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Abstract

We develop adaptive beamforming algorithms which are robust against sensor failure and ill- con-

ditioning in the autocorrelation matrix (common in low-rank interference scenarios). Both goals are

achieved simultaneously through the use ofℓ1 regularization. The algorithms are based on the complex

adaptive re-weighting homotopy technique. We also developiterative versions of the algorithms, that

take advantage of properties of homotopyℓ1 solvers and dichotomous coordinate iterations to reduce

considerably the computational complexity, compared withother regularization methods.

Index Terms
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I. INTRODUCTION

Adaptive beamforming techniques are used in sensor arrays to enhance the reception of a signal

of interest and suppress interference [1]. They implement techniques such as the minimum variance

distortionless response (MVDR) beamformer [1] using data collected from sensors, since the second-

order statistics required to compute the MVDR beamformer, in general, are not available.
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Although many fields apply adaptive beamforming techniques, such as radar, sonar and wireless

communications [1], it is challenging to implement traditional approaches in large arrays. Techniques such

as the least mean-square (LMS), conjugate gradient (CG) andrecursive least-squares (RLS) algorithms

[1]–[3] have their convergence and tracking performances affected by the size and/or the eigenvalue spread

of the input correlation matrix [2].This performance can also degrade due to mismatch and modelling

errors.Therefore, beamformers with many parameters may require many snapshots to converge, which can

be incompatible with the requirements of some applications(for instance, space-time adaptive processing

for airborne radar [4]–[7], where the amount of data involved requires a high computational cost to

compute the beamformer).

As an alternative to the traditional methods, robust adaptive beamformers were proposed to reduce the

performance degradation caused by steering vector uncertainties and also enhance interference cancella-

tion. Recent advances also include techniques such as [8], [9] and [10], which use a distributed approach

to compute the beamformer. Techniques such as adding a diagonal loading to the correlation matrix

[11], [12], the robust Capon beamformer of [13], [14] (RCB),which uses the eigenvalue decomposition

of the correlation matrix to compute the beamformer, and techniques based on worst-case performance

optimization [14], [15] are some examples of robust beamformers. Many others can be found in the

literature, (see [14] and references therein, for instance). However, most of these techniques are costly

to compute (for instance, the beamformer of [13] has cubic computational complexity in the number of

sensors in the array), which make them difficult to implement.

In this paper, we consider arrays for which the number of signal sources is much less than the number

of sensors, such that the correlation matrix can become ill-conditioned when the ratio of the source to

the noise power is high. We proposeℓ1-norm regularized algorithms to regularize the matrix, andwe

show that this approach enhances the SINR performance at a low computational cost. The use ofℓ1

regularization has the additional advantage of making the algorithm robust against sensor failure. For this

purpose, we employ a modified version of the homotopy algorithm [16], which is anℓ1-norm regularized

technique used in many applications, such asrecoveryof sparse signals from noisy measurements [17]

and channel estimation [18]. Homotopy isgenerallyapplied tosolvesparse systems of equations,andit

helps the selection of the minimum amount of regularizationrequired to compute the solution, reducing

the bias.In the approach used in this paper, the homotopy strategy is not applied to sparse systems of

equations, but to regularize the correlation matrix in a low-cost way. Our algorithms are extensions of

the adaptive re-weighting homotopy (ARH) of [17] to the complex domain (C-ARH). We also develop

new low-cost iterative versions of the C-ARH algorithms suitable for adaptive beamforming, and show
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that the proposed methods are able to compute the beamformerwith a quadratic cost in the number of

sensors.

We note that preliminary results on the C-ARH algorithms were reported in [19]. In this work, we

describe in further detail the C-ARH and the multi-candidate (MC)-C-ARH algorithms, and introduce

modifications to developiterativeversions of these methods. We show that theiterativeapproach is doubly

advantageous, since it improves the signal-to-noise plus interference ratio (SINR) performance and also

reduces the computational complexity.

Our contributions are summarized as follows.

1) The C-ARH and multi-candidate C-ARH algorithms, proposed in [19], are presented here in further

detail.

2) We devise theiterative C-ARH (It-C-ARH) and theiterative MC-C-ARH (It-MC-C-ARH) algo-

rithms to further improve the SINR performance with a reduced computational cost. We show

that theiterativeapproaches outperform their non-iterativecounterparts, improving the steady-state

SINR.

3) We show howthe dichotomous coordinate descent technique (DCD) [20]can be used to further

reduce the computational complexity. The DCD is used to solve the systems of equations which

appear in the C-ARH algorithm, in order to reduce the computational cost and to develop algorithms

suitable for hardware implementations.

4) An analysis of properties of the proposed algorithms is presented along with an assessment of their

computational complexity.

5) We present a simulation study comparing the proposed algorithms to existing robust techniques. We

show that the iterative algorithms using the DCD present a small SINR performance degradation

when compared to the RCB of [13], but the iterative algorithms require less computations, and are

also robust against sensor failure, a property that RCB doesnot have.

This paper is organized as follows: Section II presents the system model and the problems considered

in this paper. In Section III, we present the C-ARH and MC-C-ARH algorithms. In Section IV, we

propose theiterativeversions of C-ARH and MC-C-ARH, while in Section V we use the DCD algorithm

to obtain low-cost algorithms. Section VI presents the analyses of the algorithms, and Section VII shows

simulation results. We conclude the paper in Section VIII.

Notation: Lower case is used for scalar quantities (e.g.:a) and bold lower case for column vectors

(e.g.:b). Bold capital letters represent matrices (e.g.:A). ak stands for thek-th column ofA, while akl

denotes the entry ofA in the k-th row and in thel-th column. For a vectorb, we denotebk as itsk-th
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element.(·)T stands for transposition, while(·)H is the Hermitian of a matrix or vector. The operations

Im{·} andRe{·} take only the imaginary and real parts of a complex number, and diag(·) defines a

diagonal matrix.|| · ||p is the ℓp-norm, andE{·} is the expectation operator.IK represents aK × K

identity matrix, and0K×M represents aK ×M matrix of zeros.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a uniform linear array (ULA) withN sensors, and assumeS signals, where one arrives from

the desired direction of arrivalθd, and the otherS − 1 signals are interferers.Additionally, assume that

the signal of interest and the interferers are uncorrelatedand thatθd is known.Define theN × S matrix

B, where each columnbk corresponds to a steering vector [1] as given by

bk = [1 e−jπsin(θk) . . . e−jπ(N−1)sin(θk)]T , 1 ≤ k ≤ S.

At snapshotn, the sensor array data are modeled as

u(n) = Bs(n) + η(n), (1)

wheres(n) contains signals produced by theS sources.η(n) is a vector of zero-mean, independent and

identically distributed (i.i.d.) Gaussian noise with varianceσ2
η. The noise in each sensor is also assumed

independent from the noise in other array elements.Without loss of generality, defineθd = θ1 and

bd = b1. The coefficients of the MVDR beamformer [1] are given by

hMVDR = xMVDR/b
H
d xMVDR , (2)

andxMVDR is the solution to

RtxMVDR = bd. (3)

Rt is the theoreticalN ×N correlation matrix [1], which is defined as

Rt = E{u(n)uH (n)} = RdI +Rη, (4)

where

RdI = BE{s(n)sH (n)}BH (5)

and

Rη = σ2
ηIN . (6)

Express (1) explicitly in terms ofthe direction of interest (subscript d) and the interference (subscript I),

i.e,

u(n) = bdsd(n) +BI sI(n) + η(n), (7)
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to write RdI as

RdI = Rd +RI , (8)

whereRd = σ2
dbdb

H
d , RI = BIE{sI(n)s

H
I (n)}BH

I andσ2
d is the variance of the signal of interest.

Note that the computation of the beamformer requires the solution of a linear system of equations.

When the number of sources is less than the number of sensors,Rt can become ill-conditioned, requiring

some form of regularization to computexMVDR . In addition, if the measurements of some sensors are

not available (if a sensor fails), arank-reduction of the system of equations can be made beforethe

introduction of the regularization, reducing the computations to obtain the solution. We consider both

situations and show that using theℓ1-norm regularized algorithms presented in this paper, one can estimate

the beamformer and improve the SINR performance with onlyO(N2) computations, while techniques

such as [13] requireO(N3) computations. The proposedℓ1 algorithms are also shown to be robust against

errors in estimating faulty sensors.

A. Small number of interference sources

Consider that the number of interferersS is smaller than the number of sensorsN . Assume that the

interference sources are uncorrelated among each other, such that rank(E{ssH}) = S, and assume that

the anglesθk are selected such that rank(B) = S. Using properties of the rank of matrices (see [21])

one can show that1

rank(RdI) = rank(BE{ssH}BH) = S. (9)

Since rank(RdI) = S < N , the eigenvalue decomposition ofRdI is given by

RdI = V





D0 0S×(N−S)

0(N−S)×S 0(N−S)×(N−S)



VH , (10)

where the columns ofV are the eigenvectors ofRdI, andD0 is a diagonal matrix containing theS

non-zero eigenvalues ofRdI. Recalling thatVVH = IN , and using (6) and (10) in (4), we obtain

Rt = V





D0 + σ2
ηIS 0S×(N−S)

0(N−S)×S σ2
ηI(N−S)



VH . (11)

Using eq. (11), it is easy to see that the condition number [21] of Rt is given by

κ(Rt) = (d0MAX + σ2
η)/σ

2
η , (12)

1Note that we drop here time indices to simplify notation.
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where d0MAX stands for the maximum eigenvalue ofRdI. Equation (12) shows thatRt becomes ill-

conditioned if the noise power is much smaller thand0MAX . In this case, a regularization can be added to

Rt to improve the computation ofxMVDR in (2). While this is usually done usingℓ2-norm regularization

(diagonal loading) [11], wewill show that ourℓ1-norm regularized algorithms also reduce the effects of

the ill-conditionedRt, improving the computation of the beamformer and leading tolow-cost algorithms.

In addition, the use of homotopy allows our algorithms to choose just the right amount of regularization,

reducing bias.

1) Reducing the system of equations when there are faulty sensors in the array:When a sensorj is

not working properly, its measurementsshouldbe discarded. This information can be incorporated into

the model with a modification of eq. (7), by introducing anN ×N diagonalmatrix E, i.e.,

u(n) = E (bd sd(n) +BI sI(n) + η(n)) , (13)

where the diagonal entries ofE are equal to0 for faulty sensors that do not contribute to beamforming,

and 1 otherwise. Whenejj = 0, we zero thej-th element of all steering vectors, which eliminates the

signal produced by sensorj. Using (13) to compute the correlation matrix, we obtain

Rt = E (RdI +Rη)E. (14)

Assuming that the array hasF < N faulty sensors(but that there are still more working sensors than

sources, i.e,N−F > S), and that these sensors are grouped such thatE has the lastF diagonal elements

equal to0, Rt is given by

Rt =





RR 0(N−F )×F

0F×(N−F ) 0F



 , (15)

whereRR = R̃dI + σ2
ηIN−F and R̃dI is a matrix obtained from the firstN − F columns and the first

N − F rows ofRdI. Ideally, if we know the matrixE, we can definebR as the firstN − F entries of

bd, and solve the lower-dimension system of equations

RRx = bR, (16)

wherex contains theN − F non-zero entries ofxMVDR . Matrix RR will still be ill-conditioned when

the eigenvalues of̃RdI are much higher than the noise power, and regularization might be necessary to

reduce the condition number and improve the computation ofx.

From (15) and (16), we see that thematrix E is required to obtainRR. In general,E is unknown

and has to be estimated beforehand. In this paper, we use the energy detection method [22] to estimate
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the faulty sensors.However, we show through simulations that ourℓ1-regularized algorithms are robust

against errors in detecting faulty sensors, so that one might choose not to check for sensor failure.

Notice that in [23] a related problem is addressed and a lowerbound to the error-variance in the

estimation of the sources’ direction of arrival (DOA) is obtained, when random sensor-breakdown occurs.

In this paper, we do not address the problem of estimating theDOA, which is assumed known. We also do

not consider the influence of errors in the estimation of the DOA to the computation of the beamformer. We

consider only the effect of sensor failure on the beamformeritself. We show that usingℓ1-norm regularized

algorithms based on the homotopy algorithm, we obtain low-cost methods to introduce regularization and

robustness against sensor failure, helping to improve the SINR performance.

III. PROPOSED COMPLEX HOMOTOPY ALGORITHMS

The complex homotopy algorithm (CH) was proposed in [18] as an extension of the real-valued

homotopy technique [16] to the complex field. For both cases,the algorithm solves the optimization

problem2

minimize
x

||Ax− y||22/2 + w||x||1, (17)

wherex is a column vector withM entries,A is anP ×M matrix, y is anP × 1 vector, andw is a

regularization parameter. The CH algorithm iteratively solves (17) using a support setΓ that is updated

at every iteration. For each homotopy iteration,x must satisfy the following optimality conditions [18]

aHi (Ax− y) = −wzi, for all i ∈ Γ

|aHi (Ax− y)| < w, for all i ∈ ΓC

, (18)

where ΓC is the complement ofΓ, and z denotes a vector obtained by applying the sign function

elementwise onx. For a large enoughw, the solution of (17) will bex = 0. The algorithm starts by

computingmaxi(|a
H
i (y − Ax)|), used to initializew with the largest value for whichΓ is non-empty.

At each iteration, one element is added or removed fromΓ, andw is moved tow− ǫ, whereǫ is chosen

so thatw − ǫ is a breakpoint, i.e., the first point for which the new solution to (18) will need to add or

remove an index inΓ. Denoting this new solution byx+ ǫ∂x, (18) becomes3

AH
Γ (Ax− y) + ǫAH

Γ A∂x = −wzΓ + ǫzΓ

|aHi (Ax− y) + ǫaHi A∂x| < w − ǫ, i ∈ ΓC

. (19)

2Note that we introduce the algorithms for a generalP ×M matrix A. For our beamforming approach,M = P = (N −F )

(the number of working sensors),A is an estimated version ofRR andy corresponds tobR.

3The subscriptΓ is used to identify quantities related to the support set.

November 9, 2014 DRAFT



8

From (19), we take only the terms multiplied byǫ and define a set of linear equations, which is used

to compute∂x. Substituting∂x in (19) we findǫ, and updatew with w ← w − ǫ. The last step is the

support update for the next iteration. The algorithm continues untilw = 0 or some stopping criterion is

met. References [16] and [18] present a detailed description of the algorithm.

A. The Complex Adaptive Re-Weighting Homotopy Algorithm

In [17] the real-valued homotopy algorithm was modified to solve theℓ1-weighted optimization problem

minimize
x

||Ax− y||22/2 +

M
∑

i=1

wi|xi|, (20)

wherewi are positive weights. The motivation to modify the optimization problem and solve (20) instead

of (17) was the possibility to adjust different weights to penalize the solution coefficients, which could

be applied to enhance the level of sparsity of the solution and improve the performance [17].

The ARH algorithm applies a re-weighting approach to quickly computex, when the column vectorw

which contains the weights of (20) is replaced by a re-weighting vectorw̃. The idea behind the algorithm

is that the solution moves tox+ δ∂x whenw moves towards̃w along a straight line(1 − δ)w + δw̃,

for δ ∈ [0, 1], where∂x does not depend onδ. Simulation results in [17] have shown that ARH yields

better performance and reconstruction accuracy thanℓ1-based solvers (YALL1 [24], SpaRSA [25], SPGL1

[26]) used for recovering sparse signals from noisy measurements, while it requires lower computational

complexity.

Based on the ARH algorithm of [17] and on the CH algorithm of [18], in [19] we developed an

extension of ARH to complex-valued systems of equations. The technique was named the complex ARH

algorithm and preliminary results presented in [19] showedthat beamforming algorithms using C-ARH

could lead to SINR performance gains. The technique is now presented in further detail, giving emphasis

to beamforming applications.

To presentthe C-ARH technique, and later introduce the multi-candidate C-ARH algorithm, assume

that A, x and y are complex entities. For convenience, also assume thatδ ∈ [0, δ̃]. In Section III-B,

we use different values of̃δ to construct a diverse set of possible solutions, which is exploited by the

multi-candidate algorithm to improve the performance. Considering these assumptions, the optimality

conditions of C-ARH can be derived from (20), i.e.,

AH
Γ (Ax− y) = −WzΓ

|aHi (Ax− y)| < wi ∈ ΓC

, (21)
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whereW = diag(wΓ), andz is a vector whose entries are the sign of the corresponding entries in x.

Whenw moves to(1− δ)w + δw̃, (21) changes to

AH
Γ (Ax− y) + δAH

Γ A∂x = −WzΓ + δ(W − W̃)zΓ

|aHi (Ax− y) + δaHi A∂x| < wi + δ(w̃i − wi), i ∈ ΓC

,

andW̃ = diag(w̃Γ). To compute∂x, we solve the system of equations

(AH
Γ AΓ)∂xΓ = (W − W̃)zΓ, (22)

wherezi = aHi (Ax− y)/wi, i ∈ Γ, and the elements of∂x outside the support are set to zero.

We have to check if a breakpoint occurs to update the support.A breakpoint occurs in two situations:

when an element ofx ∈ Γ changes sign, or when one inequality becomes an equality in (III-A). When

an element changes sign, it must be removed fromΓ. Recall thatx is updated asx = x + δ∂x. An

element ofx crosses zero when

δ = −xi/∂xi, for somei ∈ Γ. (23)

DefinexR = Re{x}, xI = Im{x}, dR = Re{∂x} anddI = Im{∂x}, and recall thatδ must be a real

number in the interval[0, δ̃]. The parameterδ has a real value in eq. (23), only if

xRi
/dRi

= xIi/dIi , i ∈ Γ. (24)

An elementγ− is removed fromΓ if (24) holds for somei, and if (23) is in[0, δ̃], for the same breakpoint.

If two or more breakpoints fulfill the restrictions, the smallest one is removed, which can be defined using

g = min+(−xRi
/dRi

), for all xRi
/dRi

= xIi/dIi , i ∈ Γ

where min+(·) returns the smallest positive value in the argument. Wheng is empty, no term is removed,

and C-ARH proceeds by choosing an elementγ+ that must be added toΓ. In this case,γ+ is chosen by

γ+ = argmax
i∈ΓC

|aHi (Ax− y)|, (25)

andδ is updated with the value of̃δ. The last step is the update ofwi ∈ ΓC , which is given by

wi ← max
j
|aHj (Ax− y)|, for all i ∈ ΓC . (26)

The algorithm stops when the maximumwi ∈ Γ is smaller or equal to a pre-defined parameterτ . We

summarize the algorithm in Table I.
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1) Re-weighting choice:For this paper, we compute the re-weighting with

w̃i = min(ζ, ζ/β|xi|) , for all i ∈ Γ, (27)

whereζ = 2σ2
η andβ = N ||x||22/||x||

2
1. Note that this re-weighting is based on an approach proposed in

[17]. We tried different re-weightings in the simulations presented in Section VII, and we selected the

re-weighting that provided the best SINR performance for our beamforming scenario. Other re-weightings

can also be applied.

2) Computational cost:The main contribution to the computational cost of each C-ARH iteration

comes from computing

AH (y −Ax) = AHy −AHAx (28)

and ∂x. The term (28) does not explicitly appear in Table I. However, if we consider the steps2 and

9 (or 2 and 10, if the “else“ condition of step9 does not occur), we see that at every iteration, step2

uses the elements of (28) computed withai, i ∈ Γ, while step9 (or 10) uses the elements which are

calculated with the remainingai. Recalling that steps2 and9 (or 2 and10) occurs every iteration, we

notice that (28) is computed every C-ARH step. This computation is costly in general, but it can be done

with lower cost if somea priori information aboutA is available.

In a general approach,A can vary during the algorithm computations, requiringAHA and AHy

in (28) to be re-computed at every iteration. Using the fact that AHA is symmetric, both terms are

computed withP (2M2 + 6M) additions andP (2M2 + 6M) − (M2 + 3M) multiplications. On the

other hand, whenA is invariant through the iterations, pre-computation ofAHy andAHA can be used

to reduce the number of operations. In this case,AH (y −Ax) uses a matrix-vector product and the

addition of two vectors, achieving a lower cost proportional to |Γ|M per iteration (where|Γ| is defined

as the cardinality ofΓ at a given iteration). The maximum cost per C-ARH iteration corresponds to

4|Γ|M + 5|Γ| multiplications,4|Γ|M + 5|Γ| additions and3|Γ| divisions, plus the computation of∂x

(which is the solution to a|Γ| × |Γ| system of equations), and the cost to obtainw̃. The re-weighting

applied in this paper uses an additional cost of3|Γ|+2 multiplications,3|Γ|−2 additions,|Γ|+1 divisions

and |Γ| square-roots per iteration.

To compute the solution to (20), C-ARH executes a number of iterations, where it adds or removes

elements to the support ofx. Assuming thatK is the total number of non-zero entries in the solution,

the minimum number of iterations required to computex is K. In this case, the algorithm only adds

elements to the support, and the solution is obtained with(K2 +K)(2M + 4) − 2K additions,(K2 +

K)(2M+4)+2K multiplications,2K2+3K divisions,(K2+K)/2 square-roots, plus the solution ofK
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systems of equations with dimensionp× p, wherep starts at1 and linearly increases up toK during the

iterations. Note that when the algorithm removes elements from Γ, the number of iterations increases. To

check how frequently elements are removed from the support,we used C-ARH to solve a large number

of examples with different values toA andy. We compared the number of elements removed with the

total amount of iterations used to compute the sparse vectorx, and we noted that these events rarely

occur (in less than1% of the iterations). Therefore, we assume that the minimum complexity obtained

can be used as a reasonable approximation to the number of computations used by C-ARH.

3) C-ARH applied to beamforming:The algorithm presented in Table I can be applied to sparse

systems of equations in general.For the purpose of this paper, we use the C-ARH to obtain a low-cost

method to regularize eq. (3) and compute the MVDR beamformer.

Let R(n) be an approximation ofRt(n) andRR(n) be an approximation ofRR at snapshotn. For

beamforming, we solve eq. (20) usingA = RR(n) andy = bR, resulting in the following system of

equations

RR(n)x(n) = bR, (29)

where the solutionx(n) is used in

hR(n) = x(n)/bH
R x(n) (30)

to compute the beamformer.

To solve (29), we first need to obtainR(n) andE, so that the diagonal entries ofE can be used to

access the contribution of the working sensors, allowing usto obtainRR(n) andbR. In this paper, we

assume thatR(n) is iteratively updated with

R(n) = νR(n− 1) + u(n)uH(n), (31)

where0 ≤ ν < 1 is the forgetting factor. Notice that (31) can be written as

R(n) =

n
∑

j=1

νn−ju(j)uH (j) + νn−jξI, (32)

whereξI is the initial regularization. Taking the expectation and recalling thatE{u(j)uH (j)} = Rt, one

can show that [2]

E{R(n)} = Rt/(1 − ν), whenn→∞. (33)

Due to normalization in (30), the constant(1− ν) does not affect the computation of the beamforming

solution, allowing the use ofR(n) in (29).
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The estimate ofE can be obtained from the diagonal elements ofR(n), using a technique based on

the energy detection method [22]. To explain this approach,recall equations (15) and (33). It is easy to

see that there are only two possibilities for the diagonal elements ofR(n), whenn→∞, i.e.,

rjj(n→∞) ≈







σ2
η/(1− ν), if the j-th sensor is faulty

(r̃2dIjj + σ2
η)/(1 − ν), otherwise.

Assuming that the sources are uncorrelated,r̃2dIjj is given by

r̃2dIjj =

S
∑

i=1

σ2
si , (34)

where eachσ2
si corresponds to the variance of thei-th source, andσ2

s1 = σ2
d. In this case, one expects

that the diagonal entries related to faulty sensors must have smaller variance, since they only measure

noise. We exploit this fact to estimateE.

To define if a sensor is faulty, consider that after a few snapshots it is possible to perceive that

some diagonal entries ofR(n) have higher values than others. The faulty sensors are identified using a

threshold, based on the maximumrjj(n). We assume that if an elementrjj(n) is at least6dB smaller

than the maximum entry, then thej-th sensor is faulty. The threshold is computed with

Thr = 10−0.6maxj(rjj(n)), (35)

and all the diagonal entries ofR(n) are compared to (35). Ifrjj(n) is smaller than Thr for somej,

then thej-th sensor is faulty, andejj is set to0. Otherwise, we setejj = 1. This technique is easy to

implement (it only requires one multiplication andN comparisons) and is efficient for finding the faulty

sensors, as can be seen in our simulation results.To further reduce the complexity, we can apply (35)

only for the firstt snapshots, turn the estimation ofE off, and then use the last estimated matrixE for

the remaining snapshots. Using this approach, we assume that t snapshots are sufficient to obtain a good

estimate of the faulty sensors.

The C-ARH algorithm applied to beamforming is summarized inTable II. Recalling thatRR(n) and

R(n) areM ×M andN ×N , respectively, the computational complexity correspondsto the cost of the

algorithm in Table I, plus the cost to updateR(n) and to computeE andh(n) – steps 1, 2 and 4 in Table

II. These steps require the additional cost of3M2+5M +3N +5 multiplications,2M2+4M +2N − 1

additions and1 division.

B. Multi-Candidate Complex Adaptive Re-Weighting Homotopy

In the C-ARH algorithm, when we choosẽδ = 1, w moves towards̃w. However, we can choose a

different δ̃ and define a re-weighting that is a linear combination ofw and w̃. Since in general there
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TABLE I

C-ARH ALGORITHM

Input: A, y, τ , δ̃ Output: x, Γ

Initialize: ∂x = 0, x = 0, wi ← maxi |aH
i y| for all i, Γ← argmaxi |aH

i y|
Repeat:

1 Selectw̃

2 For all i ∈ Γ, computezi = aH
i (y −Ax) /wi

3 Solve (AH
Γ AΓ)∂xΓ = diag(wΓ − w̃Γ)zΓ

4 ComputexR = Re{xΓ}, xI = Im{xΓ}, dR = Re{∂xΓ} anddI = Im{∂xΓ}
5 g = min+(−xRi

/dRi
), for all xRi

/dRi
= xIi/dIi

6 δ = min(g, δ̃)

7 x = x+ δ∂x

8 wΓ = wΓ + δ(w̃Γ −wΓ)

9 if δ < δ̃

Γ← Γ \ γ− ⊲ Remove an element fromΓ

else

γ+ = argmaxi∈ΓC
|aH

i (Ax− y)|
Γ← Γ ∪ γ+ ⊲ Add a new element toΓ

end

10 wi ← maxj |aH
j (Ax− y)|, for all i ∈ ΓC

until maxi(wi) ≤ τ

TABLE II

C-ARH ALGORITHM APPLIED TO BEAMFORMING

Input: bd, ξ, u(n), ν, δ̃, τ , t Output:h(n)

Initialize: R(0) = ξI, x(0) = 0

for n = 1, 2, · · ·
1 R(n) = νR(n− 1) + u(n)u(n)H

2 if n < t then compute Thr= 10−0.6maxj(rjj(n)) and estimateE to obtainRR(n) andbR

3 Use δ̃ andτ in C-ARH to solveRR(n)x(n) = bR ⇒ x(n) (see Table I)

4 h(n) = x(n)/bH
R x(n)

end for

is no information about the weighting vector that generatesthe most accuratex, the combination of the

two weighting vectors can be a better option than onlyw̃. In this context, MC-C-ARH is proposed to

exploit multiple weight choices.
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We start with the definition of a setΛ of NC candidates for̃δ. For eachδ̃ ∈ Λ = {λ1, λ2 . . . λNC
}

the algorithm computes the corresponding solutionxi(n). A comparison criterion (e.g., the mean-square

error (MSE) or SINR) is used to define the best solution computed for each snapshot. The candidate with

the best figure of merit is selected. In Table III we summarizethe algorithm, applied to beamforming.

In general,Rd, RI andRη are not available, and an indirect method is required to select the candidate

which provides the highest SINR. DefineRIη = RI+Rη and recall thatRd = σ2
dbdb

H
d andbH

d hi(n) = 1.

The SINR for thei-th candidate is given by

SINRi(n) = hH
i (n)Rdhi(n)/h

H
i (n)RIηhi(n) = σ2

d/h
H
i (n)RIηhi(n), (36)

and it is maximized whenhH
i (n)RIηhi(n) is minimum. SinceRIη is unknown, (36) cannot be directly

minimized. As an alternative, we note that the minimizationof

hH
i (n)Rthi(n) = σ2

d + hH
i (n)RIηhi(n), (37)

also maximizes the SINR, and an estimateR(n) of Rt can be used to compute (37). However, the

computation of (37) is costly, proportional toO(N2). To reduce the number of computations, we propose

a simpler method, with costO(N).

DefiningRIη = DIη+G, whereDIη = σ2
IηI has the diagonal entries ofRIη, andG contains the other

elements, we can write

SINRi(n) = 1/[(σ2
Iη/σ

2
d)||hi(n)||

2
2 + (1/σ2

d)h
H
i (n)Ghi(n)]. (38)

If we consider only two candidates, and that SINR1(n) > SINR2(n), then we obtain

||h1(n)||
2
2 < ||h2(n)||

2
2 + [hH

2 (n)Gh2(n)− hH
1 (n)Gh1(n)]/σ

2
Iη. (39)

Assuming thatG is small compared toσ2
IηI, then the second term in the right-hand side of (39) can be

neglected. Extending the idea toNc candidates, we obtain the proposed selection algorithm

hMAX (n) = hk(n) when k = arg mini(||hi(n)||
2
2), i = 1, 2, . . . , Nc. (40)

Our simulations show that MC-C-ARH improves the SINR performance, when compared to C-ARH.

1) Computational cost:MC-C-ARH starts with the update ofR(n) (step 1, Table III) and the

computation ofE (step 2, Table III). Then, the algorithm computes the C-ARH solution xi(n) (step

3, Table III), hi(n) (step 4, Table III) and||hi(n)||
2 (step 5, Table III) for each candidate.Recalling

that N × N is the dimension ofR(n), while M ×M is the dimension ofRR(n), R(n) is updated

with 3M2 − 3M + 3N multiplications and2M2 − 2M + 2N additions. The cost to computehi(n)
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is 8M + 4 multiplications, 6M − 1 additions and1 division, while the computation of||hi(n)||
2

uses2M multiplications and2M − 1 additions for each candidate. The total computational costis

3M2 +M(10Nc − 3) + 3N + 4Nc + 1 multiplications,2M2 +M(8Nc − 2) + 2N − 2Nc additions,Nc

divisions, plus the cost to solve the C-ARH algorithmNc times.

TABLE III

MC-C-ARH ALGORITHM APPLIED TO BEAMFORMING

Input: bd, ξ, u(n), ν, Λ, τ , t Output: hMAX (n)

Initialize: R(0) = ξI,xi(0) = 0, ∀λi ∈ Λ

for n = 1, 2, · · ·
1 R(n) = νR(n− 1) + u(n)u(n)H

2 if n < t then compute Thr= 10−0.6maxj(rjj(n)) and estimateE to obtainRR(n) andbR

for all λi ∈ Λ :

3 Use C-ARH withδ̃ = λi andτ to solveRR(n)xi(n) = bR ⇒ xi(n) (see Table I)

4 Computehi(n) = x(n)/bH
R xi(n)

5 Compute||hi(n)||22 for all i

end for

6 m = argmini{||hi(n)||2} ⊲ Find the best candidate

7 hMAX (n) = hm(n)

end for

IV. ITERATIVE ALGORITHMS USING COMPLEX HOMOTOPY TECHNIQUES

In this section, we proposeiterativealgorithms based on the C-ARH technique. The idea behind these

approaches is that we can compute the solution at snapshotn by adding an update term to the solution

obtained at snapshotn− 1, reducing the computations to obtainx(n). For this purpose, consider that the

solution to (29) at snapshotn is given by

x(n) = x(n− 1) + ∆x(n), (41)

where∆x(n) is the updating term. Sincex(n−1) is known at snapshotn, we use (41) in (29), to obtain

RR(n)∆x(n) = β(n), (42)

where we define

β(n) = bR−RR(n)x(n− 1). (43)
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In this case, we can write the minimization problem

minimize
∆x

||RR(n)∆x(n)− β(n)||22/2 +

M
∑

i=1

wi|∆xi(n)|, (44)

which is similar to the minimization problem solved by C-ARHin (20). Therefore, we can defineA =

RR(n), y = βR(n) andx = ∆x(n), and use C-ARH to compute∆x(n). The result is then applied in

(41), to computex(n). We call this approach theiterativeC-ARH (It-C-ARH) algorithm.

The It-C-ARH algorithm computesβ(n) at every snapshot, which requires the computation of a

complex matrix-vector product and the addition of two complex vectors. Using this approach, the total

number of operations corresponds to4M2 multiplications and4M2 additions. However, the computation

of β(n) at snapshotn can be implemented less costly, using quantities computed in the previous snapshot.

For this purpose, assume thatR(n) is updated as presented in eq. (31), and use it in (43) to write

β(n) = bR−
[

νRR(n− 1) + uR(n)u
H
R (n)

]

x(n − 1) = (1− ν)bR + νζ(n− 1)− uR(n)z
∗(n) (45)

whereuR(n) contains only signals obtained from sensors working properly. We define the residue

ζ(n − 1) = bR −RR(n− 1)x(n − 1) (46)

and

z(n) = xH(n− 1)uR(n). (47)

Using (45) and (41),ζ(n) can be written in terms of the∆x(n), i.e.,

ζ(n) = bR−RR(n)(x(n− 1) + ∆x(n)) = β(n)−RR(n)∆x(n), (48)

which can be efficiently computed to reduce the computational cost. When C-ARH computes∆x(n), it

computes only theK entries in the support of∆x(n). In this case, C-ARH gives us perfect knowledge

of theK non-zero entries of∆x(n). With this information, we can exclude the columns ofRR(n) that

are multiplied by the zero entries of∆x(n) in (48), such that the residue can be computed with4KM

multiplications and4KM additions. Using this result to compute (45), the computational cost to calculate

β(n) corresponds to4KM + 6M multiplications and4KM + 6M additions.

In Table IV the It-C-ARH algorithm is presented, and in Table V we describe theiterative MC-C-

ARH algorithm, introducing multiple candidates forδ̃. Notice that we use the same criterion applied by

MC-C-ARH to select the best candidate in theiterativemulti-candidate technique.

Computational cost of the It-C-ARH algorithm: Compared to C-ARH (see Table II), theiterative

technique requires the additional computation ofz(n), β(n), x(n) andζ(n) (respectively steps3, 4, 6
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TABLE IV

IT-C-ARH ALGORITHM APPLIED TO BEAMFORMING

Input: bd, ξ, u, ν, δ̃, τ , t Output: h(n)

Initialize: R(0) = ξI,x(0) = 0, ζ(0) = 0

for n = 1, 2, · · ·
1 R(n) = νR(n− 1) + u(n)u(n)H

2 if n < t then compute Thr= 10−0.6maxj(rjj(n)) and estimateE to obtainRR(n) andbR

3 z(n) = xH(n− 1)uR(n)

4 β(n) = νζ(n− 1) − uR(n)z
∗(n) + (1− ν)bR

5 Use C-ARH withδ̃ andτ to solveRR(n)∆x(n) = β(n) ⇒ ∆x(n), Γ (see Table I)

6 Computex(n) = x(n− 1) + ∆x(n)

7 Computeζ(n) = β(n)−RR(n)∆x(n)

8 Computeh(n) = x(n)/bR
Hx(n)

end for

and7 in Table IV). The term(1−ν)bR does not change through the snapshots and can be pre-computed

to reduce the computations. The total implementation cost per snapshot is3M2+(15+4K)M +3N +5

multiplications,2M2 + (14 + 4K)M +2N +2K − 3 additions,1 division, plus the cost to compute the

C-ARH algorithm in Table I.

Computational cost of the It-MC-C-ARH algorithm: The computation of theiterativemulti-candidate

algorithm differs from the MC-C-ARH algorithm in the addition of steps3, 4, 6 and7 in Table V. With the

additional steps, the complexity cost increases and is given by3M2+(4KNc+20Nc−3)M+3N+4Nc+1

multiplications,2M2 + (4KNc + 18Nc − 2)M + 2N − 2KNc − 4Nc additions,Nc divisions and the

computation of C-ARH (Table I)Nc times.

V. THE HOMOTOPY ALGORITHMS USINGDCD ITERATIONS

The C-ARH algorithm solves a linear system of equations (step 3, Table I), which is costlyto compute.

In this case, an efficient method to compute the solution is very important to keep the complexity low.

Prior work report the use of DCD iterations [20] to solve systems of equations with a reduced number of

operations. Since it avoids multiplications and divisions, which are costly to implement, many applications

of this technique can be found in the literature. In [27] and [28], for instance, DCD iterations are applied to

obtain low-complexity RLS and affine projection (AP) algorithms. To obtain the first, the RLS problem is

expressed in terms of auxiliary equations with respect to increments of the filter weights. DCD iterations

are then used to solve the auxiliary equations, resulting ina complexity reduction. The low-complexity AP
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TABLE V

IT-MC-C-ARH ALGORITHM APPLIED TO BEAMFORMING

Input: bd, ξ, u, ν, Λ, τ , t Output: hMAX (n)

Initialize: R(0) = ξI,xi(0) = 0, ζi(0) = 0, ∀λi ∈ Λ

for n = 1, 2, · · ·
1 R(n) = νR(n− 1) + u(n)u(n)H

2 if n < t then compute Thr= 10−0.6maxj(rjj(n)) and estimateE to obtainRR(n) andbR

for all λi ∈ Λ:

3 zi(n) = xH
i (n− 1)uR(n)

4 βi(n) = νζi(n− 1) − uR(n)z
∗

i (n) + (1− ν)bR

5 Use C-ARH withλi andτ to solveRR(n)∆xi(n) = βi(n) ⇒ ∆xi(n), Γ (see Table I)

6 Computexi(n) = xi(n− 1) + ∆xi(n)

7 Computeζi(n) = β(n)−RR(n)∆xi(n)

8 Computehi(n) = xi/bR
Hxi

9 Compute||hi(n)||22 for all i

end for

10 m = argmini{||hi(n)||22} ⊲ Find the best candidate

11 hMAX (n) = hm(n)

end for

algorithm is obtained with a modification of the AP technique, which incorporates the DCD to update the

filter weights, resulting in a method less costly to implement than NLMS [2]. In [29], the DCD is used to

implement the MVDR beamformer in an FPGA. The estimate of thecorrelation matrixR(n) is updated

with a rectangular window, and DCD is applied to compute a low-cost solution toR(n)x(n) = bd. x(n)

is then used to compute the beamformer with eq. (30). In [30],a DCD-homotopy technique based on

the algorithm of [16] is also proposed. The algorithm is obtained with a modification of the DCD, and

is applied to recover sparse signals, in system identification problems.

Although there are different uses, DCD-based approaches ingeneral lead to low-cost techniques,

suitable for hardware implementation. This fact motivatedus to employ DCD iterations to compute

step 3 in Table I. For this purpose, we apply a leading elementversion of DCD [31], which is briefly

described in Table VI. The algorithm solvesAx = y, whereA is anL × L matrix, andx andy are

column vectors withL entries. The step-sizeα depends on the value of parameterH, which determines

the range of the elements ofx (which is assumed to be represented withMb bits in fixed-point format).

The algorithm starts updating the most significant bits of the elements ofx, moving down to the least
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significant bits. The number of iterations is restricted to be less than a small valueNu, which helps to

keep the number of computations low. Selecting a power-of-two step size, the algorithm is implemented

with further complexity reduction, since divisions and multiplications can be replaced by bit-shifts. The

maximum computational cost is(4L+1)Nu+Mb additions, but this is the worst case, when the maximum

number of iterationsNu is used.

In this paper, the use of DCD is particularly interesting forthe iterativealgorithms, since the previous

solution can be employedas an initial condition to DCD, allowing the use of a smallNu. The non-

iterativealgorithms cannot use this initial condition, and would require a large number of DCD iterations

Nu to compute the solution. For this reason, we focus now on theiterative techniques. ForIt-C-ARH

and It-MC-C-ARH, DCD is used to solve (22), whereA = AH
Γ AΓ andy = (W − W̃)zΓ. To further

save operations, we can also select the forgetting factor asν = 1 − 2−l, where l is a positive integer.

This choice ofν substitutes multiplications by additions and bit-shifts in eqs. (31) and (45), reducing

the complexity to updateRR(n) andβ(n). As it is shown in Section VII, the algorithms using DCD

outperform our previous approaches, with further reduction in the number of computations.

TABLE VI

DCD WITH LEADING ELEMENT

Input: y, A, Mb, H , Nu Output: ζDCD, x

Initialize: m = 0, α = H , ζDCD = y

for n = 1, 2, · · · , Nu

1 [k, s] = argmaxp=1,··· ,K{|Re(ζDCDp)|, |Im(ζDCDp)|} ⇒ go to step 4

2 m = m+ 1

3 α = α/2

4 if m > Mb, the algorithm stops

5 if s = 1

ζDCDtmp = Re(ζDCDk
)

else

ζDCDtmp = Im(ζDCDk
)

end

6 if |ζDCDtmp | ≤ (α/2)Ak,k, then go to step 1

7 xk = xk + sign(ζDCDtmp )sα

8 ζDCD = ζDCD − sign(ζDCDtmp)sαak

9 end for
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VI. A NALYSIS

In this section, we summarize some analysis results that explain and give insight into the algorithms’

behavior. We show why the C-ARH algorithm provides SINR performance gains even when the system of

equations is not sparse, and we also define the range of valuesfor δ̃ for the multi-candidate algorithms. In

addition, we compare theiterativeand non-iterativealgorithms to give some insights into the performance

differences observed in the simulations. We then dedicate asection to summarize the computational

complexity, and to provide some implementation tools to achieve low-cost algorithms.

A. C-ARH applied to regularize sparse and non-sparse problems

At the k-th homotopy iteration4, the C-ARH algorithm (see Table I) uses

AH
Γ (Ax(k − 1)− y) + δAH

Γ A∂x(k) = −WzΓ(k) + δ(W − W̃)zΓ(k) (49)

to compute the solutionx(k) = x(k−1)+∂x(k). Assumeδ = 1, and recall thatzΓi
(k) = xi(k)/|xi(k)|.

Equation (49) can be written as

AH
Γ AΓx(k)−AH

Γ y = −W̃zΓ(k), (50)

whereW̃zΓ(k) = D(k)x(k), andD(k) is a diagonal matrix with diagonal entries

dii(k) = w̃i/|xi(k)|, i ∈ Γ. (51)

UsingD(k) in eq. (50), we obtain

(

AH
Γ AΓ +D(k)

)

x(k) = AH
Γ y, (52)

showing that a diagonal regularization is introduced, which will be beneficial when (50) is ill-conditioned.

As shown in Section II-A, when the number of interferers is small, (50) is ill-conditioned, and the

regularization provided by C-ARH helps to improve the estimates.

B. Selection of the regularization parameterδ̃

The values of thẽδ must all be in the interval[0, 1] to avoid negative weights. In fact, the weight

update is

w← (1− δ)w + δw̃ ∈ Γ, (53)

where we just reorganized step 8 in Table I to make clear the contribution ofw andw̃ to the right-hand

side of the equation. It is easy to note in eq. (53) thatδ must be in[0, 1] to guarantee thatw is always

positive.

4Note that we usek to denote different homotopy iterations and avoid confusion with indexn, which denotes snapshots.
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C. Differences between theiterative and non-iterative algorithms

The C-ARH algorithm computes an iterative solution to the minimization problem presented in eq. (20)

(whereA = RR(n) andy = bR for beamforming). The algorithm uses anℓ1-norm regularization tox(n),

helping ill-conditioned systems of equations and alsofavoring sparse solutions . Theiterativeapproaches,

on the other hand, solve a modified minimization problem (see(44)), where theℓ1-norm regularization

is applied to the solution update,∆x(n). Since the two minimization problems are essentially different,

we expect the techniques to perform distinctly under the same conditions. The simulations presented

in Section VII corroborate this fact, showing that recursive techniques may outperform C-ARH for

beamforming. In addition, recall that theiterative algorithms use C-ARH to compute the entries in the

support ofx(n). SinceIt-C-ARH uses the solution of the previous snapshot as an initial condition to

computex(n), one can expect this previous solution to be closer to the ideal solution than the zero-initial

condition used by the non-iterative techniques. In this case, we expect to use less updates to obtain the

It-C-ARH solution, reducing the number computations. In Section VII, we present simulations to support

these observations.

D. Computational complexity

In this section, we summarize the computational complexityof the proposed algorithms. Tables VII -

X are arranged in a nested structure, each table adding a layer needed for the solution of the beamforming

problem.

In Table VII, we show the computational cost per iteration ofthe C-ARH algorithm (as described in

Table I). The number of operations is presented as a functionof the support size|Γ| at each homotopy

iteration. At every iteration, the algorithm computes the solution of a linear system of equations, with the

dimension|Γ| × |Γ|. Different approaches can be used to solve the system of equations, such as an LU

factorization, which is anO(|Γ|3) technique, and the DCD algorithm, which is the low-cost alternative

used in this paper. The total cost to computex(n) (assuming thatthe maximum support size is given by

K) is presented in Table VIII. The cost to implement C-ARH using the DCD with a leading element is

also detailed.

Table IX shows the complexity of the algorithms proposed forbeamforming. In our simulations

comparing theiterative and non-iterative techniques (see Section VII), we notice thatIt-C-ARH andIt-

MC-ARH use a very low number of homotopy iterations per snapshot, which makes their computational

cost much lower than the cost of C-ARH and MC-C-ARH. The simulations also indicate that theiterative

algorithms have better SINR performance. When we use the DCDin the C-ARH algorithm, further
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reduction of the computational cost is obtained, since multiplications are replaced by additions and bit-

shifts, and the parameterNu can be designed to be a small number. Table X summarizes the number of

computations used by the recursive algorithms using DCD iterations.

The dominant terms in the computational complexity of all the homotopy-based techniques areK2M

(see Table VIII) andM2 (see Tables IX and X). Since the maximum number of elements inthe support

K can be close to the value ofM , one would expect the cost to implement the proposed techniques

to be cubic in the value ofM . However, as it is shown in our simulations in Section VII, the iterative

algorithms require a very low number of homotopy iterationsper snapshot, such thatK ≪ M and the

complexity is reduced toO(M2).

Note that we use (27) for all techniques presented in this paper. Selecting a different re-weighting, the

required number of computations may change, modifying the values presented in Tables VII and VIII.

TABLE VII

COMPUTATIONAL COMPLEXITY OF C-ARH PER HOMOTOPY ITERATION

Algorithm + × ÷
√·

C-ARH |Γ|(4M + 8)− 2 |Γ|(4M + 8) + 2 4|Γ| + 1 |Γ|
Plus the solution of a|Γ| × |Γ| linear system of equations

C-ARH (DCD) 4|Γ|(M +Nu + 2) +Nu +Mb − 2 |Γ|(4M + 8) + 2 4|Γ| + 1 |Γ|

TABLE VIII

M INIMUM COMPUTATIONAL COMPLEXITY OF C-ARH PER SNAPSHOT(WHEN THE TOTAL SUPPORT SIZE ISK)

Algorithm + × ÷
√·

C-ARH K2(2M+4) +K(2M+2) K2(2M+4) +K(2M+6) 2K2+3K (K2+K)/2

Plus the solution ofK systems of equations with dimensionp× p, wherep = 1, 2, . . . ,K

C-ARH (DCD) K2(2M+6)+K(2M+2+6Nu+Mb) K2(2M+4)+K(2M+6) 2K2+3K (K2+K)/2

VII. S IMULATIONS

In our simulations, we compare the SINR performance of the proposed algorithms and techniques

from the literature. We consider a64-sensor ULA and assume one direction of interest at an angle of

20o, and4 interferers with angles30o, 45o, 53o and60o. We perform two groups of simulations. In the

first scenario, we assume that there are5 faulty sensors in the array, and we use a faulty-sensor detector
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TABLE IX

COMPUTATIONAL COMPLEXITY PER SNAPSHOT OF THE ALGORITHMS APPLIED TO BEAMFORMING

Algorithm + × ÷ C-ARH

(Tab. VIII)

C-ARH (beamf.) 2M2 + 4M + 2N − 1 3M2 + 5M + 3N + 5 1 1

MC-C-ARH 2M2+(8Nc−2)M+2N−2Nc 3M2+(10Nc−3)M+3N+4Nc+1 Nc Nc

It-C-ARH 2M2 + (4K + 14)M + 2N + 2K − 3 3M2 + (4K + 15)M + 3N + 5 1 1

It-MC-C-ARH 2M2 + (4KNc + 18Nc − 2)M 3M2 + (4KNc + 20Nc − 3)M Nc Nc

+2N + 2KNc − 4Nc +3N + 4NC + 1

TABLE X

TOTAL COMPUTATIONAL COMPLEXITY OF THE ALGORITHMS USINGDCD ITERATIONS

Algorithm + × ÷
√
·

DCD- 3(M2+5M+N−1)+K2(2M+6) 2M2+ 14M+2N+5 2K2+3K+1 (K2+K)/2

It-C-ARH +K(6M +6Nu+Mb+4) +K2(2M+6)+K(6M+ 6)

DCD- 3(M2−M+N) 2(M2−M+N)+1 Nc(2K
2+3K+1) Nc(K

2+K)/2

It-MC-C-ARH +Nc(K
2(2M+6)+20M−4) +Nc(K

2(2M+4)

+NcK(6M+6Nu+Mb+4K) +K(6M+24)+4)

to identify them. The faulty sensors are randomly selected,and all the techniques considered in the

simulation useRR(n) to compute the beamformer. In the second simulation, we use the same conditions

as before, but we assume that we are unable to identify the faulty elements. For such situation, we show

that the proposed techniques are robust to errors in the detection of faulty elements.

We present the SINR performance of C-ARH, MC-C-ARH, It-C-ARH, It-MC-C-ARH, DCD-It-C-ARH

and DCD-It-MC-C-ARH algorithms, and we compare these techniques to theO(M3) RCB of [13], the

RLS algorithm [1] without the addition of regularization, and to a method using a diagonal loading (DL)

added toRR(n). We use the approach of [11] to regularizeRR(n) by adding to the matrix the diagonal

loading 10σ2
ηI, assuming exact knowledge ofση. The solution to(RR(n) + 10σ2

ηI)x(n) = bR is then

used to compute the beamformer, which can be implemented, for instance, using RLS, at cost ofO(M2).

We present the SINR performance and the number of homotopy steps used by the proposed techniques,

which expresses the maximum dimension of the system of equations solved by the homotopy-based

algorithms. To determine the faulty sensors in the first simulation, we use the energy detection method,

as presented in Section III-A3.Matrix E is estimated only during the first100 snapshots. Afterwards,
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we freeze the last estimated value ofE for the remaining snapshots.

The power of each interferer is10 times the power of the signal of interest,σ2
d = 1. The SNR is8dB,

and the noise is a zero-mean Gaussian i.i.d. sequence. The signals produced by the sources are zero-mean

binary sequences of−1 and 1, and we use eq. (31) to iteratively estimateRt. The forgetting factor is

given byν = 1 − 2−6 ≃ 0.9844 andR(0) = 10−3I. The algorithms are adjustedin the first simulation

to achieve the maximum SINR in the steady-state.We keep the same values for the parameters in the

second simulation to study the effect of the wrong identification of faulty sensors to the beamformer

computation. The figures are obtained with the mean of 200 realizations.

A. Regularization when the faulty-sensor detector is applied

For the simulation presented in this section, we assume thatthere are 5 faulty sensors, and that the

faulty-sensor detector is applied to identify and exclude them from the computation of the beamformer.

To adjust C-ARH and MC-C-ARH, we useτ = 0.32 and define three candidates for the MC-C-ARH

algorithm, given byΛ = [0.6 0.8 1]. The iterative algorithms It-C-ARH and It-MC-C-ARH use a stopping

parameterτIt = 2, while DCD-It-C-ARH and DCD-It-MC-C-ARH useτDCD = 5, Nu = 8, Mb = 16

bits andH = 2. The multi-candidate iterative algorithms use the same setof candidates as selected for

MC-C-ARH, and the constraint of the RCB is given byǫ = 0.1. Figure 1 presents the SINR performance

and the number of homotopy iterations required by the proposed techniques to compute the MVDR

beamformer.

From Figure 1, one can see that the C-ARH algorithm and the DL approach have almost the same SINR

performance after 250 snapshots, and that both algorithms are outperformed by the MC-C-ARH algorithm

after 200 snapshots. The proposed iterative algorithms outperform the other homotopy-based techniques,

and the highest SINR is achieved by the DCD-based algorithms. The iterative algorithms outperform

their non-iterative counterparts with a lower number of homotopy iterations, which reduces the number

of computations. For instance, consider the average numberof iterations used by C-ARH (which is 56),

It-C-ARH (3) and DCD-It-C-ARH (1.5), after they achieve thesteady-state. Using these values ofK in

the equations presented in Tables VIII, IX and X, we compare the number of multiplications used by

these methods. The C-ARH algorithm requires400471 multiplications plus the cost to solve56 systems

of equations of sizes from1 × 1 to 56 × 56. The It-C-ARH algorithm uses26211 multiplications and

solves only3 systems of equations. The DCD-It-C-ARH algorithm, the least costly of them, uses only

8386 multiplications. No additional multiplications are required to solve the systems of equations, since
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Fig. 1. SINR performance (left) and average number of homotopy iterations per snapshot (right), when there are 5 faulty

sensors. Mean of200 realizations. The red and magenta curves in the right figure are not identified to avoid overlap of arrows.

The red curve is the average number of homotopy iterations required by DCD-It-C-ARH, and it is equal to 1.5 iterations per

snapshot. The magenta curve is the average number of iterations required by It-C-ARH, and it corresponds to 2.5 iterations per

snapshot.

the DCD algorithm does not require multiplications.

The DCD-based iterative algorithms are only outperformed by the RCB, which achieves an SINR

performance 1.5dB higher than the DCD-It-MC-C-ARH. Noticethat the RCB has a computational cost

of O(M3), while the DCD techniques areO(M2) . Checking Table X, one can verify that the dominant

terms in computational complexity of DCD-It-C-ARH areK2M andM2. Since, a priori, the maximum

number of homotopy iterations could be as high asM , the cost to implement the techniques would be

cubic. However, as we can see in the simulation, the iterative algorithms require a much lower number

of homotopy iterations (3 homotopy iterations for It-C-ARHand 1.5 iterations for DCD-It-C-ARH), and

K ≪M . For this situation, the iterative algorithms require a number of computations which is quadratic

in M . The trade-off for the less costly approach is a performanceloss of about 1.5dB in this scenario.
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B. Robustness to errors in the identification of faulty sensors in the array

In this simulation, we show that the iterative techniques are robust when the faulty sensors cannot be

identified and excluded from the array. We assume that the array has 5 faulty sensors, but the detector

is unable to identify them. For this situation, we cannot reduce the dimension of the correlation matrix,

and the SINR performance of the algorithms might be affected. We maintain the value of the parameters

used in Section VII-A, and we show that the iterative DCD-based algorithms presents almost the same

performance. Figure 2 show the results.
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Fig. 2. SINR performance (left) and average number of homotopy iterations per snapshot (right), when there are 5 faulty

sensors, but they are not identified by the detector. Mean of200 realizations. The red and magenta curves in the right figure

are not identified to avoid overlap of arrows. The red curve isthe average number of homotopy iterations required by DCD-

It-C-ARH, and it is equal to 1.5 iterations per snapshot. Themagenta curve is the average number of iterations required by

It-C-ARH, and it corresponds to 2.8 iterations per snapshot.

In this scenario, the performance degrades for all the algorithms, but the techniques using the DCD

are less affected by the faulty sensors. The better performance of the DCD algorithms is explained by

the very low number of homotopy iterations used by these techniques. To understand this, recall the

algorithm presented in Table I. To add an element to the support set, the algorithm selects the columns
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of the matrix which are most correlated to the residue. When the algorithm starts, it first adds to the

support the highly correlated features of the matrix, for which the selection is not affected by the noise

introduced by the faulty sensors. However, after a few stepsof the C-ARH, the columns less correlated

to the residue and the columns introduced by the faulty sensors can be mistaken, and the algorithm can

add to the support wrong elements, leading to poor performance. Since the DCD iterative algorithms use

a very low number of iterations, they only add to the support the most correlated elements, easier to

identify, reducing the error and improving the SINR performance.

VIII. C ONCLUSION

In this paper, we have presented new beamforming algorithmsbased on theℓ1-norm regularized C-

ARH technique. Our iterative algorithms have low computational complexity and are robust against

ill-condition in the input autocorrelation matrix, which arises when the number of interferers is small

compared to the number of sensors. We compared our methods with the diagonal loading approach of

[11] and the RCB of [13], robust beamformers, in two situations: one in which faulty sensors are removed

from the equations, and another in which faulty sensors are not correctly detected. In the first situation,

our iterative algorithms perform better than C-ARH, MC-C-ARH and the diagonal loading approach of

[11], but they are outperformed by the RCB of [13]. In the second scenario, when the contribution of

the faulty sensors is not removed from the sample correlation matrix and the algorithms keep the same

parameters as in the first simulation, the DCD-based iterative methods are robust and outperform the

other techniques. We have also shown that the iterative methods can be implemented with a reduced cost

when compared to the RCB. The trade-off between SINR performance and computational complexity

favors the iterative techniques.

We have presented the computational complexity of the proposed techniques, as a function of the

number of sensors and the support size of C-ARH. Since the iterative algorithms require fewer homotopy

iterations per snapshot than the C-ARH and MC-C-ARH algorithms, they are less costly to implement.

For the DCD-based techniques, the number of computations ismuch lower, since many multiplications

are replaced by bit-shifts and additions. Since the number of homotopy iterations is also low, the iterative

algorithms can be implemented with a reduced cost, proportional to M2, whereM is the number of

sensors in the array, while the RCB is cubic inM .
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