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Abstract

We show that the least-mean fourth (LMF) adaptive algorithmot mean-square stable when the regressor input
is not strictly bounded (as happens, for example, if the tifgas a Gaussian distribution). For input distributions
with infinite support, even for the Gaussian distributitme LMF has always a nonzero probability of divergence, no
matter how small the step-size is chosen. We prove thistrésud slight modification of the Gaussian distribution
in an one-tap filter, and corroborate our findings with sal/simulations.

In addition, we give an upper bound for the probability ofediyence of LMF as a function of the filter length,
input power, step-size, and noise variance, for the caseaa§an regressors. Our results provide tools for designer
to better understand the behavior of the LMF algorithm, a@cidk on the convenience or not of its use for a given

application.

Index Terms
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. INTRODUCTION

The least-mean fourth (LMF) algorithm was proposed almost 2frsyago [1] as an alternative to the least-
mean square (LMS) algorithm. The goal was to achieve a lowedwtstate misadjustment for a given speed of
convergence using a different cost-function. It is notidifit to intuitively understand how this is accomplished if
we compare the update laws of both algorithms:

LMS:

Wa(n +1) = Wa(n) + pex(n) X (n), W
ea(n) = d(n) — Wa(n)" X (n),
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LMF:

W(n+1) = W(n) + pe(n)* X (n), o
e(n) = d(n) — W(n)" X (n),

whereW,(n) and W (n) € RM are current estimates of a parameter (column) vediy € RM. X (n) ¢ RM is
a known regressor vector, aa@n) is a known scalar sequence, usually caliiediredsequence. Note that we use
capital bold lettersW and X for the filter parameter and regressor vectors (in the se@yene also usd” for

the filter parameter error vector).

It is well-known [2], [3] that, if {d(n), X(n)} are zero-mean, jointly wide-sense stationary sequencescan

always model the relationship betweéf) and X (n) as
d(n) = WIX(n)+ eo(n), (3)

whereey(n) is a zero-mean scalar sequence, uncorrelated Xith) and with variancé{ey(n)?} = o3 (E{-} is
the statistical expectation operator). In this contd¥i, is called theWiener solution The LMS estimaté¥ (n)
converges in the mean @/, with a finite covariance matrix, as long as the step-gize small enough. It is also

known that, for smally, the LMS steady-state mean-square estimation error (MSE)piogimnately given by

Tr(R,
lim E{es(n)?} ~ of + pog HR.)

n—00 2 ’

(4)

whereR, = E{X (n)X (n)"} is the autocorrelation matrix ok (n), andTr(R,) is its trace. The second term in
the right-hand side of (4) is the steady-state excess MSE,hwikicaused by the fluctuations & 2(n) around
W, after convergence. This term is proportionaltolt can also be shown that the worst-case rate of convergence

of E{ez(n)?} is 1 — 2puAmin for small 1, wherey,, is the smallest eigenvalue @,

One can see that controls the behavior of the algorithm, and that two impatrtgoals are competing: for fast
convergence, one would use a large step-gizeut to achieve low steady-state MSE, a smaller step-sizednmeail
better. One intuitive way to understand the LMF algorithmdsconsider it as a variant to LMS with a variable
step-sizeii(n) = e(n)?u. When the error is large, adaptation is faster, when the érsmall, adaptation is slower,

resulting in a fast convergence with small steady-stater.err

Regarding the LMF algorithm in this way also highlights itsimdrawback: if the error gets too large, the
“equivalent step-sizefi(n) may get large enough for the algorithm to diverge. This haggeninputs with long
tail distributions (and even for the Gaussian distributiaa we show in the following sections). Thus, one can
expect the convergence properties of the LMF algorithm todgeddent on: (i) The initial weight vector estimate

W (0); (ii) The probability that the error gets too large at any giagorithm iteration.
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Recent works [4]-[7] studied the behavior of the LMF algarittior Gaussian noise and regressors, finding
approximate mean-square stability conditions. Severadratiorks also studied the stability of LMF. For example,
[8] proves thatW (n) converges to a ball around@ , when the regressor vector sequence is bounded, i.e., when
there is aB < oo such that|| X (n)|| < B for all n (|| - || is the Euclidean norm). Deterministic results such as [8]
tend to be very conservative, requiring that the step-sizquite small in order to guarantee stability. However, the
fact that the regressor vector attains large values with allgrobability will usually not de-stabilize an algorithm
this is why LMS is mean-square stable for distributions withité fourth-order moments (this condition is for

independent regressors, see [3], [9]), and is one of thensashy LMS is so robust.

In this work we argue that there is always a nonzero prolighili divergence in any given realization of the
LMF algorithm when the entries oX (n) have a probability density function (pdf) with infinite uqrt, i.e., there
is a small (but nonzero) probability that an entry is lardemt anyC' > 0. This is what happens, for example, with
the Gaussian distribution. The practical consequence efrésult is that LMF is not robust to inputs that have

small probabilities of large errors. Rare gross errors erggressor sequence may make the algorithm unstable.

We prove this property for a simple case, whieh= 1 (scalar filter) and the distribution oK (n) is a slight

modification of the normal, with pdf given by

0, if || <e,
px(z) = . (=] = €)? (5)
T e 203 if |z| > €,

for e > 0.

This result means that the LMF algorithm i@t mean-square stable with these near-Gaussian inputs. ém oth
words, the steady-state mean-square error (MSE) is unbouhtigite that this result does not imply thavery
realization of the LMF algorithm will result in divergencen fact, the probability of divergence on a single
realization of the algorithm decreases as the step-sizedeedsed to zero, as we show in a few examples further

on.

In light of this result, we can better understand the appnations given in the literature for the MSE of the LMF
algorithm. For small step-sizes, the probability of divearge is very small and the approximations in the literature
are in fact computinga{e(n)2| the filter coefficients did not diverg}e Thus, there is not a step-size boundary
I = lmax above which the algorithm starts diverging. What happenbkasthe probability of divergence increases
with p. This property has a similarity with what happens with LMS, apla@xed in [10] — The LMS algorithm
has a range of step-sizes for which it converges with prdibabine, but diverges in the mean-square (MS) sense;

a range for which the algorithm diverges almost always (anthé MS sense); and a range for which it converges
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in the MS sense. The LMF properties differ in that MS convergemappens only when both the regressor and the
noise are bounded. In practical terms, this means that #mesite should be chosen rather conservatively.

We also find an approximation for the probability of divenge, assuming tha{X(n)} is an independent,
identically distributed (iid) vector sequence with af-dimensional Gaussian distribution and covariangé. Our
approximation is a function of the filter length/, of the initial weight vecto® (0), of o2, and of the distribution
of ep(n). In [11] we present some simulations for LMF and extend thesellts to the least-mean mixed-norm
algorithm (LMMN) [3].

In the next sections we find an approximate model for thisabi, and provide several simulations corroborating

our affirmations.

II. A SIMPLE EXAMPLE OF INSTABILITY

Our goal here is to give a simple example showing that LMF walldna nonzero probability of divergence for a
rather nice distribution of the regressor input, no matw lsmall we choose the (honzero) step-size. We believe
that this scalar example explains clearly what is the meshaf divergence, so there is no need to expand the

example for longer filter's

A. Proof of instability for scalar filters

Consider the LMF algorithm (2) applied with filter lengiii = 1 to identify a constantV,, given an iid sequence
X (n) with pdf given by (5). Assume also that there is no noisej@9 = W, X (n). Defining the weight estimation

errorV(n) = W, — W(n), the LMF weight-error update equation is written
Vin+1)=(1- uX(n)4V(n)2)V(n). (6)

We show first that there is a value< K < oo such that, if|V(n)| > K for any n, thenlim,, . |V (n)| = co.
Later we will show that the probability o’ (n + 1)| > K given |V (n)| = « is nonzero for alle > 0. Let K be

such that § > 0 is any positive number)

2496

pelK? —1>146 < K > T (7
e
Given inequality (7) and sinceX (n)| > € by (5), it necessarily holds that
1= pX () K2 > [1 - pe' K2 > 1446, ®)

Part of this section was presented at [12]. The paper may be obtaimadhttp://www.ps.usp.brivitor/nascimentaev.pdf
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If we now assume that/(n)| > K, (6) yields

V(n+1)| = |1 = uX (n)'V (0)?[|V (n)] @)
> (1= pet K2[|V(n)] > (1+68)|V(n)],

and we conclude thdl (n)| — oo if at any time instant it happens thgt (n)| > K.
We complete our argument by showing that the probabilitylfr + 1)| > K given |V (n)| = « is nonzero for

any a > 0. Define, for a givem > 0,

A K 1
Bla) = ] + ar (10)
Then, for|V(n)| = a, an inputX (n) such thatX (n)* > 3(a) leads to
K
4 2
and thus
V(n+1)] =1 - pX )V (n)?[|V(n)] > K. (12)

Expressions (9) and (12) show thdt(n)| — oo if X(n)* > B(a) for any given|V(n)| = «a. Thus, to
prove that there is a nonzero probability of divergenceeihains to show that there is a nonzero probability that

X(n)* > B(a), given that|V (n)| = a. Using (5), it follows that

Pe{V(n+1)> K | V(o) =a} >
> Pr{X(n)4 > B(a) ‘ V(n)| =a} (13)

= 2/ px(z)dz >0,
B

ORE

wherePr{ A|B} is the probability of occurrence of given B. This concludes the proof.

B. Gaussian regressors

When X (n) is normal € = 0 in (5)), the simple proof above does not apply. However, we present simulations
showing that the result still holds.
Assume that LMF is applied to the same situation as beforewiiite = 0. In our simulations, we evaluated:
« The probability of divergence of LMF, measured as follows: e £ = 10° realizations of the algorithm,
starting from the same initial conditiovi(0) = 1 and with zero noise. We counted a “divergence” every time
the absolute errofl/ (n)| became larger than0'?° (choosing this value in a very large range does not affect

the results),
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« The probability P~ of |V (1)| > |V (0)],
« The valueV; , for which the probabilityPr{|V (n +1)| > [V(n)| | [V(n)| =V} 2} = 0.5,
« The probability -y, , that [V'(1)| > V) 5, given the initial condition.
The probability of divergence was obtained experiment&liother values can be computed as follows. We start

by computing the pdf o¥ (n + 1) given V' (n). From (6), it is clear that

Pr{V(n+1)<z|V(n)=2 >0} =

=Pr{(1 - puX(n)12%)7 < 2} = (14)

_ Pr{X(n)4 51 ;;2/2}

The pdf of X (n)? is given by

_dPr{X' <y}
- -

1/4

e )
dl2 e 7idx
< /o V2mo, ) (15)

px(y)

Thus
Pr{Vin+1)<z|V(n)=2>0}=

1—2z/7
=Pr {X(n)4 > MZZ/ }: (16)

_/i \/87mxy3/46 e

;LZ2

Finally, the desired pdf is obtained by differentiating (1@}h respect toz:

PVt | vin) (2 | V(D) = Z) =
_ dPr{V(n+1) < z|V(n)=Z >0}

dz
1 — =

— 2a2\/u7
= (& @ .
V 8 O'I/LI/4Z3/4(Z — 2)3/4

(17)

Assumingo? = 1, we can use (17) with/(0) = 1 (fixed) to determine the probabilitieB~. = Pr{|V(1)| >
V(0)[} and Psy,,, = Pr{|[V(1)] > [Vis| | V(0) = 1}, and the pointV;,, > 0 for which Pr{[V(1)| >
V(0) | V(0) = Vi 2} = 0.5. These values are given, for several choiceg,dh Table I. The table also showg,
the observed number of realizations of the LMF algorithm fdvich |V (n)| > 10'%° for somen, as explained

above.

The last column in Table | shows that the probability of diwsrge grows with the step-size. However, even
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for the largest step-size in the table, the filter coeffitiebehave rather nicely in most realizations. Fig. 1 shows
three realizations for a scalar filtedd = 1 coefficient), with Gaussian iid inpuk (n) with unit variance, step-
size u = 0.03 (probability of divergence of 0.16% according to Table Ijdainitial conditionV(0) = 1. The
figure shows two realizations where the algorithm conveygend one for which the algorithm diverged. Note
that divergence does not take long to become clear. This hers \mified to be a typical algorithm behavior. In
addition, we note that the probability of divergence depend the initial condition: the larger the initial error
V(0), the larger the probability of divergence. This behaviornsagreement with the results derived in [7]. The

same behavior is observed for filters willd > 1.

I1l. PROBABILITY OF DIVERGENCE

We now turn to the problem of estimating the probability ofedgence of LMF for filters of any length. First
of all, we need to define clearly what is meant by divergendeacceptable behavior could be of many forms:
the estimation error could grow to large values before desing, or it might stay at reasonable values for most
of the time, but with bursts of large errors, or the estinmatioror could grow unboundedly. The usual definition
of stability in adaptive filtering involves the variance tife estimates; i.e., one wishes that the variance of the
estimation error remains bounded and not much larger themaise variance. Given the kind of behavior we saw
in the previous section, we shall employ in this paper theodahg definition for divergence:

Definition 1 (Divergence)in this work we say that a realization (a single run) of the LMEursion diverged if
lim,, . [|[W(n)|| = co. We shall also say that a realization of the algorithm cagwerif it did not diverge (note
that this is not the usual definition of divergence, but ie@aate for our study).

We are interested in the following question: given the ahitondition W (0), the step-sizq:, the filter length
M, and the noise and regressor statistics, what is the piliigabiat a realization of the filter will diverge?

For the scalar filter with the modified Gaussian distribati if the absolute errofi’(n)| becomes as large as a
certain valué/, the LMF algorithm will necessarily diverge, as we saw in thevpus section. The analysis is more
complicated for the unmodified Gaussian distributiongsiin this case, no matter how largé(n)| gets, there is
a small nonzero probability that the error may return to oeable values (however, this small probability quickly
decreases a3/ (n)| increases). This makes the estimation of the probabilityivérdence a difficult problem. We
propose here an approximate model that attempts to captaressence of the dependence of the probability of

divergence oru, M, the variance of the input sequeneg, and the distribution of the noisg(n).

A. Recursion forf|V (n)||?

We start by finding an approximated recursion & (n)||%. We assume thgtX (n)} is iid and Gaussian, and that

the entries ofX (n) are uncorrelated. Thug{ X (n) X (m)”} = 0 for m # n andR, = E{X (n)X ()"} = o021,
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wherel is the identity matrix. We further assume that the probgbdensity function (pdf) oky(n) in (3) is even,
so thatE{eg(n)*} = 0 wheneverk is an odd integer.

Substitutingd(n) from (3) in (2), we obtain
e(n) = V()" X (n) + eo(n), (18)
whereV(n) = W, — W (n). Writing the LMF recursion (2) in terms o¥ (n), we obtain
3
V(n+1)=V(n) - ,u(V(n)TX(n) + eo(n)> X (n), (19)
Defining p(n) = V(n)T X (n) to shorten the notation,

Vin+1)=V(n)—p [p(n)3 + 3p(n)2eg(n) + 3p(n)eo(n)*+

(20)
+ eg(n)] X (n).
Now definey(n) £ V(n)TV(n) = ||V (n)|? From (20) we have
V{4 1) = ()~ 2| () + 30 ealw) + 3p()ean) 4
O R O O
(21)

+ 15p(n)"eo(n)? + 20p(n)?eq(n)* + 15p(n)?eq(n)’'+

+mmm%mf+%mfhxmn?

Our goal is to estimate the probability thait,, .., y(n) = oco.

We need to simplify (21) to proceed. Thus, we make the appratkimy(n) ~ E{y(n)| y(n—1), X (n)}. This

approximation replaces the noisg(n) and its powers by their means.

o+ 1) = y(on) = 20 )+ 3p() 8| +
o {p (n)° + 15p(n) ot + 15p(n)*v5 + ng] 1X (m)]I2,

where we used our assumption thafeq(n)} = E{eo(n)?} = E{eo(n)°} = 0, and definedys = E{eo(n)*},
n§ = E{eo(n)"}.

To proceed we need to approxima(éf(n)TX(n))% in terms of y(n)* and of | X (n)||?*. Recalling our
assumption that the entries & (n) are uncorrelated and Gaussian (and thus also independenthote that
the vector X (n) can point to any direction ifR™ with equal probability. Under our assumption of i (n),

the directions ofV'(n) and of X (n) are independent, and using this observation we show in Apipdrthat the
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following approximations can be used:
(Verxm* { (V)" X (n))™ } A
IVExmn™ LUV eiixmi)™

any(k),

(22)

11>

1 3 15
M’ M(M +2)’ M(M +2)(M + 4)°
Substituting(V(n)TX(n))Qk by apr(k)y(n)*|| X (n)|**, we obtain

with oy (1) = andayy (3) =

ap(2) =

|1 9 4 [ X (n)]I* ()H2
y(n—l—l)N 1 M(6Uo 15/“/’0”X( )”)

1 X ()"
M(M + 2)

y(n)®| y(n) + pPnfl| X ().

—3u(2 — 1503 ]| X (n) )

X () ||®
M+ 2)(M + 4)

y(n)+ (23)

+15u2M(

B. Estimating the probability of divergence

What we want to evaluate now is the probability that #fie) given by recursion (23) grows unboundedly, given
the initial conditiony(0) = V' (0)7V(0), and 1, o2, o2, 1§, 0§, and M.
Denote byD(n) the factor between brackets multiplyingn) in (23), i.e.,

1~ (602 — 1500 Xt _
D(n) =1~ pu (608 — 155 X (n) )

4
(2~ 1o X (1) )+ @4
1)
+ 15“2M(M+2)(M+4)y(")2‘

We show in Appendix Il thatD(n) is always nonnegative.
We find an approximatiorP; for the probability of divergence as follows. Recursion)(28nverges if there is a

fixed Dy such that) < D(n) < Dy < 1 for all n, since in this casg(n + 1) < Doy(n) + un$|| X (n)||?, and thus

y(n) < Dyy(0) +/moZD6‘ X (k) (25)

If D(n) < Do < 1 for all n, | X (n)||> must necessarily be bounded (sinbén) — oo when || X (n)|| — o).
This boundedness dfX (n)|| together with (25) imply thay(n) remains bounded (and therefore, according to our
definition, the algorithm converges).

However, it may happen that the algorithm converges even févwa of the D(n) are larger than 1. Thus,
P. = Pr{O < D(n) < 1foralln > 0} is a lower bound for the probability of convergence, d@ad=1— P. is

an upper bound for the probability of divergence. To evauat we:

1) Find the probabilitie®r{D(n) < 1| y(n) = g(n)}, for 0 < n < N, starting from a givery(0),
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2) A problem in the previous expression is thét), for n > 0, varies for each realization of the filter. In order

to proceed, we must find an approximatigm) for y(n)
3) Make

P, ~ HPr{D ) < 1] y(n) =g(n)} (26)

Assuming for now that we have an approximatig), let us find the probability in Step 1. From (24), we see
that D(n) < 1 means
X(n 2
~ (603 — 15p X )2 IX U

X(n 4
(2 150 X (0)]2) ps )+
1X (n)[[®

M +2)(M + 4)y(”)2 <1

—|-15,u2M(

which, if we letz £ || X (n)|2, reduces to

Q(z)éﬁrf%+<
i
- 15(M+2)(M+4)y(n)223 > 0.

Q(z) has no positive zero if(n) = o2 =

6 4 45u03 5
-1 — —
TEIAR 5uw0> e A

Yy = 0; otherwiseQ(z) has one and only one positive real zeggn)
for y(n) > 0, as we show now:

1) If the noise is identically zero (i.es = )3 = 0), thenQ(z) reduces to

Q(2)]zero noise= z( 6 (n)—

M2\

_ Lop 2,2
eI ET e ) ’
and the only positive zero is trivially

2(M + 4)
Suy(n)

2) If y(n) =0 ando? > 0, Q(z) has degree one, and the single positive zero is

Z0 (n) |zero noise=

203
ZO(n)|y(n):O = 5/”261

3) For nonzero noise ang(n) > 0, note thatQ(z) is of the forma + bz — cz? — d

23, wherea, c,d > 0, butb
is indefinite. Sincez > 0, Q(0) > 0, and sinced > 0, lim, .o, Q(2)

= —o0, SO there is at least one positive

>The use ofj(n), of (22), and of the expected values of the powersegfn), makes our analysis approximate. We validate our
approximations in Sec. IV.
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zero forQ(z). We argue that this zero is unique as follows. The first ands@order derivatives of)(z)
areQ'(z) = b—2cz —3dz?, Q" (z) = —2c— 6dz. SinceQ"(z) < 0 for z > 0, Q'(z) is strictly decreasing for
z > 0. Q'(z) will therefore have only one positive zerotif> 0, and none ifb < 0. SinceQ’(z) is strictly
decreasing, it may have at most one positive zgro- 0. This implies that)(z) may have at most one finite

extremum pointz; > 0. Q(z) may therefore either:

a) if b >0, Q(z) starts fromQ(0) > 0, increases fof) < z < z;, reaches a maximum ag, then strictly
decreases te-co; or

b) if b <0, Q(z) starts atQ(0) > 0 and strictly decreases tocc for z > 0.

In both cases@)(z) crosses the—axis once and only once far> 0, and the zeray(n) > 0 must be unique. The
sets{z € R| 2 >0, Q(z) >0} and{z € R| 0 < z < z(n)} are therefore equal, and our probability is given by
(recall thatzy(n) depends ory(n))

Pr{D(n) < 1| y(n (n)} =

—Pr{H n)|* < 20(n)] y(n) =i(n)}.

(27)

Since the entries ok (n) are Gaussian and iid,X (n)||? /o2 follows ax? distribution with A/ degrees of freedom,

and the last probability in (27) can be easily evaluated.

We still need approximationg(n) to y(n) = ||V (n)||? at every time instant. The most reasonable choice would
be the median of the distribution ¢V’ (n)||?, but this quantity is not easily computable. Another appration
would be to usej(n) = E{||V(n)||*}. However, this choice turns out to be inconvenient, sifide{V (n)||*}
in fact diverges, as we noted in Sec. Il. We propose in the nectic an alternative choice fgr(n) that gives

reasonable results.

C. Evaluation ofj(n)

The expected value of (19) faX (n) Gaussian with covariancg?l has been evaluated in [6] as

B{V(n+1)}=E{V(#n))- (28)

—3pufof +o2E{V(n)"V(n)}] c2E{V (n)}
To proceed with the determination of the estimate), we use the approximatiors (n) ~ E{V (n)}, §(n) ~
E{V(n)}T E{V(n)}. These approximations are good in the beginning of the atiaptphase, wheiV (n) is

dominated by its mean value (divergence is most likely tauoda the initial iterations, as our simulations show).
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Multiplying (28) by its transpose leads to a recursion Eb[rV(n)}T E{V(n)}, which we use to defing(n) as

G(n+1) = [1 - 3p02(a2 + 02§(n))] *5(n),

7(0) = y(0) = E{V(0)"V(0)} = V(0)"V(0).

(29)

Note that this choice fof(n) is only reasonable if is small. If the step-size is so large that3uo2 (02 +027(0)) =
0, theng(n) = 0 for n > 1, which would be far from the actual behavior of the algorithm

We now have all the necessary elements for our estimate gfrtteability of divergence for LMF.

Probability of divergence
Py~1-P, (30)

where

N
Pe= [T Pr{lIX(n)|* < z0(n)| y(n) =5(n)},
n=0

where|| X (n)|? /o2 follows ax? distribution with A/ degrees of freedom, ang)(n) is the only positive root of
(if 9(n) =0ando? =0, P.=1)

Q) = 603 + (g — 150 ) -

45pog o\ o L5p ~0N2,3
— n)z® — n)°z°,
v+ 2'T T Greyar s o™

(31)

with 02 = E(eg(n)?), 9§ = E(eo(n)*), andg(n) is computed from the recursion

§(n+1) = [1 - 3p02(a? + 025(n))] *5(n),
3(0) = y(0) = E |V (0)||?,

for ;1 < [302(c2 + 029(0))] .

Algorithm 1: Computation of the probability of divergence.

IV. SIMULATIONS

In this section we compare our estimates for the probabhiftgivergence of LMF with the results of several
experiments. We tested our estimates for the probabilitdieérgence for Gaussian measurement noise and for
Gaussian regressors of two types: Truly independent \v@Xar) (referred to as “IND regressors” hereafter), and
vectors X (n) formed from a tap-delay line (referred to as “TDL regresspra% usual in adaptive filtering. The
covariance matrix ofX (n) was alwayss21 (i.e., in the independent casB{ X (n) X (n — k)} = 0 for all k # 0,
and in the TDL caseE{X (n)X (n — k)} is non-zero and constant on thkéh off-diagonals and zero elsewhere.)

Our first example validates the procedure used for the sitimiils. We compare the probabilities of divergence
as a function of the step-size obtained under different kifimin conditions. Each curve in Figure 2 was obtained
running L independent realizations of LMF fa¥; time-steps each. For this example, we ugéd= 100, o2 = 1,

o2 = 0.01, and initial conditiony(0) = ||V (0)||> = 1. We labeled a curve as “diverging” {fV (Ny)| > 10,
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and computed the observed probability of divergencéas= (Number of curves diverging).. There are seven
curves in Figure 2. The two curves to the left were obtainedgusur theoretical model fov; = 100 (o) and
1000 (solid). The five curves to the right were obtained by simualatobserved probabilitiegy o). The rightmost
curve () was obtained using TDL regressors. The remaining four sitiomlecurves were obtained using IND
regressors.

Looking at the simulation curves, note that there is basicadl difference between the curves obtained with
L =103 and L = 10* (cases (a) and (b) in the figure). Regarding the number odtitsns, we notice a shift of
the estimated curve (divergence for smajlg¢rwhen Ny is increased fromi0? to 103, but practically no variation
for L > 10%. Regarding the type of regressor, comparison of both cun¢sined forN; = L = 10* (the curve
marked ) and the curve markee for case (b)), it is clear that the difference between theuktion results
with IND and TDL regressors have little impact on the theaatmodel's accuracy. The theoretical model indeed
upper-bounds the observed probability of divergence i loaises.

In Figure 3 we used only TDL regressors. The solid (unbrokenyesuiare the results of simulations, with
y(0) = 0.01 ando? = 1, 02 = 0.01, Ny = 10*, and L = 10%; and the broken curves give our approximatiBy
using 10® steps for the iterations (the same theoretical results witained using 0* steps). Note that for smaller
initial error y(0) (smaller thany(0) = 1 used previously), our approximations are closer to the sitians.

Figure 4 shows again results for TDL regressavs,= 102, o2 = 1, Ny = 10*, and L = 103, but now with
Gaussian noise with3 = 0.1. The top curves are foy(0) = 0.1, and the bottom curves, for(0) = 1. Again, the
theoretical approximations are better for smaljés).

Figure 5 again shows simulations for TDL regressors afnd= 100, now with different values for2. In all
cases, the solid lines are simulations made With= 10*, L = 103, ando? = 0.01; and the broken lines are from
the theoretical model. In (a)(0) = 0.1 ando?2 = 2, in (b), y(0) = 0.1 ando? = 4, in (c), y(0) = 1 ande? = 0.5,
and in (d),y(0) = 1 ando? = 4.

The figures show that our estimates indeed upper bound thmbpiliy of divergence of LMF. We noticed that
our approximation is closer to the observed probability isédyence for smaller values of the initial conditig(D),
and if the noise variance is not larger than the initial ctodi We ran many other simulations, varying all possible
parameters, always with similar results. Simulations foichy? > y(0) are more difficult to perform, since in
this case the number of time-steps necessary for staimlizat P, tends to be too large, and the simulations, too
lengthy. The same happensdif is decreased too much.

Our results may be compared with the bounds for the stepgdiea in [7]. These results are shown in Table II.
Comparing the maximum step-sizes predicted by Table Il with simulations and the observed probability of

divergence in Figures 2—-4, one can see that the maximum igep-given in [7] fall in the region where the
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observed probability of divergence is increasing rapidly.

V. CONCLUSIONS

In this paper we argued that the least-mean fourth algorithnmot be mean-square stable when the regressor
sequence is not strictly bounded, and provided an upperd&amthe probability of divergence of the algorithm.
In practice (since all actual regressor sequences are bdynolur result means that the algorithm is very sensitive
to large values of the regressor sequence, even if they oecurrarely, as is the case for the Gaussian distribution.
Other conclusion is that the step-size for the LMF algorithmowd be chosen rather conservatively, mainly when
a good initial guess for the Wiener solution is not available

The behavior of the LMF algorithm in this respect is very difier from that of LMS. If the weight error vector
V' (n) is taken by chance to a large value in a particular realimatdfothe LMS algorithm, it tends to return quickly
to reasonable behavior [10]. The LMF algorithm, on the otherdhanay become completely unstable if the weight
error vector becomes too large. This behavior is due to itscaubnlinearity.

Our upper bound for the probability of divergence providesigners with tools to decide whether using the
LMF algorithm in a particular situation is a sensible choiS@ce step-sizes too close to the stability margin often
lead to slow convergence and poor performance, the facthieabound is not tight is not a major hindrance. Our
results also open a new way of looking at adaptive filter belvawhich may lead to better ways of increasing

algorithm robustness and performance.

APPENDIXI

AN APPROXIMATION TO (V(n)TX(n))Qk

In Sec. IllI-A we approximated
(V)" X (n))** = an () [V ()| X (0)|**, k=1,2,3. (32)

. 2%
Our choice ofay, (k) is as given in (22)q (k) = E { (%) }

We now derive expressions for,(k) for k£ = 1,2,3, under the following assumptions:

1) Thevectorsequence X (n)} is iid,
2) The entries ofX (n) are independent (and thi& X (n) X (n)} = o21).

From these assumptions and from (22), it follows that

1) The weight error vectoV (n) is independent ofX (n),
2) If V(n) =0 or X(n) =0, (32) holds for any finiten s/ (k),
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v}

4) Note that in the inner expectatid¥i(n) is fixed. SinceX (n) has independent entrieX (n) may point to

3) We can rewritex/(k) as

( V()" X (n) )’“
V)X 0]

ay (k) =E {E

any direction inR™ with equal probability, so the inner probability is indeplent of the particular direction
taken by V' (n). Therefore the outer expectation is over a constant. Regalissumption 2. and defining

e1=[10..0]T €RM, X 2 X(n)/| X(n)|, we are left with
an(k) = [(eT X)7], (33)

where bothe; and X have unit Euclidean length.

Before tackling the general solution for (33), let us cossithe three-dimensional casX. is a vector whose
tip lies in the unit sphere, and the scalar prodetfX equals the co-sine of the anglebetweenX ande; (see

Fig. 6).

All vectors X with tips in the circle indicated in the figure have the samglad with respect tae;. The distance
of any point in the circle to the;-axis issin(d) (since the length ofX is one, andsin(f) = /1 — cos(6)? for
0 < 6 < 7). The element of area for alX with angled will then be2x sin(#)df. Thus we may evaluates (k) by

the expression
B Iy cos(0)?k27 sin(0)d6
~ Area of the unit sphere

as(k)

The area of the unit sphere i = 4x. It is given by

@:/%m@w
0

The generalM/-dimensional case is similar. Fixing the angldetweenX ande;, the unit length vectoX is
constrained to a/ — 1-dimensional hyper-sphere of radisia(¢) (since we fixed the projection ok’ with respect
to e; to cos(f), the otherM — 1 coordinates ofX must have total lengtkin(f) = /1 — cos(6)2, for 0 < 6 < 7).
The expression fow, (k) is then

Jo cos(0)% Ay sin(0)M2d6

k

where A, is the “area” of the surface of ah/ — 1-dimensional hyper-sphere of radius A3, sin(6)" =2 is
the surface area for am/ — 1-dimensional hyper-sphere of radisisi(#), and the denominator is the area of the

surface of theM-dimensional hyper-sphere of radius 1 (i.e., the denominat A,;). Note thatA,; ; may be
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canceled, so
 Jy cos(0)?F sin(0)M~2do

(k) I sin(0)M~2d6

(34)

We can further simplify this expression integrating the euator by parts. Taking the case= 1, let u =
cos(d) and dv = cos(0)sin(9)M~2df. We obtaindu = —sin(#)dd, v = 1/(M — 1)sin(§)M~!, and, since
cos() sin(9)M 1|7 = 0,

1 [y sin(9)Mde

1) = .
an(1) M —1 [ sin(0)M—2d0

(35)

For k = 2 and 3 the integration by parts must be repeated twice and thresperctively, with the final result

- 3 S sin(0)MH2d0
anm(2) = (M +1)(M —1) fz” sin(0)M-240 (36)
s (3) = 15 [ sin(6)M*dg 37)

(M +3)(M +1)(M — 1) [/ sin(0)M~2d6"

We now need to evaluatﬁ;r sin(@)"de for any integern > 1. This integral can be computed directly, or with

the help of a book of tables, such as [13]. The result is

/07T sin(0)"df = ZL" <n7/12>7r, n even (38a)
I'((n+1)/2)

(22 "o o

/07T sin(0)"d0 = /-

where (z) = . Using (38a) and (38b) we obtain (22) (which holds for sl Sincea; (k) = 1 for all &,

n!
Kl (n—Fk)!
(22) holds forM > 1.

APPENDIXII

PROOF THAT D(n) > 0

From (24), we have (for simplicity we omit the dependencenon this section)

X 2
D = D(y) =1~ p (60} — 13y x12) AL
x|
— (6 — 45u08|| X ||? 0.3
|1 X[ 2
+ 1542
WM +2)(M + 4)

We prove now thatD(y) > 0 for all y > 0. Our proof goes as follows.
1) First, we show thaD(0) > 0 always.
2) Next, we find the minimumD,,,;, of D(y), and find conditions fotD,i, < 0.

3) We then show that wheP,,;,, < 0, the valuey,,;, at which the minimum is achieved is necessarily negative.
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4) We conclude noticing that, since the coefficientgf in D(y) is positive, D(y) is strictly growing for

Y > Ymin, SO 1) and 3) imply thaD(y) > 0 for y > 0 if Dy, < 0 (if Dpin > 0, there is nothing to prove).

We now prove 1), 2), 3). Recalling that for any random vaeablit holds that0 < E(z? — E(:z:Q))2

E(2?) — (E(a;z))2, we havey; > o, thus

x| x|

D) = 1+ 152 XD g2 XU
X+ X|?
> 14 15208 1D g 21X

This last quantity may be rewritten as

X|2\? X4
D(0) > <1—3ua§‘ | > +15u20§%—
X[
— 9oy 2 0.

This proves 1). For 2), consider first a generic second-degadynomialc + by + ay?, with a > 0. Its minimum

is achieved at
—b

Ymin = %7

and the minimum value is
+ b__b + __b ’ = c — E

% TN %) T aa

Applying this result toD(y), recalling thatys > o3, and defining3 = po3|| X ||?, we have

— 2 — 15p03 ]| X |?
min —
10p[| X1

(M +4),

X X|?
Doin =1+ 15u2¢§H]\4| — GMU(%H]\/[H—

1 — 60uo]| X |? + 2250208 X || _

—3(M +4) 20M (M + 2)

.3 M+4

T 5M(M+2)

_ 60(2 —58¢5/05)B(M +2) + (M + 4)3(6753 — 180) _

20M (M + 2) -

3 M+4  (T5M +420)6 — (12M + 96)

>1-= — 3.
5M(M +2) AM (M +2)

We now prove 3)D,,;,, may be negative only if75M +420)uo3 || X || — (12M +96) > 0. Under this condition,

Ymin 1S bounded by
o M4 12M 496

Ymin = 70,1 X (4 THM +420)

M +4 2M+40

= — < 0.
10p|| X [|* 5M + 28
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This concludes our proof.
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Fig. 1. Three runs of LMF with scalar regressors, tilig = 0, V(0) = W(0) =1, u = 0.03, X (n) ~ N(0,1).
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Observed probability of divergence fard = 100
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Fig. 2. Probability of divergence, Gaussian noidé¢,= 100, ol =1, y(0) =1, o2 = 0.01. To the left are two superimposed curves
obtained from our theoretical model, computed wit? (0) and10? (solid line) iterations. The rightmost curve, marked-bywas obtained
from simulations, using TDL regressor8y = L = 10*. The solid curve next to it was obtained with IND regressavgs, = 10? and

L = 10 In the middle are three superimposed curves, obtained with IND ayesind (a)Vi = 10° and L = 10* (solid line), (b)
Ni = L =10* (¢), and (C) N = 2.5 x 10* and L = 10® (x).
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Fig. 3.
is for M = 103, the center pair is foA/ = 102, and the right-most is fol/ = 10. In all cases Ny = 10* and L = 10°.
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Observed probability of divergence.
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Fig. 4. Probability of divergence, TDL regressors, Gaussian nefse; 0.1, o2 = 1, and M = 100. Top: %(0) = 0.1, bottom:y(0) = 1.
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Fig. 5. Probability of divergence as a function of signal power, TDgressors, Gaussian nois®/ = 100. Solid lines: simulations,
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Fig. 6. Evaluation ofws (k).
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0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.20

P
1.7 x 1074
1.6 x 1073
4.3 x 1073
7.8 x 1073
1.2 x 1072
1.6 x 1072
2.1 x 1072
2.5 x 1072
3.0 x 1072
3.4 x 1072
7.5 x 1072

TABLE |
OBSERVED PROBABILITY OF DIVERGENCE FOR SEVERAL STEBIZES, ALWAYS FOR M = 1 AND INITIAL CONDITION |V(0)| =1.
COLUMN DEFINITIONS ARE GIVEN IN THE TEXT.

Vijo
31.1
22.0
17.9
15.5
13.9
12.7
11.7
11.0
10.4
9.8

7.0

P>V1/2
5.2 x 10714
5.8 x 1079
5.4 x 1077
6.5 x 1076
3.3x107°
1.0 x 1074
2.4 x 1074
4.7 x 1074
8.0 x 1074
1.3x 1073
1.2 x 1072

AMN/L
7 x 1076
3.0 x 1074
1.6 x 1073
4.4 x 1073
8.5 x 1073
1.4 x 1072
2.0x 1072
2.8 x 1072
3.5 x 1072
4.3 x 1072
1.3 x 107!

TABLES



TABLES

TABLE I
MAXIMUM STEP-SIZES fiuax FOR DIFFERENT NOISE VARIANCES AND FILTER LENGTHSFOR GAUSSIAN REGRESSOR$7].

U% M Hmax y(0)
0.01 100 0.00370 1
0.01 10 0.7692 0.01
0.01 100 0.097087 0.01
0.01 1000 0.00997008 0.01
0.1 100 0.00313 1
0.1 100 0.009709 0.1



