)v(n)

Averaging (9) ovemw(n) requires extra approximations, since the pdiof) is unknown. We use the following
approximation:

El" (njo(n)v” (n)v(n)] = E[v" (n)v(n)] E[v” (n)v(n)] (10)

Approximation (10) assumes that the variancerbtn)v(n) is much smaller than its mean vatu@his assump-
tion is valid in the beginning of the adaptation processgesiits is reasonable to expect that the adaptive weights
will be initialized far (relative to the steady-state stard deviation\/E[vT (n)v(n)]) from the optimal weights.
Then, the mean value ef(n), i =0,..., N —1, can be assumed much larger than its fluctuations in the beginn
of adaptatiorf. When instability does occur, its onset is usually during itiital adaptation phase and due to the
unbounded increase of the second order moments, which cdetbeted using (10). Extensive simulation results
have shown that this approximation leads to good accuradgiarmining the stability conditions.

Reference [23] approximates (10) by assuming tiat) is Gaussian-distributed. However, the analysis in [1]

shows that this assumption is not satisfied. [23] does notigeogstimates of the range of step sizes for stable

®*Note thatE[v” (n)v(n)vT (n)v(n)] = E2[vT (n)v(n)] + aiT(")v(n), whereaﬁT(nM”) is the variance ob™ (n)v(n).

®For the purpose of this analysis, beginning of adaptation is the phasegduhich E[v(n)] is much larger than its fluctuations. The
actual duration of this phase depends on the weight initialization, the steptisizadaptive filter length, the noise power and the input
signal power.
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behavior, mainly because of the complexity of the model.
Using (10) and the property th&{XY} = Ey{Ex{XY|Y}} for any random variablex andY [22], (9)

becomes

E{[z" (n)v(n)]*} = 303 Elv” (n)v(n)v" (n)v(n)] = 303 B[v" (n)v(n)] E[v” (n)v(n)] (11)

B. Expected Value 2E{[z” (n)v(n)]?}

Conditioning onv(n),

E{[z" (n)o(n)]*|v(n)} = Elv" (n)x(n)a" (n)v(n)|v(n)]

=o' (n) Elz(n)z" (n)|v(n)]v(n)

Q

vT(n)Ro(n) = oo (n)v(n) (12)
Averaging (12) over(n) gives

E{[z" (n)v(n)*} = o Blv" (n)v(n)] (13)

T

Next, we evaluate the expected values that are multiplied:byn (7). They are evaluated using the same

methodology presented in [9] and [24], and also using apprations similar to (10).

C. Expected Value 3E{[z” (n)v(n)]%z” (n)x(n)}

Using the properties of higher moments of zero-mean Gausgdables [22], the expected value conditioned

onv(n) can be written as:

B{[a" (njo(n)]“a" (ma(m)|v(n) } = t{ B[ (n)o(n)] z(n)a” () v(n)] } "

~ (15N + 90)oSvT (n)v(n)v’ (n)v(n)v’ (n)v(n)
To average (14) oven(n), we again neglect the higher order momentsvdfn)v(n). Thus, v’ (n)v(n) ~
E[vT(n)v(n)] and

E{[o” (n)v(n)]*} = E[v” (n)v(n)] E[v” (n)v(n)] Elv” (n)v(n)] (15)
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Thus,

E{2” (n)v(n)°a” (n)2(n)} = t{ B[’ (n)o(n)]’z(n)a” (n) |

(16)
~ (15N + 90)oS E3[vT (n)v(n)]
D. Expected Value 4E{[z” (n)v(n)]*z” (n)x(n)}
Using the same methodology as above,
E{[z" (n)v(n)]'z" (n)z(n)} ~ (3N + 12)03 E*[v" (n)v(n)] 17
E. Expected Value SE{[z” (n)v(n)]?x” (n)z(n)}
Using again the same technique,
E{[z" (n)v(n)]*z" (n)x(n)} = (N +2)0y E[v" (n)v(n)] (18)
F. Expected Value 6E[z” (n)z(n)]
Elz” (n)a(n)] = No? (19)
Using the expected values 1-6 in (7), we obtain the followdxgression fols[v” (n + 1)v(n + 1)]:
y(n+1) = (1 - a)y(n) — by*(n) + cy’(n) +d (20)
wherey(n) = E[v’ (n)v(n)] and
a=Aip—Ayy®  b=DBip—DBop? c=Cp®  d= Dy’ (21)

with

Ay = 60202 Ay =15E[z*(n)]o2(N +2) By =60,

By =150205(3N +12)  C = ¢5(15N 4 90) D = E[25(n)]o2N. (22)
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In the following, we study the convergence properties of).(20

At this point, a clarification is necessary. The model (20) hasnbderived to predict algorithm instabilities
caused by unbounded growth of second order moments. Theses@a#y the instabilities of greatest interest, as
they occur at the initial stages of adaptation and for smalnoderate step size values. However, we have also
verified experimentally that using large step sizes may lea gignificant probability of divergence after LMF has
initially converged to a small region about the optimum virdg which corresponds to the steady-state solution
of (20). This is specially true for low-order filters. This sdled steady-state divergence is a function of higher
moments of the weight vector and cannot be predicted usim@piproximation in (10). As we show in Section IV,
large step-sizes imply that the initial weights are veryselto their optimum values (not a practical situation), \whic
implies that approximation (10) does not hold. If the steg@ds chosen reasonably smaller then the maximum
for a given value ofy(0), the phenomenon of steady-state divergence becomes kefs Thus, the model (20)
should be useful for most practical design should also be added that the possibility of steadyestitergence
cannot be detected by the model in [23]. Experimental resuitshe steady-state instability will be presented in

Section V.

IV. STABILITY ANALYSIS

Expression (20) is a nonlinear difference equation that @pprates the dynamics of the LMF algorithm. Its
convergence depends in general on the initial conditi®) = E[v” (0)v(0)], the squared Euclidean norm of the
initial weight error vector. To study the stability conditis for (20), we need to find its equilibrium points.

Making y(n + 1) = y(n) = y in (20), we obtain
Yoo = (1 = @)yoo — by% + eyl + d. (23)

Sincec > 0, we can rewrite (23) as

b a d
Y3 — ~yk = —Yoo +— =0, (24)
C C C

"For practical situations, when the initial condition is reasonably far fronpfitenum weights and the step size is relatively smaller than
the maximum value predicted by our modgh6x), we never did observe “steady-state divergence”. If a filter is desigo that the initial
probability of divergence is reasonably small (say, less than 0.1%)pribbability of “steady-state divergence” must be very small.
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Equation (24) has three roots, which represent the equilibpoints. These roots can be expressed in analytical

form as follows [25]:

(51 +52) + o
Yloco = (81 T 52 3¢’
1 b V3
Y200 = —§(Sl+52)+§+%(51 — 52), (25)
1 b j
Ysco = —5 (81 +82) + 3 ‘7\2/5(81 — 82),
where
81:(T+ q3+7'2>§,
1 (26)
59 = (r— \/q3+r2>3,
with
g a b2
= - ———,
3c 9¢ (27)
. l(aj _ iid) L0
6\ ¢ 27¢3°

Depending on the values gfandr, three cases can occur:

A. Case 1:i¢3 + 2 < 0 (three real roots)

In this case, (24) has either three negative real roots omegative and two distinct positive real robt3he
first option is of no interest, sincg(n) is a squared magnitude and thus must be non-negative. Thedseption
has two non-negative roots which are of interest to our st&ity. 2 illustrates the case of one negative and two
positive roots, denotegheg, yc andy(0)max respectively. Rooy(0)max corresponds to a stability linfit Thusy (0)max
is the maximum value of/(0) that guarantees stability of (20) for a specific valueuofThe smaller the value of
u, the larger the value o0§(0)max. As 1 — 0, y(0)max — o0. Rooty. corresponds to the stable equilibrium point,
and thus is the steady-state solutigio) for this case.

To study the behavior of the curygn + 1) in Fig. 2 in the rangd < y(n) < y(0)max We determine its slope

in the region. Given thatl > 0 and that we assume the two roots of (25) to be real and pasttieederivative

8Note that one root is always negative in this case becdusé in (24) implies thaty(n + 1) > 0 for y(n) = 0, andc > 0 implies that
y(n +1) — —oco wheny(n) — —oo.
®Note from Fig. 2 thaty(0) > y(0)max implies y(n + 1) > y(n) for all n > 0, and thus instability.
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y(n+1)

y(n+1)=y(n)
fym)

UNSTABLE

STABLE 4

y(n)

Fig. 2. Equilibrium points: case Iyd << y(0)max).

of y(n + 1) with respect toy(n) at y(n) = yc is less than one. Therefore, the condition ferto be a stable

equilibrium point is thatdy(n + 1)/dy(n) > —1 aty(n) = y.. Differentiating (20) with respect tg(n) yields

dy(n+1)

() =1—a— 2by(n) + 3cy?(n) (28)

Differentiating again with respect t@g(n) and equating the result to zero results in the condition fstationary

point of dy(n + 1)/dy(n):

= 6cy(n) —2b = (29)

Values ofy(n) satisfying (29) may correspond to a maximum or to a minimumalgf + 1)/dy(n). Another

differentiation with respect tg(n) yields

Py(n +1)

dy(n) = 6¢ (30)

Sincec > 0, y(n) satisfying (29) corresponds to a minimum @j(n + 1)/dy(n). Usingy(n) = b/3c obtained
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from (29) in (28) yields the value of the smallest derivative

. [dy(n+1)) _ 3c(l—a)— b
mln{ dy () } = 30 . (31)

Thus,y. will be a stable equilibrium point if (31) is greater thai. In particular, the convergence will be monotonic
if (31) is greater or equal to zero (see below). A necessadysaifficient condition for (31) to be greater or equal
than zero is

b? < 3c(1 —a). (32)

We determine in Appendix | the conditions for (32) to be datisfor large values ofV. It is shown that extra

restrictions may apply to the possible valuesupfdepending on the relationship betwepr?(n)] and o2.

If (32) is satisfiedy(n + 1) is monotonically increasing witl(n) in [0, y(0)may, @ndy(n) converges monoton-
ically to yc wheny(n) is initialized in the rang® < y(0) < y(0)max @s shown in Fig. 3. Thug, will be a stable

equilibrium point of (20) whenever the conditions derivaedAppendix | are satisfied.

y(n+1)
y(n+1)=y(n)
fy(n)) L
ytg(e) >0
97 1 y(n)
//% Ye y(o)max
Yneg

Fig. 3. Equilibrium points: case 1 - derivatives.

If (32) is not satisfied, there is still a possibility that be a stable equilibrium point, though the convergence

to it will not be monotonic. It is easy to verify thaj. will be a stable equilibrium point with non-monotonic
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convergence if

1
e dy(n+1)

< 0. 33
dy(n) ly(n)=ye (33)

In this casey(n) will show decreasing oscillations abowt. This situation is illustrated in Fig. 4. Applying (33)

to (31) we obtain a condition for convergence in this sitoati
3c(1 —a) < b* < 3¢(2 — a). (34)

The conditions for (34) to be satisfied are determined in Appeid These conditions are similar to those
derived for (32).

y(n+1)

y(n+1)=y(n)

1 ‘ y(n)
y(0)ye Y(0) max

Yneg

Fig. 4. Equilibrium points: case 1 - non-monotonic convergence.

B. Case 2:¢® + r2 = 0 (only real roots, and two of them are equal and nonzero)

In this case, (24) has two real, positive, and equal rogtsafd y(0)max coincide) and one negative roaj.(,),
which is again not of interest for the convergence analyidie. curvey(n+1) is tangent to the ling(n+1) = y(n)
at the saddle poingc = y(0)max @s shown in Fig. 5.

This case clearly determines the stability limit for the stige i, as it defines the value ¢f for which there is

no gap between. andy(0)max. TO determine the step size stability limit, we wrife+ 2 as a function ofs, b, ¢
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y(n+1)
A
STABLE
/'/ Ye = Y(0)max

Fig. 5. Equilibrium points: case 2/{ = y(0)max).

andd, yielding

S B RaUCRE I )

= 7298 (3“ +o )

1,9 2, a2
* 799:6 (5‘“’0_7‘10 +b)‘

Since (35) is equal to zero for Case 2, we conclude that

4(3ac n b2)3 - (9abc —27de® + 2b3)2.

15

(35)

(36)

Writing (36) as a polynomial in:, and substituting the variables b, ¢ andd as functions ofAd;, As, By, Bo,

C, D according to (21) and (22) leads to

Pyt + Pyp® + Popi® + P+ Py = 0,

where:

37
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Py = —4A3C + A3B2 + 1843B2CD — 4B3D — 27C?D?,

P; = 12A1A3C — 2(A1A2B3 + A3B1Bs) — 18(A1 By + A3 B1)CD + 12B1 B3 D;
Py = —12A2A5C + A}B3 + A3B} + 4A1A2B1 By + 1841 B1CD — 12B3Bs D;
Py = 4A3C — 2(A1A2B} + A?B1Bs) + 4B} D;

Py = A2B2.

The smallest positive real ropt, of (37) corresponds to the stability limit. If the weightsneenitialized equal to
the optimum weight vectow® or with values such that” (1)v(1) < yc, the LMF recursion would start apparently
converging, but any noise would drive the recursion to inifitg. This is the situation in which what we called
“steady-state divergence” occurs: in practice, noise dllable to drive the filter to instability whep is close

(not necessarily equal) t®(0)max.

C. Case 3:¢> + 72 > 0 (two complex roots)

In this case (24) may have three real negative roots (a &ituaf no interest) or one negative real and two
complex roots. There is no solutigrin + 1) = y(n) for y(n) > 0. Therefore, there is no value gf0) > 0 that
guarantees stability of (20). The complex roots case istitibsd in Fig. 6, and occurs for values pflarger than
the limit value po.

The results derived in this section allow the explicit det@ation of the stability conditions for the LMF algorithm
when applied to the system in Fig. 1. Given the system parametee maximum value ofi (1 = uo) can be
determined from (37). Then, for any < 1o, ¥(0)max can be determined from the solutions of (24). The value of

y(0)max is the maximum initial distance from the initial weight vectw(0) to the optimum weight vector that
guarantees algorithm stability for a given value,ofThus, the use of this information directly for design pugms
requires a reasonably good estimateudf, the response of the system to be identified. This is a conseguan
the fact that the stability limit is a function of the weighgator initialization. Such property is common to adaptive
algorithms employing higher (greater than 2) order momeftthe estimation error. Nevertheless, the analysis
results provide an analytical model that can be used to dtuelyobustness of the algorithm in solving practical
problems, and to design the algorithm for an expected mafyerror in the initial estimate ofv°.

The theoretical model can also be used to estimate the rangemkizes that guarantee stability of (20) for a



HUBSCHER, BERMUDEZ AND NASCIMENTO 17
y(n+1)

UNSTABLE y(n+1)=y(n)
f(y(n))

y(n)

3
3
3

—lo

e
Fig. 6. Equilibrium points: case 3£ andy(0)max complex).

given initializationy(0). To this end, (24) can be used iteratively to determine thgimam step size associated
with a desired initial conditionq(0). First, it is important to notice that there will be a diffetelue ofy(0)max for
each value of.. Defineyy, as the value of: for which the maximum possible value ¢f0) is y(0)max, (determined
from (24) with i = uy). Then, forp = pe evaluated from (37)y(0)max, = min{y(0)max}. Given a desired initial
conditionyq(0), we start by comparingq(0) with y(0)max,- If ¥a(0) > y(0)max,, ¢ Must be reduced. We then make
p1 = po — Ay. Using nowy; in (24) leads toy(0)max, , which must be compared withy(0). If y4(0) > y(0)max

p2 = p1 — A, is evaluated as a new candidate farax. The cycle continues untilg(0) < y(0)max,. Then,

Hmax = [ -

V. SIMULATION EXAMPLES

This section presents simulation examples to verify the royuof the theoretical analysis. Initially, we illustrate
the accuracy of (20) through an example with = 1, z(n) uniform with zero-mean and? = 0.1, N = 29,
u = 0.004 for pmax = 0.0468, y(0) = 1. The plant’s impulse responae® was a delayed raised-cosine function

given by [26]

o/ ) sin 67 fo(n — no)/N| cos [677 fo(n — no) /N |
wilk) = { 67 fo(n — 10) /N } { 1= 12rfo(n — no)/N } (38)
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y(n), EM(nv(n)]

-4

10

| | | | | |
0 1000 2000 3000 4000 5000 6000 7000
iterations

Fig. 7. E[vT(n)v(n)] for LMF with white input and zero-mean uniform noise? = 1, ¢2 = 0.1, y(0) = 1, N = 29 taps and
1~ max/10. Ragged curve: Monte Carlo simulation averaged over 50 runs. Sncaoik: Theoretical model (20).
where N is the number of coefficients,is roll-off factor 0 < r < 1), no is the right-shift delay relative to the even
function case and, is the expansion factor. For this examptes= 0.1, no = (N —1)/4 = 14 and f, = 0.58. The
mean-square deviatiof[v’ (n)v(n)] is shown in Fig. 7. The simulation (ragged) curve was obtaimech fMonte
Carlo simulation averaged over 50 realizations for whictstemady-state divergence was observed. The theoretical
(smooth) curve was obtained from (20).

To test the theoretical stability limit we estimate the aithjon’s probability of divergencely obtained from

several experiments (see also [1]). To estimBie each experiment is repeatddtimes, starting from the same

i (Ni)| > 10* after Ny iterations®.

initial conditiony(0) = ||v(0)||?. A sample function is labeled as “diverging”
We then compute the observed probability of divergenc&gas= (Number of curves diverging L and draw the
curves forPy o versusy. The instability onsets obtained from these curves can tearompared with the theoretical

stability limit obtained using the procedure describedhe kast paragraph of the previous section.

Fig. 8 shows a typical example, comparing the probabilitiedigergence observed when the noise is uniform

*The results reported in these simulations are very insensitive to diverglneshold used, as the divergence is “explosive” when it
occurs. Thresholds varying fro0* to 10'° have been used with basically the same resuilts.
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with 02 = 0.01, N = 100, 02 = 1, y(0) = 1, L = 103, Ny = 10%. The vectorw® was obtained from (38) with

r =0, no =2 and f, = 2. The value ofumax(y(0)) computed from (24) corresponds to the vertical iine

Observed probability of divergence fov = 100

100

90:
80:
70:
60:
50:
40:
30:
20:

10

0 T T T T T T T T T T
0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020 0.022

7

Fig. 8. Probability of divergence, uniform nois&, = 100, o2 = 1, y(0) =1, 02 =0.01, L =103, Ny = 10*. The vertical line shows
the value ofumax.

Table | lists the values ofimax Obtained for different noise varianceﬁ, signal variancesrg, filter lengths NV
and initial conditionsy(0), for both uniform and Gaussian noise distributions. Theeattbo shows the step sizes
for which the observed probability of divergence wids (1119,) and99% (ug9%)- In order to keep the simulation
time manageablgy;o, and 1995, Were obtained by interpolation from a grid of actually measuwalues. Note that,
except for three situations (cases 2, 6, and 28, out of theisg8aged}?, umax iS always betweem, o, and ziggo,.

We should also note that @$0) is decreased below(0)max, the corresponding,.x initially increases. However,
max Cannot become larger than, so there is a limit, below which a reduction ig(0) will not translate to an
increase iNumax.

Figures 9 and 10 show the probability of divergence as a fonabf the initializationy(0), for six different
values ofu. The vertical lines show the values 9f0)max computed from (24) for each value pf

In order to illustrate the LMF steady-state instability désed at the end of Section Il (but not predictable by
the present model), Table 1l shows observed steady-stat&pilities of divergence as a function of the number of
iterations for three different cases. In the first four exasapthe number of iterations does not affect significantly

the observed probability of divergence. In the fifth cases fiobability clearly increases with the number of

"The number of repetitions = 10° used to estimate the probabilities was somewhat small to reduce simulatiorStime.our goal with
these simulations is simply to show the region of fast increask; iy there is no need to estimate these probabilities with great accuracy.
12This may be due the approximations used to estimate the values,08nd Ligg9.
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Fig. 9. Probability of divergence, uniform noish, = Fig. 10. Probability of divergence, uniform nois¥, =
100, 02 = 1, p = 0.0010772 (solid), 1 = 0.0023208 100, 02 = 1, p = 0.0107722 (solid), x = 0.0232079
(long dash), angx = 0.005 (short dash)s2 = 0.01, (long dash), andx = 0.05 (short dash),c? = 0.01,
L = 10%, Ny = 10*. The vertical lines show the values L = 10%, Ny = 10*. The vertical lines show the values
of y(0)max computed for each value gf. of y(0)max computed for each value of.

iterations. As one would expect, the observed probabilitgieergence is less affected by the number of iterations
when the noise variance is lower, and the initial conditjd6) is larger, since these cases correspond to situations
in which Approximation (10) is better.

The analytical results derived here and the experiment#icagion of the possibility of steady-state instability
provide important guidelines for the use of the LMF algoritinmpractical applications. First, the step size used
should be a small fraction of the maximum step sizgx derived from the theory, given the expected range of
values ofy(0)max inferred from the available knowledge about the problem aidh Second, depending on the
degree of confidence in the available information, it may bésadble to incorporate some form of re-initialization

procedure to be applied if, for instance, the error sigratstdiverging.

VI. CONCLUSIONS

This paper presented a new convergence analysis for the LMptiaglaalgorithm, based on mean-square
arguments. Although [1] showed that LMF with Gaussian regpesis not mean-square stable for any step size,
the present analysis shows that mean-square results nilagestiery useful to predict the region of useful step
sizes for a nonlinear adaptive filter, providing useful imfiation at a much lower cost than the model in [1]. The
analysis further improves previous results in that the ddpace of stability on the initial conditions is explicitly

shown, for additive noise having any even p.d.f. The reselieal a relationship between the initial conditions and
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TABLE |

21

MAXIMUM STEP SIZES pimax FOR DIFFERENT CONDITIONS FOR GAUSSIAN REGRESSORS

Case N of y(0) of Hmax H1% H99%
Uniform noise
1 10 0.1 01 0.01 9.7357 6.1 12.3
2 10 0.1 01 0.1 1.18 0.67 1.16
3 100 0.1 0.1 0.01 1.12753 0.93 1.78
4 100 0.1 0.1 0.1 0.14406 0.113 0.182
5 1000 0.1 0.1 0.01 0.131606 0.113 0.173
6 1000 0.1 0.1 0.1 0.014744 0.0148 0.0183
7 10 1 0.1 0.01 0.21549 0.135 1.38
8 10 1 0.1 01 0.0974 0.0614 0.172
9 100 1 0.1 o0.01 0.0316 0.0210 0.0744
10 100 1 0.1 0.1 0.0127528 0.00931 0.0182
11 1000 1 0.1 0.01 0.00332 0.00211 0.00789
12 1000 1 0.1 0.1 0.0013161 0.00120 0.00278
13 10 0.1 1 0.01 2.1549 1.48 10.9
14 10 0.1 1 0.1 0.974 0.610 1.23
15 100 0.1 1 0.01 0.3164 0.202 0.757
16 100 0.1 1 0.1 0.12753 0.0928 0.177
17 1000 0.1 1 0.01 0.033195 0.0202 0.0586
18 1000 0.1 1 0.1 0.0131606 0.0113 0.0173
19 10 1 1 0.01 0.0246 0.0178 0.337
20 10 1 1 0.1 0.0215 0.0146 0.120
21 100 1 1 0.01 0.00370 0.00231 0.0108
22 100 1 1 0.1 0.00316 0.00199 0.00741
23 1000 1 1 0.01 0.000390 0.000221 0.000821
24 1000 1 1 0.1 0.000332 0.000204 0.000557
Gaussian noise
25 10 1 0.01 0.01 0.7692308 0.352 0.848
26 10 1 001 01 0.0779754 0.0356 0.0849
27 100 1 0.01 0.01 0.0970874 0.0700 0.113
28 100 1 001 0.1 0.0128305 0.00701 0.0112
29 1000 1 0.01 0.01 0.0099701 0.00888 0.0135
30 1000 1 0.01 0.01 0.0009970 0.000892 0.00143
31 100 1 0.1 0.01 0.0313480 0.0197 0.0694
32 100 4 0.1 0.01 0.0022479 0.00124 0.00632
33 100 0.5 1 0.01 0.0145243 0.00822 0.0416

the step size in determining convergence. The smaller theea ., the larger the allowable values for the initial

weight error vector. Simulations show that the theoreticabjctions can be useful for design purposes.
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APPENDIX |

CONDITIONS FORb? < 3¢(1 — a) IN (32)

Using the values ofi, b andc from (21) in the expressiot’ < 3¢(1 — a), yields:
B21i2 — 2B Bop® + B2t < 3Cu? — 34,0p® + 34,C (39)

Using now A;, As, B, B andC from (22) in (39) yields

{36 0517 — 1800202 (BN + 12)p® + 22502022 (3N + 12)%u}
(40)

< {303(15N + 90)* — 18 0202 (15N + 90)® + 45 E[z*(n)|o (15N + 90)(N + 2)u*}
Dividing (40) by 30542, results

{12 - 600202(3N + 12)p + T5 003 (3N + 12)%1*}
(41)
< {(15N +90) — 6 0202(15N + 90)p + 15 E[z*(n)]o2 (15N + 90)(N + 2)u*}

For large N, the following approximations are valid (far = 90 or F' = 78):

N+2~N
3N +12~ 3N (42)

16N + F = 15N

Therefore, for largeV and definingp = 02Ny, (41) can be written as

225{ E[z4(n)] - 3a§}p2 +900%p + 15N > 0 (43)

Straightforward analysis of inequality (43) shows that isatisfied for any. > 0 if E[z*(n)] > 302 (i.e., z(n) is
Gaussian or has a distribution with longer tails than thesSiam). IfE[z*(n)] < 302 (i.e., z(n) has a distribution
with shorter tails than the Gaussian), (43) is satisfied for

_ BV

< 44
O<ps 2No2a ' (44)
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where

a = 225{E[z*(n)] — 302} (45)

B = 900> (46)

Ay = 900{903 ~ 15N { E[z4(n)] - 303}}. (47)
APPENDIXII

CONDITIONS FOR3c(1 — a) < b? < 3¢(2 — a) IN (34)

The left inequality is the opposite of (32). Therefore from )48 conclude that the convergence cannot be
non-monotonic for largeV if E[z*(n)] > 302. On the other hand, iE[z*(n)] < 302, the left inequality in (34)
will be satisfied for

B VA

>
a 2No2a

(see (44)).
If the above conditions are satisfied, we may check the seconditon in (34). Using the values af, b andc

from (21) in the expressio’ < 3c(2 — a), yields:

B2? — 2B Bop® + B3pt < 6Cp? — 3A,Cp3 + 34,0t (48)

Using now A;, As, B, B2 andC from (22) in (48) yields

{36 0517 — 1800202 (3N + 12)p® + 22502022 (3N + 12)%u}

(49)
< {605(15N +90)u? — 18 0203 (15N + 90)p* + 45 E[2*(n)]o2? (15N + 90)(N + 2)u*}
Dividing (49) by 30542, results in
{12 - 600202(3N + 12)p + T5 o203 (3N + 12)%p*}
(50)

< {2(15N +90) — 6 0202(15N + 90)p + 15 E[z*(n)]os (15N + 90)(N + 2)p*}
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Using again approximations (42) for largé and makingp = o2 Ny, (50) can be written as

225{ E[=*(n)] — 304 }p? + 9002p + 30N > 0. (51)

Straightforward analysis of inequality (51) shows that e (n)] < 302, (51) is satisfied for

=B — VA
<p< — ==
0= u 2No2a ' (52)
wherea and 3 are given by (45) and (46), respectively, afd is given by
As = 9004 95* — 30N{ E[z4(n)] — 30;1} . (53)
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TABLE I
OBSERVED PROBABILITY OF DIVERGENCE AS A FUNCTION OF THE NUMBR OF ITERATIONS

]Vit Pd,o
N =10, p = 0.01, L = 103,
o2 =1, y(0) =1, 02 = 0.01,
uniform noise

10% 0.0%
5-104 0.1%
10° 0.0%
2.10° 0.1%

N =10, p = 0.0246, L = 103,
o2 =1,y(0) =1, o2 = 0.01,

uniform noise

10% 4.0%
5-104 6.0%
10° 6.5%
2.10° 5.7%

N = 1000, = 0.00025, L =
103, 02 = 1, y(0) = 1, 02 =
0.1, uniform noise

10* 3.6%
5-10% 3.4%
10° 4.5%
106 3.0%

N = 1000, ¢ = 0.000332, L =
103, 02 = 1, y(0) = 1, 02 =
0.1, uniform noise

104 22.2%
5-10% 19.6%
10° 21.8%
106 23.7%

N =10, p = 0.0617917, L =
103, 0325 =1, y(0) = 0.1, O'g =
0.1, uniform noise

107 0.8%
3-10° 6.7%
5-10° 9.8%

109 18.5%

2106 35.4%



