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Abstract

We develop adaptive beamforming algorithms which are rbbgainst sensor failure and ill- con-
ditioning in the autocorrelation matrix (common in low-kamterference scenarios). Both goals are
achieved simultaneously through the use/pfegularization. The algorithms are based on the complex
adaptive re-weighting homotopy technique. We also devékmative versions of the algorithms, that
take advantage of properties of homotofgysolvers and dichotomous coordinate iterations to reduce

considerably the computational complexity, compared wither regularization methods.

Index Terms

Adaptive re-weighting homotopy, adaptive beamforminghdtomous coordinate descent

. INTRODUCTION

Adaptive beamforming techniques are used in sensor ar@ynhance the reception of a signal
of interest and suppress interference [1]. They implemeahriiques such as the minimum variance
distortionless response (MVDR) beamformer [1] using daikected from sensors, since the second-

order statistics required to compute the MVDR beamfornregeneral, are not available.
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Although many fields apply adaptive beamforming technigusesh as radar, sonar and wireless
communications [1], it is challenging to implement traaiital approaches in large arrays. Techniques such
as the least mean-square (LMS), conjugate gradient (CGYyeswsive least-squares (RLS) algorithms
[1]-[3] have their convergence and tracking performandfested by the size and/or the eigenvalue spread
of the input correlation matrix [2]This performance can also degrade due to mismatch and rimadell
errors.Therefore, beamformers with many parameters may requirg sr@apshots to converge, which can
be incompatible with the requirements of some applicat{msinstance, space-time adaptive processing
for airborne radar [4]-[7], where the amount of data invdlvequires a high computational cost to
compute the beamformer).

As an alternative to the traditional methods, robust adlagieamformers were proposed to reduce the
performance degradation caused by steering vector uimgégtaand also enhance interference cancella-
tion. Recent advances also include techniques such a®9J&nf [10], which use a distributed approach
to compute the beamformer. Techniques such as adding ardiatmading to the correlation matrix
[11], [12], the robust Capon beamformer of [13], [14] (RCBhich uses the eigenvalue decomposition
of the correlation matrix to compute the beamformer, antiriepies based on worst-case performance
optimization [14], [15] are some examples of robust beam#as. Many others can be found in the
literature, (see [14] and references therein, for instantdewever, most of these techniques are costly
to compute (for instance, the beamformer of [13] has cubiomatational complexity in the number of
sensors in the array), which make them difficult to implement

In this paper, we consider arrays for which the number ofaigources is much less than the number
of sensors, such that the correlation matrix can beconmoiibitioned when the ratio of the source to
the noise power is high. We propoge-norm regularized algorithms to regularize the matrix, avel
show that this approach enhances the SINR performance at @dmputational cost. The use 6&f
regularization has the additional advantage of making kperithm robust against sensor failure. For this
purpose, we employ a modified version héthomotopy algorithm [16}whichis an{;-norm regularized
technigue used in many applications, suchre&sveryof sparse signals from noisy measurements [17]
and channel estimation [18]. Homotopydgsnerallyapplied tosolve sparse systems of equatioasyd it
helps the selection of the minimum amount of regularizateouired to compute the solution, reducing
the bias.In the approach used in this paper, the homotopy strateggtigpplied to sparse systems of
equations, but to regularize the correlation matrix in a-tmgt way Our algorithms are extensions of
the adaptive re-weighting homotopy (ARH) of [17] to the cdexpdomain (C-ARH). We also develop

new low-cost iterative versions of the C-ARH algorithmstahble for adaptive beamforming, and show
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that the proposed methods are able to compute the beamfavitiea quadratic cost in the number of
Sensors.

We note that preliminary results on the C-ARH algorithms evezported in [19]. In this work, we
describe in further detail the C-ARH and the multi-candidé@¥1C)-C-ARH algorithms, and introduce
modifications to develojerativeversions of these methods. We show thatitheativeapproach is doubly
advantageous, since it improves the signal-to-noise pitesference ratio (SINR) performance and also
reduces the computational complexity.

Our contributions are summarized as follows.

1) The C-ARH and multi-candidate C-ARH algorithms, propose{lld], are presented here in further

detail.

2) We devise theterative C-ARH (It-C-ARH) and theiterative MC-C-ARH (I1t-MC-C-ARH) algo-
rithms to further improve the SINR performance with a reducemputational cost. We show
that theiterativeapproaches outperform their ndrrative counterparts, improving the steady-state
SINR.

3) We show howthe dichotomous coordinate descent technique (DCD) {20] be used to further
reduce the computational complexiffhe DCD is used to solve the systems of equations which
appear in the C-ARH algorithm, in order to reduce the comjrtal cost and to develop algorithms
suitable for hardware implementations.

4) An analysis of properties of the proposed algorithms ésented along with an assessment of their
computational complexity.

5) We present a simulation study comparing the proposed #hgasito existing robust techniques. We
show that the iterative algorithms using the DCD present allsBINR performance degradation
when compared to the RCB of [13], but the iterative algorshmaquire less computations, and are
also robust against sensor failure, a property that RCB doesave.

This paper is organized as follows: Section Il presents yls¢esn model and the problems considered
in this paper. In Section Ill, we present the C-ARH and MC-BHA algorithms. In Section IV, we
propose theterativeversions of C-ARH and MC-C-ARH, while in Section V we use th€D algorithm
to obtain low-cost algorithms. Section VI presents the ys®s of the algorithms, and Section VII shows
simulation results. We conclude the paper in Section VIII.

Notation: Lower case is used for scalar quantities (e«y.and bold lower case for column vectors
(e.g.:b). Bold capital letters represent matrices (edy): a, stands for the:-th column of A, while ay;

denotes the entry oA in the k-th row and in thel-th column. For a vectob, we denote, as itsk-th
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element.(-)” stands for transposition, while) is the Hermitian of a matrix or vector. The operations
Im{-} and Re{-} take only the imaginary and real parts of a complex numbet, diag-) defines a
diagonal matrix.|| - ||, is the £,-norm, andE{-} is the expectation operatdiyx represents & x K

identity matrix, and0g s represents d x M matrix of zeros.

Il. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a uniform linear array (ULA) withV sensors, and assuniesignals, where one arrives from
the desired direction of arrivély, and the othelS — 1 signals are interfererg\dditionally, assume that
the signal of interest and the interferers are uncorrelatetithatdy is known.Define theNV x .S matrix

B, where each columb, corresponds to a steering vector [1] as given by
by =[1 eImsinl) e_jW(N_l)Sin(a’“)]T, 1<k<S.
At snapshot, the sensor array data are modeled as
u(n) = Bs(n) +n(n), 1

wheres(n) contains signals produced by tesourcesn(n) is a vector of zero-mean, independent and
identically distributed (i.i.d.) Gaussian noise with \&mi:ea?]. The noise in each sensor is also assumed
independent from the noise in other array elemeWihout loss of generality, defin@y = 6, and

by = b;. The coefficients of the MVDR beamformer [1] are given by

hyvor = Xmvor /bl Xmvor, (2)

andxyvpr is the solution to

Rixmvor = bg. (3)

R; is the theoreticalV x N correlation matrix [1], which is defined as

R, = E{u(n)u”(n)} = Ry + Ry, (4)
where
Rg = BE{s(n)s (n)}B? (5)
and
R, = oply. (6)

Express (1) explicitly in terms ahe direction of interest (subscript d) and the interfese(gubscript 1),
i.e,

u(n) = bgsa(n) + Bisi(n) +n(n), )
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to write Ry as

Ra =Rg+Ry, (8)

whereRg = o3bgbif, Ry = B|E{s|(n)s! (n)}Bf ands? is the variance of the signal of interest.

Note that the computation of the beamformer requires thatisaol of a linear system of equations.
When the number of sources is less than the number of sed®otan become ill-conditioned, requiring
some form of regularization to compuig,wpr. In addition, if the measurements of some sensors are
not available (if a sensor fails), @nk-reduction of the system of equations can be made béfere
introduction of the regularization, reducing the compiota to obtain the solution. We consider both
situations and show that using thenorm regularized algorithms presented in this paper, aneestimate
the beamformer and improve the SINR performance with @yv2) computations, while techniques
such as [13] requir®(N?) computations. The proposédalgorithms are also shown to be robust against

errors in estimating faulty sensors.

A. Small number of interference sources

Consider that the number of interferefsis smaller than the number of sensdys Assume that the
interference sources are uncorrelated among each otfetrtisat rankE{ss”’ }) = S, and assume that
the angled),, are selected such that rgiiX) = S. Using properties of the rank of matrices (see [21])
one can show that

rankRq;) = rankK BE{ss }B#) = 5. (9)
Since rankRg) = S < N, the eigenvalue decomposition By is given by

Dy Osx(nv—s)

Ry =V Vi, (10)

Ov—s)xs OnN—5)x(N-5)
where the columns oV are the eigenvectors dRg, and Dy is a diagonal matrix containing th&

non-zero eigenvalues @y . Recalling thatVvV¥ = I, and using (6) and (10) in (4), we obtain

Do+ 0215 Ogy(n-s)

Ri=V Vi, (11)

On-s)xs ool(n_s)

Using eq. (11), it is easy to see that the condition numbef §21R; is given by

K(Rt) = (dowax + 0-127)/0-127’ (12)

INote that we drop here time indices to simplify notation.
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where dy,,., Stands for the maximum eigenvalue By . Equation (12) shows thaR; becomes ill-
conditioned if the noise power is much smaller thay,, . In this case, a regularization can be added to
R; to improve the computation ofyypr in (2). While this is usually done usingg-norm regularization
(diagonal loading) [11], wevill show that our;-norm regularized algorithms also reduce the effects of
the ill-conditionedRy, improving the computation of the beamformer and leadiniguecost algorithms.
In addition, the use of homotopy allows our algorithms toad®just the right amount of regularization,
reducing bias.

1) Reducing the system of equations when there auttyf sensors in the arrayWhen a sensoy is
not working properly, its measuremersisouldbe discarded. This information can be incorporated into

the model with a modification of eq. (7), by introducing Ahx N diagonalmatrix E, i.e.,
u(n) = E (bgsq(n) + Bysi(n) + n(n)), (13)

where the diagonal entries &f are equal ta for faulty sensors that do not contribute to beamforming,
and1 otherwise. Where;; = 0, we zero thej-th element of all steering vectors, which eliminates the

signal produced by sensgr Using (13) to compute the correlation matrix, we obtain
R; =E(Rgq+R,)E. (14)

Assuming that the array ha8 < N faulty sensorgbut that there are still more working sensors than
sources, i.e)N — ' > S), and that these sensors are grouped sucHihats the las#' diagonal elements
equal to0, R; is given by
R, — Rr ON—F)xF ’ (15)
Opx(N—F) Op
whereRg = Ry + o?iIN,F andRg is a matrix obtained from the firs¥ — F' columns and the first
N — F rows of Rg. Ideally, if we know the matrixEs, we can definebg as the firstN — F' entries of

by, and solve the lower-dimension system of equations
Rrx = bg, (16)

wherex contains theN — F' non-zero entries okyypr. Matrix Rr will still be ill-conditioned when
the eigenvalues aRg are much higher than the noise power, and regularizatiormintig necessary to
reduce the condition number and improve the computatiox. of

From (15) and (16), we see that theatrix E is required to obtairRg. In general,E is unknown

and has to be estimated beforehand. In this paper, we use¢ngyedetection method [22] to estimate
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the faulty sensorgdowever, we show through simulations that dyfregularized algorithms are robust
against errors in detecting faulty sensors, so that one theighiose not to check for sensor failure.
Notice that in [23] a related problem is addressed and a |dveemnd to the error-variance in the
estimation of the sources’ direction of arrival (DOA) is aioted, when random sensor-breakdown occurs.
In this paper, we do not address the problem of estimatin@®A4, which is assumed known. We also do
not consider the influence of errors in the estimation of tBARo the computation of the beamformer. We
consider only the effect of sensor failure on the beamfoiitaelf. We show that using; -norm regularized
algorithms based on the homotopy algorithm, we obtain logt-methods to introduce regularization and

robustness against sensor failunelping to improve the SINR performance.

I[Il. PROPOSED COMPLEX HOMOTOPY ALGORITHMS

The complex homotopy algorithm (CH) was proposed in [18] aseatension of the real-valued
homotopy technique [16] to the complex field. For both ca$ies,algorithm solves the optimization
problent

minimizef| Ax — y|[3/2 + w]x]|1, (17)

wherex is a column vector with\/ entries,A is an P x M matrix, y is an P x 1 vector, andw is a
regularization parameter. The CH algorithm iterativelyves (17) using a support s€tthat is updated

at every iteration. For each homotopy iteratienmust satisfy the following optimality conditions [18]

all(Ax —y) = —wz, foralli e T | (18)

laf (Ax —y)| < w, forallielc
whereI'¢ is the complement of’, and z denotes a vector obtained by applying the sign function
elementwise orx. For a large enougly, the solution of (17) will bex = 0. The algorithm starts by
computingmax;(jal’ (y — Ax)|), used to initializew with the largest value for which is non-empty.
At each iteration, one element is added or removed fforandw is moved tow — €, wheree is chosen
so thatw — € is a breakpoint, i.e., the first point for which the new salntio (18) will need to add or

remove an index if. Denoting this new solution by + edx, (18) becomes

AH(Ax —y) + eAHAOx = —wzr + ezr -
laf (Ax —y) + eal AOx| < w —¢,i € T .

Note that we introduce the algorithms for a gendPak M matrix A. For our beamforming approach/ = P = (N — F)
(the number of working sensors) is an estimated version @&r andy corresponds tdbr.

3The subscripf is used to identify quantities related to the support set.
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From (19), we take only the terms multiplied leyand define a set of linear equations, which is used
to computedx. Substitutingox in (19) we finde, and updatev with w < w — e. The last step is the
support update for the next iteration. The algorithm cargsuntilww = 0 or some stopping criterion is

met. References [16] and [18] present a detailed desamigtiche algorithm.

A. The Complex Adaptive Re-Weighting Homotopy Algorithm

In [17] the real-valued homotopy algorithm was modified ttvedhe/; -weighted optimization problem
M
mini}znize||Ax—y||§/2+Zwi|xi|, (20)
=1
wherew; are positive weights. The motivation to modify the optintiaa problem and solve (20) instead
of (17) was the possibility to adjust different weights tonpkze the solution coefficients, which could
be applied to enhance the level of sparsity of the solutiahierprove the performance [17].

The ARH algorithm applies a re-weighting approach to quiddmputex, when the column vectox
which contains the weights of (20) is replaced by a re-wéightectorw. The idea behind the algorithm
is that the solution moves t& + J0x whenw moves towardsv along a straight liné1l — §)w + Jw,
for § € [0, 1], wheredx does not depend ofi Simulation results in [17] have shown that ARH yields
better performance and reconstruction accuracy thdrased solvers (YALL1 [24], SpaRSA [25], SPGL1
[26]) used for recovering sparse signals from noisy measents, while it requires lower computational
complexity.

Based on the ARH algorithm of [17] and on the CH algorithm o8][1lin [19] we developed an
extension of ARH to complex-valued systems of equationg. fEchnique was named the complex ARH
algorithm and preliminary results presented in [19] showed beamforming algorithms using C-ARH
could lead to SINR performance gains. The technique is n@sented in further detail, giving emphasis
to beamforming applications.

To presentthe C-ARH technique, and later introduce the multi-cangida-ARH algorithm, assume
that A, x andy are complex entities. For convenience, also assumeétf@t{O,S]. In Section 1lI-B,
we use different values of to construct a diverse set of possible solutions, which jsated by the
multi-candidate algorithm to improve the performance. §idering these assumptions, the optimality

conditions of C-ARH can be derived from (20), i.e.,
AH(Ax —y) = —Wzr

, 21)
la(Ax —y)| <w; € T¢
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whereW = diagwr), andz is a vector whose entries are the sign of the corresponditrgenn x.

Whenw moves to(1 — §)w + éw, (21) changes to
AH(Ax —y) + 6AHAIx = ~Wazp + §(W — W)zp
laf (Ax — y) + dall Aox| < w; + 6(; — w;),i € T ’
andW = diag'wr). To computedx, we solve the system of equations
(Af' Ap)oxp = (W — W)z, (22)

wherez; = al’ (Ax —y)/w;,i € I', and the elements dfx outside the support are set to zero.

We have to check if a breakpoint occurs to update the supfdsteakpoint occurs in two situations:
when an element ok € I' changes sign, or when one inequality becomes an equalityliA)( When
an element changes sign, it must be removed fianRecall thatx is updated ax = x + §ox. An

element ofx crosses zero when
0 = —x;/0x;, for somei € T'. (23)

Definexr = Re{x}, x; = Im{x}, dr = Re{0x} andd; = Zm{0x}, and recall that must be a real

number in the intervaﬂO,S]. The parametes has a real value in eq. (23), only if
TR, /dr, = x1,/dr, i €T (24)

An elementy~ is removed fronT if (24) holds for some, and if (23) is in[0, 4], for the same breakpoint.

If two or more breakpoints fulfill the restrictions, the sieat one is removed, which can be defined using
g = min+(—xRi/dRi), for all J?Ri/dpw = J?[i/d[i,l' el

where min_(-) returns the smallest positive value in the argument. Wjhienempty, no term is removed,

and C-ARH proceeds by choosing an elemghtthat must be added . In this casey™ is chosen by

7" = argmax [a;" (Ax —y)|, (25)
1€l ¢

andé is updated with the value af. The last step is the update of  I'c, which is given by
w; 4 max |a§{(Ax —y)|, forallieT¢. (26)
J
The algorithm stops when the maximuwm € T" is smaller or equal to a pre-defined parametekVe

summarize the algorithm in Table 1.
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1) Re-weighting choiceFor this paper, we compute the re-weighting with
w; =min(¢,¢/Blx;|), forallieT, (27)

where¢ = 207 and 3 = N||x||3/][x||7. Note that this re-weighting is based on an approach prapivse
[17]. We tried different re-weightings in the simulationsepented in Section VII, and we selected the
re-weighting that provided the best SINR performance farlmamforming scenario. Other re-weightings
can also be applied.

2) Computational cost:The main contribution to the computational cost of each QHAReration
comes from computing

A (y —Ax) = Ally — AHAx (28)

and dx. The term (28) does not explicitly appear in Table |. Howevlewe consider the step® and

9 (or 2 and 10, if the “else" condition of ste® does not occur), we see that at every iteration, gtep
uses the elements of (28) computed with i € T", while step9 (or 10) uses the elements which are
calculated with the remaining;. Recalling that step2 and9 (or 2 and 10) occurs every iteration, we

notice that (28) is computed every C-ARH step. This comjputat costly in general, but it can be done
with lower cost if somea priori information aboutA is available.

In a general approachA can vary during the algorithm computations, requiriAg’ A and Ay
in (28) to be re-computed at every iteration. Using the faett A7 A is symmetric, both terms are
computed withP(2M? + 6M) additions andP(2M? + 6M) — (M? + 3M) multiplications. On the
other hand, whem\ is invariant through the iterations, pre-computationAdfy and A¥ A can be used
to reduce the number of operations. In this casé&, (y — Ax) uses a matrix-vector product and the
addition of two vectors, achieving a lower cost proportioioa|I'| A/ per iteration (wherel'| is defined
as the cardinality of" at a given iteration). The maximum cost per C-ARH iteratiamresponds to
4|T'|M + 5|T'| multiplications, 4|T'|M + 5|T'| additions and3|I"| divisions, plus the computation @fx
(which is the solution to dI'| x |I'| system of equations), and the cost to obt&nThe re-weighting
applied in this paper uses an additional cost|6f +2 multiplications,3|T'| —2 additions,|I"|+1 divisions
and |T'| square-roots per iteration.

To compute the solution to (20), C-ARH executes a numbereshiions, where it adds or removes
elements to the support of. Assuming thatiK is the total number of non-zero entries in the solution,
the minimum number of iterations required to compsités K. In this case, the algorithm only adds
elements to the support, and the solution is obtained WifR + K)(2M + 4) — 2K additions,(K? +
K)(2M +4) +2K multiplications,2K?+ 3K divisions,(K?2+ K)/2 square-roots, plus the solution Af
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systems of equations with dimensiprx p, wherep starts atl and linearly increases up t& during the
iterations. Note that when the algorithm removes elements ', the number of iterations increases. To
check how frequently elements are removed from the suppertised C-ARH to solve a large number
of examples with different values tA andy. We compared the number of elements removed with the
total amount of iterations used to compute the sparse vegtand we noted that these events rarely
occur (in less than % of the iterations). Therefore, we assume that the minimumpdexity obtained
can be used as a reasonable approximation to the number giutations used by C-ARH.

3) C-ARH applied to beamformingThe algorithm presented in Table | can be applied to sparse
systems of equations in genergbr the purpose of this paper, we use the C-ARH to obtain aclost-
method to regularize eq. (3) and compute the MVDR beamfarmer

Let R(n) be an approximation oR¢(n) and Rg(n) be an approximation oRg at snapshot.. For
beamforming, we solve eq. (20) using = Rg(n) andy = bg, resultingin the following system of
equations

Rgr(n)x(n) = bg, (29)

where the solutiorx(n) is used in
hg(n) = x(n) /bR x(n) (30)

to compute the beamformer.
To solve (29), we first need to obtaR(n) andE, so that the diagonal entries & can be used to
access the contribution of the working sensors, allowingousbtainRg(n) and bg. In this paper, we

assume thaR(n) is iteratively updated with
R(n) = vR(n — 1) + u(n)u” (n), (31)
where0 < v < 1 is the forgetting factor. Notice that (31) can be written as

R(n) =Y v"Ju(j)u’(j) +v" 7¢I, (32)
j=1

where¢I is the initial regularization. Taking the expectation aadalling thatE{u(j)u” ()} = Ry, one
can show that [2]
E{R(n)} = R;/(1 —v), whenn — cc. (33)

Due to normalization in (30), the constafit— v) does not affect the computation of the beamforming

solution, allowing the use dR(n) in (29).
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The estimate oE can be obtained from the diagonal element®Rdgf.), using a technique based on
the energy detection method [22]. To explain this approaeteall equations (15) and (33). It is easy to
see that there are only two possibilities for the diagonaineints ofR(n), whenn — oo, i.e.,
or/(1—w), if the j-th sensor is faulty
Tjj (n — OO) =

(74, +03)/(1—v), otherwise

Assuming that the sources are uncorrelaﬁgg; is given by

S
fg'jj - Z Jgi’ (34)
=1

where eachfgi corresponds to the variance of th¢h source, an(ﬂrg1 = 0—3. In this case, one expects
that the diagonal entries related to faulty sensors must kavaller variance, since they only measure
noise. We exploit this fact to estimate.

To define if a sensor is faulty, consider that after a few shafssit is possible to perceive that
some diagonal entries @& (n) have higher values than others. The faulty sensors areifidentising a
threshold, based on the maximurmy(n). We assume that if an elemen;(n) is at leastsdB smaller

than the maximum entry, then theth sensor is faulty. The threshold is computed with
Thr = 10~ %max; (r;;(n)), (35)

and all the diagonal entries d&(n) are compared to (35). If;;(n) is smaller than Thr for somg,
then thej-th sensor is faulty, and;; is set to0. Otherwise, we set;; = 1. This technique is easy to
implement (it only requires one multiplication aidd comparisons) and is efficient for finding the faulty
sensors, as can be seen in our simulation restidtsurther reduce the complexityve can apply (35)
only for the first¢ snapshots, turn the estimation Bfoff, and then use the last estimated maifixor
the remaining shapshots. Using this approach, we assume shapshots are sufficient to obtain a good
estimate of the faulty sensors.

The C-ARH algorithm applied to beamforming is summarizedable 1l. Recalling thatRg(n) and
R(n) are M x M and N x N, respectively, the computational complexity correspaiodthe cost of the
algorithm in Table I, plus the cost to updd@®&n) and to computd andh(n) — steps 1, 2 and 4 in Table
Il. These steps require the additional cosBaf? + 5M + 3N + 5 multiplications,2M? + 4M + 2N — 1

additions andl division.

B. Multi-Candidate Complex Adaptive Re-Weighting Homgptop

In the C-ARH algorithm, when we choose= 1, w moves towardsv. However, we can choose a

different & and define a re-weighting that is a linear combinationwofaind w. Since in general there
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TABLE |

C-ARH ALGORITHM

Input: A, y, 7,6 Output: x, I"

Initializee Ox = 0, x = 0, w; + max; |afly| for all 4, T’ + argmax; |af{y|

Repeat:
Selectw
For alli € T, computez; = al’ (y — Ax) /w;
Solve (A Ar)dxr = diag(wr — Wr)zr
Computexr = Re{xr}, xr = Im{xr}, dr = Re{0xr} andd; = Zm{dxr}
g =ming(—zg,/dr,), for all zgr, /dr, = x1,/d1,
§ =min(g, 6)
X =X+ 00x
wr = wr + §(Wr — wr)
if6<4
F«T\~y~ > Remove an element froi

© 00 N OO o~ WN PP

else

7" = argmaxier,. |a;’ (Ax —y)|

'«~Tu~y" > Add a new element td
end
10 w; <+ max; |al (Ax —y)|, forallieT'c

until max;(w;) <7

TABLE Il

C-ARH ALGORITHM APPLIED TO BEAMFORMING

Input: by, &, u(n), v, 8, 7, t Output:h(n)
Initialize: R(0) = £I, x(0) = 0

forn=1,2,---
R(n) = vR(n — 1) +u(n)u(n)?
if n <t then compute Thr= 107%%max; (r;;(n)) and estimatéE to obtainRr(n) and br
Used andr in C-ARH to solveRr(n)x(n) = br = x(n) (see Table I)
h(n) = x(n) /bR x(n)

end for

A W N R

is no information about the weighting vector that gener#ittesmost accuratg, the combination of the
two weighting vectors can be a better option than oRlylIn this context, MC-C-ARH is proposed to

exploit multiple weight choices.
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We start with the definition of a sek of N¢ candidates fop. For eachd € A = {A1, Xo... An.}
the algorithm computes the corresponding solutfr). A comparison criterion (e.g., the mean-square
error (MSE) or SINR) is used to define the best solution coeghfdr each snapshot. The candidate with
the best figure of merit is selected. In Table 1l we summatiee algorithm, applied to beamforming.

In general Rg, R; andR,, are not available, and an indirect method is required tocséte candidate
which provides the highest SINR. Defilf,, = R, +R,, and recall thaRq = 03bgb} andbf h;(n) = 1.
The SINR for thei-th candidate is given by

SINR;(n) = h{' (n)Rah;(n)/hj’ (n)Rih;(n) = o /b’ (n)Riyhy(n), (36)

and it is maximized wheim!? (n)Ry,h;(n) is minimum. SinceR;,, is unknown, (36) cannot be directly

minimized. As an alternative, we note that the minimizatidn
h{’(n)R¢h;(n) = o + h{’ (n)Ryyh;(n), (37)

also maximizes the SINR, and an estim&én) of R; can be used to compute (37). However, the
computation of (37) is costly, proportional @(N?). To reduce the number of computations, we propose
a simpler method, with cog?(N).

Defining Ry, = Dy, + G, whereDy,, = o7, I has the diagonal entries #,,, andG contains the other

elements, we can write
SINR;(n) = 1/[(of,,/0d)|[hi(n)[3 + (1/0F)h{ (n) Gh(n)]. (38)
If we consider only two candidates, and that SINR > SINR,(n), then we obtain
[ (n)[[3 < [[h2(n)[3 + [y (n)Gha(n) — ki (n)Ghy (n))/or). (39)

Assuming thatG is small compared to?nI, then the second term in the right-hand side of (39) can be

neglected. Extending the idea . candidates, we obtain the proposed selection algorithm
hyax (n) = hi(n) when k = arg min(||h;(n)||3), i = 1,2,..., Ne. (40)

Our simulations show that MC-C-ARH improves the SINR parfance, when compared to C-ARH.
1) Computational cost:MC-C-ARH starts with the update oR(n) (step 1, Table Ill) and the
computation ofE (step 2, Table Ill). Then, the algorithm computes the C-ARHuBON x;(n) (step
3, Table Ill), h;(n) (step 4, Table lll) and|h;(n)||? (step 5, Table lll) for each candidatBecalling
that N x N is the dimension ofR(n), while M x M is the dimension oRg(n), R(n) is updated
with 3M% — 3M + 3N multiplications and2)/? — 2M + 2N additions. The cost to compute;(n)
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is 8M + 4 multiplications, 6// — 1 additions and1 division, while the computation of|h;(n)||?
uses2M multiplications and2M — 1 additions for each candidate. The total computational ¢®st
3M? + M(10N, — 3) + 3N + 4N, + 1 multiplications,2M? + M (8N, — 2) + 2N — 2N,. additions, N,

divisions, plus the cost to solve the C-ARH algorith¥ times.

TABLE Il

MC-C-ARH ALGORITHM APPLIED TO BEAMFORMING

Input: by, &, u(n), v, A, 7, ¢ Output: huax (n)
Initialize: R(0) = ¢I,x,(0) =0, V\; € A
for n=1,2,---

R(n) = vR(n — 1) + u(n)u(n)?
2 | if n <t then compute The= 10~%®max;(r;;(n)) and estimatéE to obtainRg(n) andbg

for all \j e A:
Use C-ARH withd = \; and 7 to solve Rg(n)x;(n) = br = x;(n) (see Table I)
4 Computeh;(n) = x(n)/bg xi(n)
Compute||h;(n)||3 for all ¢
end for
6 m = argmin; {||h; (n)||*} > Find the best candidate
huax (n) = hm(n)
end for

IV. ITERATIVE ALGORITHMS USING COMPLEX HOMOTOPY TECHNIQUES

In this section, we proposéerative algorithms based on the C-ARH technique. The idea behirgkthe
approaches is that we can compute the solution at snapshgtadding an update term to the solution
obtained at snapshat— 1, reducing the computations to obtaitin). For this purpose, consider that the

solution to (29) at snapshatis given by
x(n) = x(n —1) + Ax(n), (41)
whereAx(n) is the updating term. Since(n — 1) is known at snapshet, we use (41) in (29), to obtain
Rg(n)Ax(n) = B(n), (42)

where we define
B(n) = br — Rr(n)x(n — 1). (43)
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In this casewe can write the minimization problem

M
minimizel[Re(n) Ax(n) — B(n)|[3/2 + > wilAzi(n)], (44)
i=1

which is similar to the minimization problem solved by C-AR# (20). Therefore, we can defing =
Rg(n), y = Br(n) andx = Ax(n), and use C-ARH to computAx(n). The result is then applied in
(41), to computex(n). We call this approach theerative C-ARH (It-C-ARH) algorithm.

The 1t-C-ARH algorithm computeg3(n) at every snapshot, which requires the computation of a
complex matrix-vector product and the addition of two coexpVectors. Using this approach, the total
number of operations correspondsitt/? multiplications andt)/? additions. However, the computation
of B(n) at snapshot can be implemented less costly, using quantities comput#uki previous snapshot.

For this purpose, assume tH&{n) is updated as presented in eq. (31), and use it in (43) to write

B(n) =br — [VRr(n — 1) + uR(n)ug(n)} x(n—1)=(1—-v)bg+rv{(n—1) —ur(n)z*(n) (45)
whereug(n) contains only signals obtained from sensors working pilgp&/e define the residue
¢(n—1)=br—Rgr(n—1)x(n-1) (46)

and
z(n) = XH(n — 1)ur(n). 47)

Using (45) and (41)¢(n) can be written in terms of thAx(n), i.e.,
¢(n) = br — Rr(n)(x(n — 1) + Ax(n)) = B(n) — Rr(n)Ax(n), (48)

which can be efficiently computed to reduce the computatioast. When C-ARH computedx(n), it
computes only the< entries in the support aix(n). In this case, C-ARH gives us perfect knowledge
of the K non-zero entries ofAx(n). With this information, we can exclude the columnskf(n) that
are multiplied by the zero entries dfx(n) in (48), such that the residue can be computed with\/
multiplications andl K’ M additions. Using this result to compute (45), the comparteti cost to calculate
B(n) corresponds ta i M + 6 multiplications andi K M + 6A/ additions.

In Table IV thelt-C-ARH algorithm is presented, and in Table V we describeithetive MC-C-
ARH algorithm, introducing multiple candidates for Notice that we use the same criterion applied by
MC-C-ARH to select the best candidate in tirerative multi-candidate technique.

Computational cost of the It-C-ARH algorithm: Compared to C-ARH (see Table II), thierative

technique requires the additional computationz¢f), 3(n), x(n) and{(n) (respectively step8, 4, 6
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TABLE IV

IT-C-ARHALGORITHM APPLIED TO BEAMFORMING

Input: ba, &, u, v, 8, 7, ¢ Output: h(n)
Initialize: R(0) = £L,x(0) = 0, ¢(0) = 0

for n=1,2,---
R(n) = vR(n — 1) + u(n)u(n)”
if n <tthen compute Thr= 10"%®max;(r;;(n)) and estimatéE to obtainRg(n) andbg
2(n) = x"(n — 1)ug(n)
B(n) = v¢(n — 1) — ur(n)z*(n) + (1 — v)br
Use C-ARH withd andr to solve Rr(n)Ax(n) = B(n) = Ax(n), I' (see Table I)
Computex(n) = x(n — 1) + Ax(n)
Compute¢(n) = B(n) — Rr(n)Ax(n)
Computeh(n) = x(n)/br7x(n)

end for

0 N O o~ WN P

and7 in Table 1V). The term(1 — v)bg does not change through the snapshots and can be pre-campute
to reduce the computations. The total implementation cesspapshot i V/? + (15+ 4K )M +3N +5
multiplications,2//? + (14 +4K)M + 2N + 2K — 3 additions,1 division, plus the cost to compute the
C-ARH algorithm in Table I.

Computational cost of the 1t-M C-C-ARH algorithm: The computation of theerativemulti-candidate
algorithm differs from the MC-C-ARH algorithm in the additi of steps3, 4, 6 and7 in Table V. With the
additional steps, the complexity cost increases and isdiyes /2 + (4K N, +20N.—3) M +3N +4N.+1
multiplications, 272 + (AKN.+ 18N, — 2)M + 2N — 2K N. — 4N, additions, N, divisions and the
computation of C-ARH (Table 1)V, times.

V. THE HOMOTOPY ALGORITHMS USINGDCD ITERATIONS

The C-ARH algorithm solves a linear system of equationg(8terable 1), which is costlyo compute.
In this case, an efficient method to compute the solution iy imaportant to keep the complexity low.
Prior work report the use of DCD iterations [20] to solve sys$ of equations with a reduced number of
operations. Since it avoids multiplications and divisiomkich are costly to implement, many applications
of this technique can be found in the literature. In [27] a28]] for instance, DCD iterations are applied to
obtain low-complexity RLS and affine projection (AP) algbms. To obtain the first, the RLS problem is
expressed in terms of auxiliary equations with respect ¢oeiments of the filter weights. DCD iterations

are then used to solve the auxiliary equations, resultirggamplexity reduction. The low-complexity AP
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TABLE V

IT-MC-C-ARH ALGORITHM APPLIED TO BEAMFORMING

Input: by, &, u, v, A, 7, t Output: huax (n)
Initialize: R(0) = ¢I,x;(0) = 0, ¢,(0) = 0, YA; € A
for n=1,2,---
1 R(n) = vR(n — 1) + u(n)u(n)”
2 if n <t then compute Thi= 10~%°max;(r;;(n)) and estimatéE to obtainRg(n) and br
for all \; € A:
3 zi(n) = x7 (n — 1)ur(n)
4 Bi(n) = v¢;(n —1) —ur(n)zi(n) + (1 — v)br
5 Use C-ARH with); and 7 to solveRr(n)Ax;(n) = B,(n) = Ax;(n), I' (see Table I)
6 Computex;(n) = xi(n — 1) + Ax;(n)
7 Compute¢,(n) = B(n) — Rr(n)Ax;(n)
8 Computeh;(n) = x;/br"x;
9 Compute||h;(n)||3 for all i
end for
10 m = argmin; {||h;(n)||3} > Find the best candidate
11 hyax (n) = hm(n)
end for

algorithm is obtained with a modification of the AP technigwéich incorporates the DCD to update the
filter weights, resulting in a method less costly to impletrtéan NLMS [2]. In [29], the DCD is used to
implement the MVDR beamformer in an FPGA. The estimate ofcireelation matrixR(n) is updated
with a rectangular window, and DCD is applied to compute a-¢mst solution taR(n)x(n) = bg. x(n)

is then used to compute the beamformer with eq. (30). In [&OPCD-homotopy technique based on
the algorithm of [16] is also proposed. The algorithm is of#d with a modification of the DCD, and
is applied to recover sparse signals, in system identifingtroblems.

Although there are different uses, DCD-based approachegeireral lead to low-cost techniques,
suitable for hardware implementation. This fact motivatedto employ DCD iterations to compute
step 3 in Table I. For this purpose, we apply a leading elemerdion of DCD [31], which is briefly
described in Table VI. The algorithm solvésx = y, where A is an L x L matrix, andx andy are
column vectors withl, entries. The step-size depends on the value of parametér which determines
the range of the elements &f(which is assumed to be represented with bits in fixed-point format).

The algorithm starts updating the most significant bits &f éfements ok, moving down to the least
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significant bits. The number of iterations is restricted &léss than a small valud,,, which helps to
keep the number of computations low. Selecting a powewofgdtep size, the algorithm is implemented
with further complexity reduction, since divisions and tiplications can be replaced by bit-shifts. The
maximum computational cost {@L+1) N, + M, additions, but this is the worst case, when the maximum
number of iterationsV,, is used.

In this paper, the use of DCD is particularly interesting thoe iterative algorithms, since the previous
solution can be employeds an initial condition to DCD, allowing the use of a smal,. The non-
iterativealgorithms cannot use this initial condition, and woulduieg a large number of DCD iterations
N, to compute the solution. For this reason, we focus now onitdrative techniques. Foit-C-ARH
and It-MC-C-ARH, DCD is used to solve (22), whett = A A andy = (W — W)zr. To further
save operations, we can also select the forgetting facter -asl — 27!, where!l is a positive integer.
This choice ofr substitutes multiplications by additions and bit-shiftsdqgs. (31) and (45), reducing
the complexity to updat®r(n) and 3(n). As it is shown in Section VII, the algorithms using DCD

outperform our previous approaches, with further reductiothe number of computations.

TABLE VI

DCD WITH LEADING ELEMENT

Input: y, A, My, H, N, Output: Cpcp, X
Initializez m =0, a=H, {pcp =Yy
for n=1,2,---,N,
1 [k, s] = argmaxp—1,..., k {|Re({ocp, )|, [ Zm(¢pecp, )|} = go to step 4
2 m=m-+1
3 a=a/2
4 if m > M,, the algorithm stops
5 ifs=1
¢pcbym, = Re(Cpep,,)
else
¢pcbymp, = Im(pcpy,)
end
6 if [¢ocDym, | < (a/2) Ak i, then go to step 1
7 zp = xk + SIgN(Cbepy,y, , ) S
8 Cpep = $pep — SIGN(CDCD; 1 ) SOAK
9 | end for
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VI. ANALYSIS

In this section, we summarize some analysis results thdaiexand give insight into the algorithms’
behavior. We show why the C-ARH algorithm provides SINR parfance gains even when the system of
equations is not sparse, and we also define the range of alug&$or the multi-candidate algorithms. In
addition, we compare thigerativeand noniterativealgorithms to give some insights into the performance
differences observed in the simulations. We then dedicasection to summarize the computational

complexity, and to provide some implementation tools toieahlow-cost algorithms.

A. C-ARH applied to regularize sparse and non-sparse proble
At the k-th homotopy iteratiofy the C-ARH algorithm (see Table 1) uses
A (Ax(k—1) —y) + sAH Adx(k) = —~Wazr(k) + 6(W — W)zp (k) (49)

to compute the solutior(k) = x(k—1)+0x(k). Assumed = 1, and recall thakr, (k) = x;(k)/|x;(k)|.

Equation (49) can be written as
AP Arx(k) — Ay = —Wazr(k), (50)
whereWzp(k) = D(k)x(k), andD(k) is a diagonal matrix with diagonal entries
dii(k) = wi/|zi(k)|, i€T. (51)
Using D(k) in eq. (50), we obtain
(Af'Ar +D(k)) x(k) = Af'y, (52)

showing that a diagonal regularization is introduced, Wwhidl be beneficial when (50) is ill-conditioned.
As shownin Section 1I-A, when the number of interferers is small, )(59 ill-conditioned, and the

regularization provided by C-ARH hedpio improve the estimates.

B. Selection of the regularization parameter

The values of the must all be in the interval0, 1] to avoid negative weights. In fact, the weight
update is

w<+ (1-90)w+oweTl, (53)

where we just reorganized step 8 in Table | to make clear théibation of w andw to the right-hand
side of the equation. It is easy to note in eq. (53) thatust be in[0, 1] to guarantee thaw is always

positive.
“Note that we usé: to denote different homotopy iterations and avoid confusigth indexn, which denotes snapshots.
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C. Differences between therative and nonierative algorithms

The C-ARH algorithm computes an iterative solution to thaimization problem presented in eq. (20)
(whereA = Rg(n) andy = bg for beamforming). The algorithm uses &rnorm regularization te(n),
helping ill-conditioned systems of equations and d&mring sparse solutions . Thierativeapproaches,
on the other hand, solve a modified minimization problem (d&@), where the/;-norm regularization
is applied to the solution updat&x(n). Since the two minimization problems are essentially cffe,
we expect the techniques to perform distinctly under theesaonditions. The simulations presented
in Section VII corroborate this fact, showing that recuestechniques may outperform C-ARH for
beamforming. In addition, recall that theerative algorithms use C-ARH to compute the entries in the
support ofx(n). Sincelt-C-ARH uses the solution of the previous snapshot as aralirdgdndition to
computex(n), one can expect this previous solution to be closer to thal stg@ution than the zero-initial
condition used by the noiterative techniques. In this case, we expect to use less updatesdm abé
It-C-ARH solution, reducing the number computations. In BecV1l, we present simulations to support

these observations.

D. Computational complexity

In this section, we summarize the computational complexitthe proposed algorithms. Tables VII -
X are arranged in a nested structure, each table adding mragéded for the solution of the beamforming
problem.

In Table VII, we show the computational cost per iterationttef C-ARH algorithm (as described in
Table 1). The number of operations is presented as a fundiigdhe support sizél"'| at each homotopy
iteration. At every iteration, the algorithm computes tb&uton of a linear system of equations, with the
dimension|I'| x |T'|. Different approaches can be used to solve the system otiegsiasuch as an LU
factorization, which is arO(|T'|*) technique, and the DCD algorithm, which is the low-costrakitive
used in this paper. The total cost to compxte) (assuming thathe maximum support size is given by
K) is presented in Table VIIl. The cost to implement C-ARH gsthe DCD with a leading element is
also detailed.

Table IX shows the complexity of the algorithms proposed b@amforming. In our simulations
comparing theterative and nonierative techniques (see Section VII), we notice thaC-ARH and|t-
MC-ARH use a very low number of homotopy iterations per shapswhich makes their computational
cost much lower than the cost of C-ARH and MC-C-ARH. The satiohs also indicate that theerative
algorithms have better SINR performance. When we use the DCibe C-ARH algorithm, further
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reduction of the computational cost is obtained, since iplidations are replaced by additions and bit-
shifts, and the parameté¥,, can be designed to be a small number. Table X summarizes thbarnof
computations used by the recursive algorithms using DCiatitans.

The dominant terms in the computational complexity of a#l ttomotopy-based techniques dfé N/
(see Table VIII) and\/? (see Tables IX and X). Since the maximum number of elementiseirsupport
K can be close to the value d@ff, one would expect the cost to implement the proposed teabniq
to be cubic in the value ol/. However, as it is shown in our simulations in Section Vlle titerative
algorithms require a very low number of homotopy iteratiges snapshot, such thaf < M and the
complexity is reduced t@)(M?).

Note that we use (27) for all techniques presented in thiep&electing a different re-weighting, the

required number of computations may change, modifying tidaes presented in Tables VII and VIII.

TABLE VII

COMPUTATIONAL COMPLEXITY OF C-ARH PER HOMOTOPY ITERATION

Algorithm + X = N
C-ARH IT|(4M + 8) — 2 IT|(4M +8)+2 | 47| +1 | |T)

Plus the solution of 4I'| x |T'| linear system of equations

C-ARH (DCD) | 4|D[(M + Ny +2) + N+ My —2 | [D|(40 +8) +2 | 4| +1 | || |

TABLE VIII

MINIMUM COMPUTATIONAL COMPLEXITY OF C-ARH PER SNAPSHOT(WHEN THE TOTAL SUPPORT SIZE 1K)

Algorithm + X - VA
C-ARH K?(2M +4) + K (2M +2) K2(2M+4) + K(2M+6) | 2K*+3K | (K*+K)/2
Plus the solution ofK” systems of equations with dimensipnx p, wherep =1,2,... K

C-ARH (DCD) | K?(2M+6)+ K(2M+24+6N,+M,) | K2@M+0)+K(2M+6) | 262 43K | (K*+K)/2 |

VIl. SIMULATIONS

In our simulations, we compare the SINR performance of ttepased algorithms and techniques
from the literature. We consider @&i-sensor ULA and assume one direction of interest at an arfgle o
20°, and4 interferers with angleg0°, 45°, 53° and60°. We perform two groups of simulations. In the

first scenario, we assume that there afaulty sensors in the array, and we use a faulty-sensor tbetec
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TABLE IX

COMPUTATIONAL COMPLEXITY PER SNAPSHOT OF THE ALGORITHMS APBIED TO BEAMFORMING

Algorithm + X - C-ARH
(Tab. Vil

C-ARH (beamf.) 2M? +4M + 2N — 1 3M? +5M +3N +5 1 1
MC-C-ARH 2M?+(8N.—2)M+2N—2N. 3M?*+(10N.—3)M+3N+4N,+1 | N. N.

It-C-ARH 2M? + (4K +14)M + 2N + 2K —3 | 3M? + (4K + 15)M + 3N +5 1 1
[t-MC-C-ARH 2M? + (AKN. + 18N, — 2)M 3M? 4+ (4K N. +20N. —3)M | N. N

+2N + 2K N, — 4N, +3N +4Nc +1
TABLE X

TOTAL COMPUTATIONAL COMPLEXITY OF THE ALGORITHMS USINGDCD ITERATIONS

Algorithm + X + VA
DCD- 3(M*+5M+N—1)+K?(2M+6) 2M?+ 14M+2N+5 2K*+3K+1 (K°+K)/2
t-C-ARH HK (6 M 46N, +M,+4) +KA2M +6)+K(6M+ 6)
DCD- 3(M*—~M+N) 2(M?—M+N)+1 N.(2K?+3K+1) | No(K*+K)/2
[t-MC-C-ARH N (K2 (2M +6)4+-20M —4) N (K2 (2M +-4)
+NK(6MA+6N,+My+4K) +K(6M+24)+4)

to identify them. The faulty sensors are randomly selectet] all the techniques considered in the
simulation useRg(n) to compute the beamformer. In the second simulation, wehessame conditions
as before, but we assume that we are unable to identify tHey felements. For such situation, we show
that the proposed techniques are robust to errors in thetawteof faulty elements.

We present the SINR performance of C-ARH, MC-C-ARH, It-C4ARt-MC-C-ARH, DCD-It-C-ARH
and DCD-It-MC-C-ARH algorithms, and we compare these téghes to theO(M?3) RCB of [13], the
RLS algorithm [1] without the addition of regularizatiomdto a method using a diagonal loading (DL)
added toRgr(n). We use the approach of [11] to regulariBe(n) by adding to the matrix the diagonal
loading 10021, assuming exact knowledge ef,. The solution to(Rg(n) 4 100;1)x(n) = bg is then
used to compute the beamformer, which can be implementeths@ance, using RLS, at cost 6f(M/?2).
We present the SINR performance and the number of homotepg stsed by the proposed techniques,
which expresses the maximum dimension of the system of iemsasolved by the homotopy-based
algorithms. To determine the faulty sensors in the first fatimn, we use the energy detection method,

as presented in Section IlI-AMatrix E is estimated only during the firdgt00 snapshots. Afterwards,
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we freeze the last estimated valueIlffor the remaining snapshots.

The power of each interferer ig) times the power of the signal of interesf = 1. The SNR is3dB,
and the noise is a zero-mean Gaussian i.i.d. sequence.Jiedssproduced by the sources are zero-mean
binary sequences of1 and 1, and we use eq. (31) to iteratively estim®e The forgetting factor is
given byrv =1 — 276 ~ 0.9844 andR(0) = 10~I. The algorithms are adjusted the first simulation
to achieve the maximum SINR in the steady-state. keep the same values for the parameters in the
second simulation to study the effect of the wrong identifica of faulty sensors to the beamformer

computation. The figures are obtained with the mean of 20lzeti@ns.

A. Regularization when the faulty-sensor detector is agabli

For the simulation presented in this section, we assumetliga¢ are 5 faulty sensors, and that the
faulty-sensor detector is applied to identify and excluaent from the computation of the beamformer.
To adjust C-ARH and MC-C-ARH, we use = 0.32 and define three candidates for the MC-C-ARH
algorithm, given byA = [0.6 0.8 1]. The iterative algorithms It-C-ARH and 1t-MC-C-ARH use agping
parameterr; = 2, while DCD-It-C-ARH and DCD-It-MC-C-ARH usepcp = 5, N, = 8, M, = 16
bits andH = 2. The multi-candidate iterative algorithms use the sameotetandidates as selected for
MC-C-ARH, and the constraint of the RCB is given by 0.1. Figure 1 presents the SINR performance
and the number of homotopy iterations required by the pregpdschniques to compute the MVDR
beamformer.

From Figure 1, one can see that the C-ARH algorithm and thefpaach have almost the same SINR
performance after 250 snapshots, and that both algorithensudperformed by the MC-C-ARH algorithm
after 200 snapshots. The proposed iterative algorithmgeoiarm the other homotopy-based techniques,
and the highest SINR is achieved by the DCD-based algoritiirne iterative algorithms outperform
their non-iterative counterparts with a lower number of lotopy iterations, which reduces the number
of computations. For instance, consider the average nuofhiggrations used by C-ARH (which is 56),
It-C-ARH (3) and DCD-It-C-ARH (1.5), after they achieve teteady-state. Using these valuesiofin
the equations presented in Tables VIII, IX and X, we comphaeertumber of multiplications used by
these methods. The C-ARH algorithm requid®®471 multiplications plus the cost to solv& systems
of equations of sizes from x 1 to 56 x 56. The It-C-ARH algorithm use&6211 multiplications and
solves only3 systems of equations. The DCD-It-C-ARH algorithm, the teasstly of them, uses only

8386 multiplications. No additional multiplications are recpd to solve the systems of equations, since
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Fig. 1. SINR performance (left) and average number of homotoptitens per snapshot (right), when there are 5 faulty
sensors. Mean d00 realizations. The red and magenta curves in the right figteenat identified to avoid overlap of arrows.
The red curve is the average number of homotopy iteratioggined by DCD-It-C-ARH, and it is equal to 1.5 iterations per
snapshot. The magenta curve is the average number of dgiesatequired by It-C-ARH, and it corresponds to 2.5 iteraiper

snapshot.

the DCD algorithm does not require multiplications.

The DCD-based iterative algorithms are only outperformgdtie RCB, which achieves an SINR
performance 1.5dB higher than the DCD-It-MC-C-ARH. Notibat the RCB has a computational cost
of O(M?3), while the DCD techniques a@(M?) . Checking Table X, one can verify that the dominant
terms in computational complexity of DCD-It-C-ARH a¥&’* M and M?2. Since, a priori, the maximum
number of homotopy iterations could be as highMds the cost to implement the techniques would be
cubic. However, as we can see in the simulation, the iteratlgorithms require a much lower number
of homotopy iterations (3 homotopy iterations for It-C-ARidd 1.5 iterations for DCD-It-C-ARH), and
K < M. For this situation, the iterative algorithms require a bemof computations which is quadratic

in M. The trade-off for the less costly approach is a performdose of about 1.5dB in this scenario.
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B. Robustness to errors in the identification of faulty senso the array

In this simulation, we show that the iterative techniques rabust when the faulty sensors cannot be
identified and excluded from the array. We assume that they dras 5 faulty sensors, but the detector
is unable to identify them. For this situation, we cannotuethe dimension of the correlation matrix,
and the SINR performance of the algorithms might be affedféel maintain the value of the parameters
used in Section VII-A, and we show that the iterative DCDduhalgorithms presents almost the same

performance. Figure 2 show the results.

6r DCD-It-MC-C-ARH
DCD-It-C-ARH 160
ar 1 1a0f [
m—— MC-C-ARH
//’ \ ‘T_._ Y ]
2F - £ 1
/ It-C-ARH @
- -C-. o
5 t-MC-C-ARH RCB Sool |
= N >
5 S 80
(o]
\ £
o
-2 60 H
40
-4
f : ‘ 20
} MVDR=8dB
-6 y . ; ; ; 0
100 150 200 250 300 0 100 200 300
Snapshots Snapshots

Fig. 2. SINR performance (left) and average number of homotoptitens per snapshot (right), when there are 5 faulty
sensors, but they are not identified by the detector. Mea200frealizations. The red and magenta curves in the right figure
are not identified to avoid overlap of arrows. The red curvéhés average number of homotopy iterations required by DCD-
It-C-ARH, and it is equal to 1.5 iterations per snapshot. Tiegenta curve is the average number of iterations requiyed b

It-C-ARH, and it corresponds to 2.8 iterations per snapshot

In this scenario, the performance degrades for all the #liigos, but the techniques using the DCD
are less affected by the faulty sensors. The better perforenaf the DCD algorithms is explained by
the very low number of homotopy iterations used by thesenigcies. To understand this, recall the

algorithm presented in Table I. To add an element to the sues, the algorithm selects the columns
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of the matrix which are most correlated to the residue. Whmenalgorithm starts, it first adds to the
support the highly correlated features of the matrix, foickithe selection is not affected by the noise
introduced by the faulty sensors. However, after a few stéghe C-ARH, the columns less correlated
to the residue and the columns introduced by the faulty sernssn be mistaken, and the algorithm can
add to the support wrong elements, leading to poor perfocmabince the DCD iterative algorithms use
a very low number of iterations, they only add to the supplet most correlated elements, easier to

identify, reducing the error and improving the SINR perfame.

VIIl. CONCLUSION

In this paper, we have presented new beamforming algorith@sed on the;-norm regularized C-
ARH technique. Our iterative algorithms have low compuwtadil complexity and are robust against
ill-condition in the input autocorrelation matrix, whichiises when the number of interferers is small
compared to the number of sensors. We compared our methdllghei diagonal loading approach of
[11] and the RCB of [13], robust beamformers, in two situasioone in which faulty sensors are removed
from the equations, and another in which faulty sensors ateaorrectly detected. In the first situation,
our iterative algorithms perform better than C-ARH, MC-®HA and the diagonal loading approach of
[11], but they are outperformed by the RCB of [13]. In the s&tacenario, when the contribution of
the faulty sensors is not removed from the sample corrglatiatrix and the algorithms keep the same
parameters as in the first simulation, the DCD-based iteratiethods are robust and outperform the
other techniques. We have also shown that the iterativeadstban be implemented with a reduced cost
when compared to the RCB. The trade-off between SINR pedoo® and computational complexity
favors the iterative techniques.

We have presented the computational complexity of the megdechniques, as a function of the
number of sensors and the support size of C-ARH. Since thatiite algorithms require fewer homotopy
iterations per snapshot than the C-ARH and MC-C-ARH albar#, they are less costly to implement.
For the DCD-based techniques, the number of computationsuish lower, since many multiplications
are replaced by bit-shifts and additions. Since the numbbkomotopy iterations is also low, the iterative
algorithms can be implemented with a reduced cost, praputito /2, where M is the number of

sensors in the array, while the RCB is cubic/in.
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