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Adaptive filters are at the core of many signal processing applications, ranging from acoustic noise

supression to echo cancellation [1], array beamforming [2], channel equalization [3], and to more recent

sensor network applications in surveillance, target localization and tracking. A trending approach in this

direction is to recur to in-network distributed processing in which individual nodes implement adaptation

rules and diffuse their estimation to the network [4], [5].

Ranging from the simple Least-Mean-Squares (LMS) to sophisticated state-space algorithms, significant

research has been carried out over the last 50 years to develop effective adaptive algorithms, in an attempt

to improve their general properties in terms of convergence, tracking ability, steady-state misadjustment,

robustness, or computational cost [6]. Many design procedures and theoretical models have been developed,

and many novel adaptive structures are continually proposed with the objective of improving filter behavior

with respect to well-known performance tradeoffs (such as convergence rate versus steady-state performance),

or incorporating available a priori knowledge into the learning mechanisms of the filters (e.g., to enforce

sparsity).

When the a priori knowledge about the filtering scenario is limited or imprecise, selecting the most

adequate filter structure and adjusting its parameters becomes a challenging task, and erroneous choices can

lead to inadequate performance. To address this difficulty, one useful approach is to rely on combinations

of adaptive structures. Combinations of adaptive schemes have been studied in several works [7]–[21] and

have been applied to a variety of applications such as the characterization of signal modality [22], acoustic

echo cancellation [23]–[26], adaptive line enhancement [27], array beamforming [28], [29], and active noise

control [30], [31].

The combination of adaptive filters exploits to some extent the same divide and conquer principle that

has also been successfully exploited by the machine learning community (e.g., in bagging or boosting [32]).

In particular, the problem of combining the outputs of several learning algorithms (mixture-of-experts) has

been studied in the computational learning field under a different perspective: rather than studying the

expected performance of the mixture, deterministic bounds are derived that apply to individual sequences
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and, therefore, reflect worst-case scenarios [33]–[35]. These bounds require assumptions different from the

ones typically used in adaptive filtering, which is the emphasis of this overview article. In this work, we

review the key ideas and principles behind these combination schemes, with emphasis on design rules. We

also illustrate their performance with a variety of examples.

I. PROBLEM FORMULATION AND NOTATION

We generally assume the availability of a reference signal and an input regressor vector, d(n) and u(n),

respectively, which satisfy a linear regression model of the form:

d(n) = u>(n)wo(n) + v(n), (1)

where wo(n) represents the (possibly) time varying optimal solution, and v(n) is a noise sequence, which is

considered i.i.d., and independent of u(m), for all n,m. In this paper, we will mostly restrict ourselves to the

case in which all involved variables are real, although the extension to the complex case is straightforward,

and has been analyzed in other works [6]. In order to estimate the optimal solution at time n, adaptive filters

typically implement a recursion of the form

w(n+ 1) = f [w(n), d(n),u(n), s(n)] ,

where different adaptive schemes are characterized by their update functions f [·], and s(n) represents any

other state information that is needed for the update of the filter.

We define the following error variables that are commonly used to characterize the performance of adaptive

filters [6]:

• Filter output: y(n) = u>(n)w(n)

• Weight error: w̃(n) = wo(n)−w(n)

• A priori filter error: ea(n) = u>(n)w̃(n)

• Filter error: e(n) = d(n)− u>(n)w(n) = ea(n) + v(n)

• Mean Square Error: MSE(n) = E{e2(n)}
• Excess MSE (EMSE): ζ(n) = E{e2a(n)} = MSE(n)− E{v2(n)}
• Mean Square Deviation: MSD(n) = E{‖w̃(n)‖2}

During their operation, adaptive filters normally go from a convergence phase, where the expected mean-

square error decreases, to a steady-state regime in which the mean-square error tends towards some asymp-

totic value. Thus, for steady-state performance we also define the steady-state MSE, EMSE, and MSD as

their limiting values as n increases. For instance, the steady-state EMSE is defined as

ζ(∞) = lim
n→∞

E{e2a(n)}.
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II. A BASIC COMBINATION OF TWO ADAPTIVE FILTERS

The most simple combination scheme incorporates two adaptive filters. Figure 1 illustrates the configura-

tion, which shows that combination schemes have two concurrent adaptive layers: adaptation of individual

filters and adaptation of the combination layer. As illustrated in the figure, both adaptive filters have access

to the same input and reference signals and produce their individual estimates of the optimum weight vector,

wo(n). The goal of the combination layer is to learn which filter component is performing better dynamically

at any particular time, assigning them weights to optimize the overall performance.
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Fig. 1. Basic scheme for the combination of two adaptive filters.

In this paper, we focus on affine and convex combinations, where the overall filter output is given by

y(n) = λ(n)y1(n) + [1− λ(n)]y2(n), (2)

where yi(n) = u>(n)wi(n), i = 1, 2, are the outputs ot the two adaptive filters characterized by weights

wi(n), and λ(n) is a mixing parameter. Similarly, the estimated weight vector, the error, and the a priori

error of the combination scheme are given by

w(n) = λ(n)w1(n) + [1− λ(n)]w2(n), (3)

e(n) = λ(n)e1(n) + [1− λ(n)]e2(n), (4)

ea(n) = λ(n)ea,1(n) + [1− λ(n)]ea,2(n), (5)

where ei(n) = d(n) − yi(n), i = 1, 2, are the errors of the two adaptive filter components, and ea,i(n)

their a priori errors. The combination parameter λ(n) is constrained to lie in the interval [0, 1] for convex

combinations, while it can take any real value for affine combinations. There are also combinations where the

sum of weights assigned to the component filters is not equal to one [10]. These unconstrained combinations
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will not be addressed in this paper. In order to obtain an enhanced behavior from the combination, it is

crucial to design mechanisms to learn the mixing parameter λ(n) and to adapt it to track drifts in the model.

Different algorithms for the adaptation of the combination have been proposed in the literature; some of

them will be reviewed in a later section.

In (3), we are implicitly assuming component filters with the same length. When this is not the case, we

can still use (3) by extending the shortest filter and filling with zeros the nonexistent coefficients. Using

this observation, most of the algorithms discussed in this paper continue to be valid if the component filters

have different lengths. Moreover, in practice, construction (3) does not need to be evaluated since only the

output combination (2) is necessary. Furthermore, although not required by the analysis, in the experiments

we will assume that the component filter weight vectors match the length of the optimum solution, wo(n).

Nevertheless, there have been useful studies in the literature where the length of the filters is treated as a

design variable and the adaptation rules are used to learn the length of the optimum solution as well to

avoid degradation due to under-modeling or over-modeling [9], [13], [19].

The selection of the individual filters is often influenced by the application itself. For example, combination

structures can be used to:

• Facilitate the selection of filter parameters (such as the step size or forgetting factor, regularization

constants, filter length, projection order, etc). Existing schemes fix the values of these parameters or

recur to complex schemes that learn them over time. Alternatively, we can consider a combination

structure where the two filters belong to the same family of algorithms, but differ in the values of the

filter parameters. The combination layer would then select and give more weight to the best filter at

every time instant, making parameter selection less critical.

• Increase robustness against unknown environmental conditions. A common objective in the design

of adaptive filters consists in the incorporation of a priori knowledge about the filtering scenario to

improve the performance of the filter. For instance, sparse-aware adaptive filters try to benefit from the

kwnowledge that many coefficients of the optimal solution are (close to) zero, and Volterra filters try to

model non-linearities with polynomial kernels. However, when the filtering conditions are not known

accurately, or change over time, these schemes can show very suboptimal performance. Combination

schemes can be exploited to increase the robustness of these techniques against lack of or imprecise

knowledge of the adaptive filtering scenario.

• Provide diversity that can be exploited to enhance performance beyond the capabilities of an individual

adaptive filter. An example will be given later, when we study the tracking abilities of a combination

of one LMS and one recursive least-squares (RLS) filters.

The main disadvantage of this approach is the increased computational cost required for the adaptation of
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the two adaptive filters. However, it should be noted that the filters can be adapted in parallel and some

strategies allow for the joint adaptation of the two filters with just a slight increment with respect to that of

a single adaptive filter. Regarding the adaptation of the mixing parameter, the computational requirement of

most available schemes is not significant.

In the next section, we review the theoretical limits of the combination scheme consisting of just two

filters. Then, we review different combination rules that have already appeared in the literature, and compare

them in a variety of simulated conditions.

III. OPTIMUM MIXING PARAMETER AND COMBINATION PERFORMANCE

In this section, we derive the expression for the optimal mixing parameter in the affine and convex cases,

in the sense of minimizing the MSE of the combination. Since for λ(n) = 0 and λ(n) = 1 convex and

affine combinations are equivalent to each of the component filters, we know that an optimal selection of

the mixing parameter would guarantee that these combinations perform at least as the best component filter.

In this section, we examine the behavior of the combination scheme for other non-trivial choices of the

mixing parameter.

To start with, it can be easily seen that the EMSE of the combination (2) is given by

ζ(n) = E{e2a(n)} = λ2(n)ζ1(n) + [1− λ(n)]2ζ2(n) + 2λ(n)[1− λ(n)]ζ12(n), (6)

where ζi(n), i = 1, 2, are the EMSEs of the two individual filters, and ζ12(n) denotes the cross-EMSE

defined as [12]:

ζ12(n) = E{ea,1(n)ea,2(n)}.

This cross-EMSE variable is an important measure and is closely related to the ability of the combination

to improve the performance of both filter components, as we will see shortly. An important property of the

cross-EMSE that will be useful when discussing the properties of the optimal combination is derived from

the Cauchy-Schwartz inequality, namely:

|ζ12(n)|2 ≤ ζ1(n)ζ2(n), (7)

which implies that the cross-EMSE can never be simultaneously larger (in absolute terms) than both

individual EMSEs.

Expression (6) reveals a quadratic dependence on the mixing factor, λ(n). It follows that, in the affine

case, the optimal choice for λ(n) is given by:

λo
aff(n) =

ζ2(n)− ζ12(n)

ζ1(n) + ζ2(n)− 2ζ12(n)
=

∆ζ2(n)

∆ζ1(n) + ∆ζ2(n)
, (8)
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where we have defined ∆ζi(n) = ζi(n) − ζ12(n), i = 1, 2. In the case of a convex combination, the

minimization of (6) needs to be carried out by constraining λ(n) to lie in the interval [0, 1]. Given that (6)

is non-negative and quadratic in λ(n), the optimum mixing parameter is either given by (8) or lies in the

limits of the considered interval, i.e.,

λo
cvx(n) =

∆ζ2(n)

∆ζ1(n) + ∆ζ2(n)

∣∣∣∣∣
1

0

, (9)

where the vertical line denotes truncation to the indicated values.

Substituting either (8) or (9) into (6), we find that the optimum EMSE of the filter is given by

ζo(n) = ζ1(n)− [1− λo(n)] ∆ζ1(n) (10a)

= ζ2(n)− λo(n)∆ζ2(n), (10b)

where λo stands for either λo
aff(n) or λo

cvx(n). Note that these expressions are valid for any time instant n,

and also for the steady-state performance of the filter (i.e., for n→∞).

The analysis of the expressions for the optimum mixing parameter and for the combination EMSE allows

us to conclude that, depending on the cross-EMSE value, the combination can be performing in one of four

possible conditions at every time instant. Taking into account that the denominator of (8) is non-negative,

∆ζ1(n) + ∆ζ2(n) = E{[ea,1(n)− ea,2(n)]2}, Table I summarizes the main properties of these four possible

cases (the time index is omitted in the first column for the sake of compactness).

TABLE I

POSSIBLE OPERATION REGIMES FOR THE AFFINE AND CONVEX COMBINATION OF TWO ADAPTIVE FILTERS.

ζ12(n) ∆ζ1(n) ∆ζ2(n) λo
aff(n) λo

cvx(n)

Case 1: ζ1 ≤ ζ12 (<
√
ζ1ζ2 < ζ2) ≤ 0 > 0 ≥ 1 = 1

Case 2: ζ2 ≤ ζ12 (<
√
ζ1ζ2 < ζ1) > 0 ≤ 0 ≤ 0 = 0

Case 3: (−
√
ζ1ζ2 <) ζ12 < min{ζ1, ζ2} > 0 > 0 ∈ (0, 1) ∈ (0, 1)

Case 4: ζ1 = ζ2 = ζ12 = 0 = 0 — —

From the information included in the table we can deduce the following properties:

• In cases 1 and 2, the convexity constraints are active. As a consequence, the optimum mixing parameter

of the convex combination is either 1 or 0, respectively, making this scheme behave just like the best

filter component. However, an affine combination can outperform both components in this case. To see

this, consider (10a) and (10b) for cases 1 and 2, respectively, and note that a positive value is subtracted

from the smallest filter EMSE (ζ1 and ζ2) to obtain the EMSE of the combination.
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• In case 3, affine and convex combinations share the same optimum mixing parameter. As in the previous

case, using (10a) and (10b) we can easily conclude that, in this case, combinations outperform both

component filters simultaneously. This performance can be explained from the small cross-EMSE in

this case: since the correlation between the a priori errors of both component filters is small, their

weighted combination provides an estimation error of reduced variance.

• For completeness, we have included a fourth case where ζ1 = ζ2 = ζ12. Simplifying all terms that

involve λ(n) in (6), we can conclude that in this case we have ζo(n) = ζ1(n) = ζ2(n), irrespectively

of the value of the mixing parameter. It is important to remark that for case 4 to hold, condition

ζ1 = ζ2 = ζ12 should be satisfied exactly, so that this case will be rarely encountered in practice.

We should emphasize that the results in this section refer to the theoretical performance of optimally adjusted

affine and convex combinations. Practical algorithms to adjust the mixing parameter will be presented in

a later section, and will imply the addition of a certain amount of noise that, in many cases, justify the

adoption of convexity constraints.

A. Cross-EMSE of LMS and RLS filters

The cross-EMSE plays an important role in clarifying the performance regime of a combination of two

adaptive filters. Several works have extended the available theoretical models for the EMSE of adaptive

filters to the derivation of expressions for the cross-EMSE [6], [12], [15], [16]. In this section, we review

some of the main results for LMS and RLS filters.

Assume that the optimal solution satisfies the following random-walk model1

wo(n) = wo(n− 1) + q(n), (11)

where q(n) is the change of the solution at every step that is assumed to have zero-mean and covariance

Q = E{q(n)q>(n)}. It is known [6] that in this case there is a tradeoff between filter performance and

tracking ability. The following table shows an approximation of the steady-state EMSE of LMS and RLS

adaptive filters derived using the energy conservation approach described in [6]. From these expressions, it is

straightforward to obtain the optimum step size for the LMS adaptation rule (µo) and the optimal forgetting

factor for the RLS adaptive filter with exponentially decaying memory (1− βo). These expressions are also

indicated in the table, together with the associated optimum EMSE for each filter family, ζo(∞).

1An inconvenience of this model is that it implies divergence of the optimum solution, i.e., limn→∞ E{‖wo(n)‖2} = ∞.

Nevertheless, this model has been extensively used in the adaptive filtering literature, as it is simpler and leads to similar results

than other more realistic tracking models —see [6] for further explanations on this issue.
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TABLE II

TRACKING STEADY-STATE PERFORMANCE OF LMS AND RLS ADAPTIVE FILTERS. THE TABLE SHOWS STEADY-STATE EMSE

AS A FUNCTION OF THE LMS STEP SIZE (µ) AND RLS FORGETTING FACTOR (1− β), THE OPTIMAL VALUES OF THESE

PARAMETERS, AND THE MINIMUM EMSE THAT CAN BE ACHIEVED BY BOTH ADAPTIVE FILTERS [ζO(∞)].

Algorithm ζ(∞) µo or βo ζo(∞)

LMS 1
2

[
µσ2

vTr{R}+ µ−1Tr{Q}
] √

Tr{Q}
σ2
vTr{R}

√
σ2
vTr{R}Tr{Q}

RLS 1
2

[
βσ2

vM + β−1Tr{QR}
] √

Tr{QR}
σ2
vM

√
σ2
vMTr{QR}

σ2
v = E{v2(n)}; Q = E{q(n)q>(n)}; R = E{u(n)u>(n)}; M is the filter length

In order to study the behavior of combinations of this kind of filters, references [14], [15] derived

expressions for the steady-state cross-EMSE, for cases in which the two component filters belong to the

same family (LMS or RLS) and also for the combination of one LMS and one RLS filter. These results are

summarized in Table III, and constitute the basis for the study that we carry out in the rest of this section.

TABLE III

STEADY-STATE CROSS-EMSE FOR THE LMS AND RLS ADAPTIVE FILTER FAMILIES.

Combination type steady-state cross-EMSE, ζ12(∞)

µ1-LMS and µ2-LMS
µ1µ2σ

2
vTr{R}+ Tr{Q}
µ1 + µ2

β1-RLS and β2-RLS
β1β2σ

2
vM + Tr{QR}
β1 + β2

µ-LMS and β-RLS µβσ2
vTr{(µR + βI)−1R}+ Tr{Q(µR + βI)−1R}

B. Combination of two LMS filters with different step sizes

A first example to illustrate the possibilities of combination schemes consists in putting together two

filters with different adaptation speeds to obtain a new filter with improved tracking capabilities. Here, we

illustrate the idea with a combination of two LMS filters with different step sizes, as was done in [12], but

the idea can be straightforwardly generalized to other adaptive filter families (see, among others, [15], [19],

[21], [23], [25], [30]).

Using the tracking model given by (11), in this section we analyze the theoretical steady-state EMSE

for varying Tr{Q}. In the studied scenario, the product σ2vTr{R} remains fixed and is equal to 10−2. To
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Fig. 2. Steady-state NSD of a combination of two adaptive filters with different step sizes as a function of the speed of changes

of the optimum solution. The figures illustrate the NSD incurred by the individual LMS filters, and by their optimum combination.

LMS step sizes are: (left) µ1 = 0.1 and µ2 = 0.005; (right) µ1 = 0.01 and µ2 = 0.010001.

facilitate the comparison among filters, we will recur to the Normalized Squared Deviation (NSD), which

we define as the EMSE excess with respect to the optimum LMS filter for a particular Tr{Q}, i.e.,

NSDi(∞) =
ζi(∞)

ζo(∞)
, i = 1, 2, and NSD(∞) =

ζ(∞)

ζo(∞)
,

for the component LMS filters and their combination, respectively.

Figure 2 illustrates the theoretical NSD of individual LMS filters and combined schemes in two cases.

The left panel considers LMS components with step sizes µ1 = 0.1 and µ2 = µ1/20. We can see that both

individual filters become optimal (NSD = 0 dB) for a certain value of Tr{Q}, and very rapidly increase

their NSD level both for larger and smaller Tr{Q}, i.e., for solutions that change relatively faster or slower

than the speed of changes for which the filter is optimum. We can see that the NSD of each individual

filter remains smaller than 2 dB for a range of about two orders of magnitude of Tr{Q}. In contrast to this,

we can check that the NSD of the combination of the two filters remains smaller than 2 dB when Tr{Q}
changes by more than four orders of magnitude. It should be mentioned that, in this case, both the affine

and convex combinations provide almost identical behavior.

A second possibility is illustrated in the right panel of Figure 2, for which the step sizes of the two LMS

filters are set at almost identical values (µ1 = 0.01 and µ2 = 0.010001). In this case, both LMS components

obtain approximately the same NSD for all values of Tr{Q}. According to the theoretical results, it can be

shown that in this example cases 1 and 2 enumerated in Table I are observed when Tr(Q) is, respectively,

smaller or larger than approximately 10−6. The limitation in the range of λ(n) makes the convex combination

Tuesday 15th September, 2015 DRAFT



10 SUBMITTED TO THE IEEE SIGNAL PROCESSING MAGAZINE 2014

perform exactly as any of the components, whereas the affine combination achieves an almost systematic

gain of 3 dB with respect to the single filters [18], with the NSD remaining at values of less than 2 dB

when Tr{Q} is changed by three orders of magnitude. As a result, in this case, the combination approach

offers a possibility to improve the tracking capability of LMS filters. The examples in this section illustrate

the following points:

• By employing a combination structure, we can improve the tracking ability of the adaptive implemen-

tation. This is important because the actual speed of change of the solution is rarely known a priori,

and can even change over time. Later in Subsection IV-C we compare the combination framework with

variable step-size (VSS) schemes, and show that combinations are more robust than VSS.

• When combining two LMS filters with different step sizes, the resulting combination cannot outperform

the optimum filter for a given Tr{Q} [15]. Therefore, in this situation, if enough statistical information

is a priori available, it would be preferable to use a single LMS filter with optimum step size. A

different situation will be described in the next subsection.

C. Improving the tracking performance of LMS and RLS filters

When studying a combination of LMS and RLS filters following the same approach, an interesting result

is obtained. Assume the tracking model (11) and consider the optimum LMS and RLS filters with adaptation

parameters given by the expressions in Table II. As explained in [6], LMS will outperform RLS if Q is

proportional to the autocorrelation matrix of the input signal, R, and the opposite will occur when Q ∝ R−1.

To illustrate this behavior, let us consider a synthetic example where Q is a mixture of R and R−1:

Q = 10−5
[
α

R

Tr {R} + (1− α)
R−1

Tr {R−1}

]
, (12)

with α ∈ (0, 1).

Figure 3 plots the steady-state optimum EMSE that can be achieved by both types of filters with optimum

settings (µo-LMS and βo-RLS), when Q smoothly changes between R−1 (for α = 0) and R (for α = 1).

Other settings for this scenario are: optimal solution and filters length M = 7, noise variance σ2v = 10−2,

and R is a Toeplitz matrix whose first row is given by 1
7 [1, 0.8, 0.82, · · · , 0.86]. According to (12), the value

of the trace of Q remains constant when changing the value of α, meaning that the EMSE of the optimum

LMS is approximately equal to −35 dB for any value of α. If a non-optimum step size is selected, the LMS

filter will incur a larger EMSE. Thus, the region of feasible EMSE values for this family of filters is given

by the area above the −35 dB level in Fig. 3. Similarly, the region above the curve for the optimum RLS

performance represents all feasible EMSE values for the family of RLS filters. We can see that, depending

on the value of α, the optimal EMSE for RLS filters can be larger or smaller than the optimal EMSE for

LMS filters. Finally, the dark green area in Fig. 3 is a feasible region for both LMS and RLS filters.
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Fig. 3. Tracking performance of a combination of LMS and RLS filters when Q smoothly changes between R−1 (for α = 0) and

R (for α = 1). The performance of optimally adjusted filters is depicted with curves. The blue and light green regions represent

EMSEs that can be obtained with LMS and RLS filters, respectively, whereas the dark green area comprises feasible EMSE values

for both LMS and RLS filters. Finally, the red region contains EMSE values that can be obtained with combinations of LMS and

RLS (but not with these filters individually).

The performance that can be achieved using a combination of one LMS and one RLS filters is also

illustrated. The red curve represents the steady-state tracking EMSE of the combination when using µo and

βo for the LMS and RLS filters in the combination. As expected, the optimal EMSE for the combination is

never larger than the smallest of the filter component EMSEs. More importantly, in this case we can check

the existence of an area of EMSE values which is exclusive to the combination scheme. In other words, the

red area in Figure 3 is a feasible region for the operation of the combined scheme, but not for single LMS

or RLS filters. It can be shown that, in this case, the optimum mixing parameter of the combination lies in

interval (0, 1), so this conclusion is valid for convex combination schemes [36]. This is a useful conclusion

that can be used to improve the tracking performance beyond the limits of individual filters.

IV. ESTIMATING THE COMBINATION PARAMETER

Since the optimum linear combiner (8) is unrealizable, many practical algorithms have been proposed in

the literature to adjust the mixing parameter in convex [12], [37], [38] and affine combinations [16]–[18],

[39], [40]. Rewriting (2) as

y(n) = y2(n) + λ(n)[y1(n)− y2(n)], (13)

we can reinterpret the adaptation of λ(n) as a “second layer” adaptive filter of length one, so that in principle

any adaptive rule can be used for adjusting the mixing parameter. However, this filtering problem has some
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particularities, namely, the strong and time-varying correlation between y1(n) and y2(n). This implies that

the power of the difference signal, [y1(n) − y2(n)], is also time-varying depending, e.g., on the signal-to-

noise conditions and on whether the individual filters are operating in convergence phase or steady state,

etc.

Using a stochastic gradient search to minimize the quadratic error e2(n) of the overall filter, defined in

(4), reference [16] proposed the following adaptation for the mixing parameter in an affine combination

(i.e., without imposing restrictions on λ(n)),

λ(n+ 1) = λ(n)− µλ
2

∂e2(n)

∂λ(n)
= λ(n) + µλe(n)[y1(n)− y2(n)]. (14)

We will refer to this case as aff-LMS adaptation, with µλ being a step-size parameter. As discussed in [16], a

large step size should be used in this rule to ensure an adequate behavior of the affine combination. However,

this can cause instability during the initial convergence of the algorithm, which was circumvented in [16]

by constraining λ(n) to be less than or equal to one. Even with this constraint, the combination scheme

may stay away from the optimum EMSE (see, e.g., [18]). This is a direct consequence of the time-varying

power of [y1(n)− y2(n)], which makes selection of µλ a difficult task.

In order to obtain a more robust scheme, it is possible to recur to normalized adaptation schemes. Using a

rough (low-pass filtered) estimation of the power of [y1(n)−y2(n)], a power normalized version of aff-LMS

was proposed in [18], and is summarized in Table IV. This aff-PN-LMS algorithm does not impose any

constraints on λ(n), is less sensitive to the filtering scenario, and converges in the mean-square sense if the

step size is selected in the interval 0 < µλ < 2.

Rather than directly adjust λ(n) as in the affine case, convex combination schemes recur to activation

functions to keep the mixing parameter in the range of interest. For example, reference [12] proposed an

adaptation scheme for an auxiliary parameter a(n) that is related to λ(n) via the sigmoid function

λ(n) = sgm[a(n)] =
1

1 + e−a(n)
. (15)

Recurring to this activation function (or similar ones), a(n) can be adapted without constraints, and λ(n)

will be automatically kept inside the interval (0, 1) at all times. Using a gradient descent method to minimize

the quadratic error of the overall filter, e2(n), two algorithms were proposed to update a(n): the cvx-LMS

algorithm [12] and its power normalized version, cvx-PN-LMS [37], whose update equations are given by

a(n+ 1) = a(n) + µaλ(n)[1− λ(n)]e(n)[y1(n)− y2(n)], (cvx-LMS) (16)

a(n+ 1) = a(n) +
µa
p(n)

λ(n)[1− λ(n)]e(n)[y1(n)− y2(n)]. (cvx-PN-LMS) (17)
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TABLE IV

POWER NORMALIZED ADAPTATION OF λ(n) IN AFFINE COMBINATIONS AND OF AUXILIARY PARAMETER a(n) IN CONVEX

COMBINATIONS. UNNORMALIZED RULES aff-LMS AND cvx-LMS ARE OBTAINED SETTING p(n) = 1.

Algorithm Update Equations

aff-PN-LMS [18] λ(n+ 1) = λ(n) +
µλ

ε+ p(n)
e(n)[y1(n)− y2(n)]

p(n) = η p(n− 1) + (1− η)[y1(n)− y2(n)]2

0� η < 1; ε > 0 is a small constant

cvx-PN-LMS [37] a(n+ 1) = a(n) +
µa
p(n)

λ(n)[1− λ(n)]e(n)[y1(n)− y2(n)]

p(n) = η p(n− 1) + (1− η)[y1(n)− y2(n)]2

0� η < 1; Constraint: −a+ ≤ a(n+ 1) ≤ a+

Here, p(n) is a low-pass filtered estimation of the power of [y1(n) − y2(n)]. These algorithms are also

shown in Table IV for further reference. Compared to the cvx-LMS scheme, cvx-PN-LMS is more robust to

signal-to-noise ratio (SNR)2 changes, and simplifies the selection of step size µa [37].

The factor λ(n)[1 − λ(n)], that appears in (17), reduces the gradient noise when λ(n) gets too close to

the values of zero or one. In this situation, adaptation would virtually stop if a(n) were allowed to grow

unchecked. To avoid this problem, the auxiliary parameter a(n) is restricted by saturation to a symmetric

interval [−a+, a+], which ensures a minimum level of adaptation3 [12], [39]. This truncation procedure

constrains λ(n) to the interval sgm[−a+] ≤ λ(n) ≤ sgm[a+]. In order to allow λ(n) to take a value equal

to zero or one, a scaled and shifted version of the sigmoid was proposed in [38],

λ(n) = ϕ[a(n)] =
sgm[a(n)]− sgm[−a+]

sgm[a+]− sgm[−a+]
, (18)

which ensures that λ(n) attains values 1 and 0 for a(n) = a+ and a(n) = −a+, respectively. Using (18),

the cvx-PN-LMS rule becomes

a(n+ 1) = a(n) +
µa
p(n)

e(n)[y1(n)− y2(n)]sgm[a(n)] {1− sgm[a(n)]}
∣∣∣a+

−a+
. (19)

As we can see, a(n) is truncated at every iteration to keep it inside the interval [−a+, a+].

When deciding between affine or convex combinations with the above gradient-based rules, one should

be aware of the following facts:

• Optimally adjusted affine combinations attain smaller EMSE than convex ones in some situations (cases

1 and 2 of Table I).

2According to the linear regression model (1), the SNR is defined as SNR = [w>o (n)Rwo(n)]/σ2
v .

3A common choice in the literature is a+ = 4.
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• Due to the constraints on the value of λ(n), cvx-LMS and cvx-PN-LMS do not diverge, and large values

of the step size µa can be used.

• Gradient adaptation of the combination parameter implies that combinations introduce some additional

gradient noise, which should be minimized with an adequate selection of µa or µλ. In this sense, the

factor λ(n)[1 − λ(n)] that appears in the adaptation of a(n) with cvx-PN-LMS reduces the gradient

noise when the mixing parameter becomes close to 0 or 1.

In our experience, the last two issues have an important impact on the performance of the combination, to

the extent that convex combinations may actually be preferred over affine ones, unless in situations where

significant EMSE gains can be anticipated for the affine combination from the theoretical analysis. The next

subsection will compare the performance of these rules through simulations.

Before concluding the section, we should point out that other rules can be found in the literature for the

adaptation of the mixing parameter, such as the least squares rule from [39], the sign algorithm proposed in

[41], or a method relying on the ratio between the estimated errors of the filter components [16]. Nevertheless,

in the following we will restrict our discussion to the methods that have been presented in this section, which

are the most frequently used in the literature.

A. Convergence properties of combination filters

To examine the convergence properties of aff-PN-LMS and cvx-PN-LMS, we consider the combination

of two normalized LMS (NLMS) filters with step sizes µ1 = 0.5 and µ2 = 0.01. The optimum solution

is a stationary vector of length 7, the covariance matrix of the input signal is R = 1
7I, and the variance

of the observation noise is adjusted to get an SNR of 20 dB. Different step sizes have been explored

for the combination: µa = [0.25, 0.5, 1] for cvx-PN-LMS, while µλ = µa/800 is used for aff-PN-LMS to

get comparable steady-state error. Regarding these step-size values, we can see that the range of practical

values for µa is within the usual range of steps sizes used with normalized schemes, whereas for the affine

combination much smaller values are required for comparable performance. This fact simplifies the selection

of the step size in the convex case.

Figure 4 illustrates the performance of affine and convex combinations averaged over 1000 experiments.

Subfigures (b)-(d) compare the convergence of both schemes with respect to the optimum selection of the

mixing parameter given by (8). In all cases, the combination schemes converge first to the EMSE level of

the fast filter (−30 dB), and after a while follow the slow component to get a final EMSE of around −50

dB. It is interesting to see that cvx-PN-LMS shows near optimum selection of the mixing parameter for all

three values of µa, while the affine combination may incur a significant delay, especially for the smallest

µλ. Subfigure 4-(a) plots the excess steady-state error of both schemes with respect to ζ2(∞) as a function
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Fig. 4. Performance of aff-PN-LMS and cvx-PN-LMS when combining two NLMS adaptive filters with step sizes µ1 = 0.5 and

µ2 = 0.01. (a) Steady-state excess error with respect to the slow filter component for three different values of the step sizes.

Subfigures (b), (c), and (d) compare the convergence of the affine and convex rules (for three values of µa and µλ = µa/800) with

the combination scheme using the optimum mixing parameter. (e) Evolution of factor λ(n)[1− λ(n)] for cvx-PN-LMS.

of the step size, and shows that this faster convergence of cvx-PN-LMS with respect to aff-PN-LMS is not

in exchange of larger residual error.

The fact that cvx-PN-LMS has the ability to switch rapidly between the fast and slow filter components

while at the same time minimizing the residual error in steady state is due to the incorporation of the activation

function, whose derivative propagates to the update rule. In other words, we can view the effective step size

of cvx-PN-LMS as being µaλ(n)[1 − λ(n)] (see Table IV), and the evolution of the multiplicative factor,

represented in Figure 4-(e), shows that this effective step size becomes large when the combination needs to

switch between filter components, while becoming small in steady state, thus minimizing the residual error

after convergence is complete.
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B. Benefits of power normalized updating rules

In order to illustrate the benefits of power normalized updating rules, we compare the behavior of a convex

combination of two NLMS filters with step sizes µ1 = 0.5 and µ2 = 0.01, employing both the cvx-LMS rule

and its power normalized version (cvx-PN-LMS) for the combination layer. The optimum solution is a length-

30 nonstationary vector, which varies according to the random-walk model given by (11). The covariance

matrices of the change of the optimum solution and of the input signal are given respectively by Q = σ2qI

and R = 1
30I. The variance of the observation noise is adjusted to get different SNR levels. The step size

for the cxv-LMS rule has been set to µa = 1000 and for its power normalized version (cvx-PN-LMS), we

have set µa = 1.

Figure 5 shows the steady-state NSD of the individual filters and of their convex combinations obtained

with the cxv-LMS rule and with the cvx-PN-LMS scheme, as a function of the speed of changes of the

optimum solution [Tr(Q) = 30σ2q ]. The left panel considers an SNR of 5 dB and the right panel, an

SNR of 30 dB. We can observe that the combination scheme with the cxv-LMS rule results in a suboptimal

performance when the optimum solution changes very fast [for large Tr(Q)]. This is due to the fact that both

component filters are incurring a very significant error, resulting in a non-negligible gradient noise when

updating the auxiliary parameter a(n) with cxv-LMS [37]. The performance of cxv-LMS also degrades,

whatever the value of Tr(Q), as the SNR decreases. On the other hand, when the cvx-PN-LMS rule is

employed, the combination shows a very stable operation, and behaves as well as the best component filter

not only for any SNR, but also for all values of Tr(Q). A similar behavior is also observed when we compare

the aff-LMS rule to its power normalized version (aff-PN-LMS) to update λ(n) in affine combinations [18].

C. Combination schemes versus VSS LMS

We have illustrated so far how combination schemes can be exploited to provide filters with improved

performance, relying on adaptive rules to learn the most adequate value for the mixing parameter. A

reasonable question is whether the same improvement could be achieved by an individual but more complex

filter structure. Although the answer to this question is generally positive, these more complex solutions

normally require further statistical knowledge about the filtering scenario that is normally unavailable, while

combination approaches offer a more versatile and robust approach. To illustrate this point, we will examine

again the identification of a time-varying solution.

Adaptive filters usually have two conflicting goals: on one hand, to track variations of the parameter

vector they are trying to estimate and, on the other hand, to suppress measurement noise and errors due to

undermodeling. The first goal requires a fast filter, one that quickly corrects any mismatch between the input

and the estimates, while the second goal would benefit from a slower filter that averages out measurement
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Fig. 5. Steady-state NSD of a convex combination of two NLMS filters with different step sizes as a function of the speed of changes

of the optimum solution. The figures illustrate the NSD incurred by the individual NLMS filters and by their convex combinations.

NLMS step sizes are µ1 = 0.5 and µ2 = 0.01; combination rules: cvx-LMS (µa = 1000) and cvx-PN-LMS (µa = 1, η = 0.9);

signal-to-noise ratios: (left) SNR = 5 dB and (right) SNR = 30 dB. All results were averaged over 50000 iterations once the

algorithms reached steady state and over 50 independent runs.

noise. We can emphasize one goal over the other by the choice of a design variable such as the step size in

LMS or the forgetting factor in RLS. However, in a nonstationary environment, the optimum choice of the

step size or the forgetting factor will continuously change, which has motivated the proposal of different

methods to update the step size (or forgetting factor) —see e.g., [42]–[46]. Most existing variable step size

(VSS) algorithms implement procedures that rely on the available input and error signals. However, in the

absence of additional information (e.g., background noise level, whether the filter is still converging or has

reached steady state), these algorithms can fail to identify the most convenient step size, especially if the

filtering conditions change over time.

As an alternative to the VSS algorithms, combinations of adaptive filters with different step sizes (or

forgetting factors) can be particularly useful. One advantage of this approach is that it performs reasonably

well for large variations in input signal-to-noise ratio and speed of change of the true parameter vector.

Figure 6 compares the performance, in an identification problem, of the robust variable step-size methods

proposed in [45] and [46] against the performance of convex combination of two LMS adaptive filters

with different step sizes. The fast filter uses µ1 = 0.01 and the slow filter, µ2 = 0.001. The figure shows

the mean-square deviation (MSD) of a 10-tap filter in a tracking situation like the one described by (11),

with Q = σ2qI, for time-varying σ2q as indicated in the figure. In order to provide a fair comparison, the

parameters for the VSS methods were optimized for step sizes in the range [µ2, µ1], and the figure shows

the performance of the three methods for five different values of the optimum step size µo for a single LMS
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Fig. 6. Mean-square deviation (MSD) obtained by VSS algorithms and by the convex combination of two LMS filters with

µ1 = 0.01 and µ2 = 0.001. The value of σ2
q changes with time, and the corresponding optimum LMS step sizes (µo) are indicated

in the figure.

filter: from less than µ2 to more than µ1. It is seen that the convex combination scheme is able to deliver the

best possible performance in all conditions. In other words, it shows a more robust performance given the

lack of knowledge about the true value of σ2q , and attains an overall performance that could not be achieved

by a standard LMS filter or by the VSS schemes.

V. COMMUNICATION BETWEEN COMPONENT FILTERS

One simple way to improve the performance of combination schemes is to allow some communication

between the component filters. Since the component filters are usually designed to perform better in different

environmental conditions, information from the best filter in a given set of conditions can be used to boost

the performance of the other filters. In some situations, the gain for the overall output can be significant.

We describe here two approaches for inter-filter communication: the weight transfer scheme of [47], [48],

and the weight feedback of [49]. Both are applicable when the component filters have the same length. The

difference between these methods is that the first allows only communication from one of the filters to the

other, whereas the second approach feeds back the overall combined weights to the component filters, as

depicted in Figure 7.

Consider for example the combination of two component filters, one designed for a fast-changing environ-

ment (“fast” filter), and the other for a slow-changing environment (“slow” filter). In this situation, during

the initial convergence, or after an abrupt change in the optimum weight vector wo(n), the slow filter may

lag behind the fast filter (see Figure 8). After the fast filter reaches the steady state, the combination would
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Fig. 7. Communication between sub-filters. Left panel: weight transfer; right panel: weight feedback.

TABLE V

INTER-FILTER COMMUNICATION SCHEMES (EXEMPLIFIED FOR COMBINATIONS OF TWO FILTERS).

Gradual transfer [47] Simple copy [48] Feedback [49]

Filter communication w2(n)← `w2(n) + (1− `)w1(n) w2(n)← w1(n) w1(n),w2(n)← w(n)

Condition λ(n) ≥ λ0 λ(n) ≥ λ0 and n = kN0 n = kN0

Parameters 0 < ` < 1; 0� λ0 < 1 N0 ≥ 2; 0� λ0 < 1 N0 ≥ 2

need to wait until the slow filter catches up. This can be avoided by either leaking [47] or copying [48] the

fast filter coefficients to the slow filter at the appropriate times.

The good news is that the mixing parameter is already available to help decide when to transfer the

coefficients —we only need to check if λ(n) is close to one (so that the overall output is essentially the fast

filter). Therefore, the idea is to choose a threshold λ0, and modify the slow filter update whenever λ(n) ≥ λ0,

as shown in Table V. The two methods are similar: in the gradual transfer scheme of [47], whenever λ(n)

is larger than the threshold, we allow the fast filter coefficients to gradually “leak” into the slow filter. The

other method simply copies the fast filter coefficients to the slow filter, and thus has a smaller computational

cost; however, the condition for transfer has to be modified. If we allowed the fast filter coefficients to be

copied to the slow filter whenever λ(n) ≥ λ0, the combination would be stuck forever at the fast filter (the

slow filter adaptation would be irrelevant). For this reason the transfer is only allowed at periodic intervals

of length N0 ≥ 2.

The weight feedback scheme, on the other hand, copies the combined weight vector w(n) = λ(n)w1(n)+

(1−λ)w2(n) periodically to w1(n) and w2(n), as shown in Figure 7 and Table V. This method is simpler

to set up, since only one parameter needs to be tuned, but requires the explicit computation of w(n) at
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convex combination without weight transfer, and the second method of Table V, using N0 = 2 and λ0 = 0.982. The curves are

averages of L = 1500 simulations. The components are two NLMS algorithms, one using µ1 = 0.1, the other using µ2 = 0.01.

intervals of N0 samples. Since N0 can be chosen reasonably large, the additional cost per sample is modest.

Even though these methods introduce additional parameters that need to be fixed, their selection is not

very problematic and the transfer methods show a behavior rather robust with respect to them (a detailed

discussion is not included here, but the interested readers are referred to [47]–[49]).

Figure 8 provides an example of the operation of the simple-copy method for length M = 7 filters

(the other methods have similar performance). The value of wo(n) changes abruptly at the middle of the

simulation (n = 5× 104).

VI. COMBINATION OF SEVERAL ADAPTIVE FILTERS

Up to now, we have considered combinations of just two adaptive filters. However, combining K adaptive

filters (with K > 2) makes it possible to further increase the robustness and versatility of combination

schemes. The combination of an arbitrary number of filters can be mainly used to:

• Simplify the selection of a parameter. For instance, paying attention to the tracking scenario depicted

in the left plot of Fig. 2, the robustness of the scheme would be increased for Tr{Q} > 10−3 if a third

filter with step size equal to one is incorporated to the combination [50].

• Alleviate several compromises simultaneously. For instance, regarding the selection of the step size, µ,

and the length of an adaptive filter, M , we can combine four adaptive filters with settings {µ1,M1},
{µ2,M1}, {µ1,M2} and {µ2,M2}. Another example was proposed in [25] and it is included in Section

XI, where a combination of several filters (linear and nonlinear) is designed to alleviate simultaneously

the compromise related with the step size selection, and with the presence or absence of nonlinearities

in the filtering scenario.
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Fig. 9. Hierarchical and one-layer combination schemes for an arbitrary number of filters K. (a) Hierarchical scheme: In the first

layer, we carry out two combinations of two adaptive filters with complementary settings, and their outputs are combined in the

upper layer. (b) Combination of K adaptive filters following the one-layer approach. The affine schemes of [50] and [19] adapt

K − 1 mixing parameters, whereas the convex combination of [19], [51] requires the adaptation of K parameters.

In the literature, two different approaches for the combination of several adaptive filters have been proposed,

both for affine and convex approaches. These schemes differ in the topology employed to perform the

combination as described below.

The hierarchical scheme

This approach combines K adaptive filters employing different layers, where only combinations of two

elements are considered at a time. For instance, the output of a hierarchical combination of four filters

depicted in Fig. 9(a) reads:

y(n) = λ21(n){λ11(n)y1(n) + [1− λ11(n)]y2(n)}+ [1− λ21(n)]{λ12(n)y3(n) + [1− λ12(n)]y4(n)}, (20)

where λij(n) refers to the mixing parameter of the j-th combination in the i-th layer. All mixing parameters

are adapted in order to minimize the power of the local combined error. For their update, we can follow the

same adaptive rules (convex or affine) reviewed previously for the case of a combination of two filters.

The one-layer scheme

We can combine an arbitrary number of filters employing an alternative approach based on one-layer

combination as depicted in Fig. 9(b). Focusing on affine combinations of M adaptive filters with outputs
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yk(n), with k = 1, ...,K, references [19] and [50] proposed two one-layer combination schemes whose

output is given by

y(n) =

K−1∑
k=1

λk(n)yk(n) +

[
1−

K−1∑
k=1

λk(n)

]
yK(n). (21)

Different adaptive rules were proposed in the literature to update λk(n), with k = 1, ...,K − 1, following,

for instance, LMS or RLS approaches [19], or estimating the K−1 affine mixing parameters as the solution

of a least-squares problem [50]. The incorporation of convex combination constraints forces the inclusion of

an additional mechanism (similar to the sigmoidal activation) to make all mixing parameters remain positive

and add up to one. This scheme was proposed by [51] and [19] as an extension to the standard convex

combination of two adaptive filters, and obtains the combined output as

y(n) =

K∑
k=1

λk(n)yk(n). (22)

As in the case of combining two filters, instead of adapting directly the K mixing parameters, K auxiliary

parameters ak(n) are updated following a gradient descent algorithm. The relation between λk(n) and ak(n)

is based on the softmax activation function

λk(n) =
exp[ak(n)]∑K
j=1 exp[aj(n)]

, for k = 1, ...,K. (23)

This activation function is a natural extension of the sigmoid used in the binary case to map several real

parameters to a probability distribution [52], as required by a convex combination, where all parameters

must remain positive and sum up to one.

Although both multifilter structures can improve the performance beyond the combination of just two

filters, one useful characteristic of hierarchical schemes is its ability to extract more information about the

filtering scenario from the evolution of the mixing parameters, since each combination usually combines

two adaptive filters that only differ in the value of a setting (step size, length, etc.), and the combination

parameter selects the best of both competing models.

VII. REDUCED COST COMBINATIONS

Combination schemes require running two or more filters in parallel, which may be a concern in applica-

tions in which computational cost is at a premium. In many situations, however, the additional computational

cost of adding one or more filters can be made just slightly higher than the cost of running a single filter.

In this section we describe a few methods to reduce the cost of combination schemes.
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Use a low-cost filter as companion to a high-cost one

Although straightforward, several useful results fall in this class. For example, consider the previously

mentioned case of a combination of an RLS and an LMS filter. This structure enhances the tracking

performance of a single RLS filter, and only requires a modest increase in computational complexity. A

lattice implementation of RLS has a computational cost of about 16M multiplications, 8M additions, and

8M divisions [6]. Compared with the approximately 2M additions and 2M multiplications required by

LMS, the combination scheme will increase the cost by only about 10% over that of a single RLS. For

other stable implementations of RLS, such as QR methods, the computational cost is even higher, so the

burden of adding an LMS component would be almost negligible4.

Other situations in which it is useful to combine a low-cost and a higher-cost filter are: the combination of

a simple linear filter with a Volterra nonlinear filter, as described in Section XI; and the use of a short filter

combined with a longer filter, as described for example in [53]. The short filter is responsible for tracking

fast variations in the weight vector, whereas the long filter is responsible for guaranteeing a small bias in

times of slower variation of the optimum weight vector.

Parallelization

Since the component filters are running independently (apart from occasional information exchanges as in

Section V), combination schemes are easy to implement in parallel form. In an FPGA implementation, for

example, this means that implementing a combination of filters will not require a faster clock rate, compared

to running a single filter. Depending on the hardware in which the filters are to be implemented, this is an

important advantage.

Take advantage of redundancies in the component filters

This approach can provide substantial gains in some situations, but depends on the kind of filters that are

being combined. For example, transform-domain or subband filters can share the transform or filter bank

blocks that process the input signal u(n).

A second example is based on the following observation [54]: if filters using the same input regressor

u(n) are combined, the weight estimates wi(n) will be, most of the time, similar. Therefore, one could

update only one of the filters (say, w1(n)), and the difference between this filter and the others. The important

observation is that, if the entries of w1(n) and w2(n) are real values ranging from (say) −1 to +1, the range

4Note that, for their operation, combination schemes require just the outputs of component filters (see Section IV), so lattice or

QR implementations of RLS can readily be incorporated into combination schemes without modifications.
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TABLE VI

REDUCED-COST COMBINATION THROUGH DIFFERENCE FILTER (USING TWO LMS FILTERS AS EXAMPLE)

Algorithm Step Equation Wordlength

1 — First filter error: e1(n) = d(n)− u>(n)w1(n) Full

2 — Update first filter: w1(n+ 1) = w1(n) + µ1e1(n)u(n) Full

3 — Output of difference filter: δy2(n) = u>(n)δw2(n) Reduced

4 — Second filter error: e2(n) = e1(n) + δy2(n) Full

5 — Output error: λ(n)e1(n) + (1− λ(n))e2(n) Full

6 — Update difference filter: eδ(n) = µ2e2(n)− µ1e1(n) Reduced

δw2(n+ 1) = δw2(n) + eδ(n)u(n)

of the entries of δw2(n) = w2(n)−w1(n) will most of the time be smaller, from −2−Bc to +2−Bc , for some

number of bits Bc > 0. If the filters are implemented in custom or semi-custom hardware, this observation

can be used to reduce the number of bits allocated to δw2(n), reducing the complexity of all multiplications

related to the second filter, both for computing the output and for updating the filter coefficients. In summary,

this idea amounts to making the filters share the most significant bits in all coefficients, and adapting them

with the step size of the fast filter. During convergence, when the difference between the filters is expected

to be more significant, disregarding the most significant bits of the difference filter has the effect of working

just as a weight transfer mechanism from the fast to the slow filter.

In order to take full advantage of the reduced wordlength used to store δw2(n), the output of the second

filter and the difference filter update should be computed as shown in Table VI. Algorithm’s steps 3 and 6

can be computed with a reduced wordlength. As can be seen, all the costly operations related to the second

filter are computed with a reduced wordlength. Using this technique, it is possible to use for the difference

filter a wordlength of about half that of the first filter, with little to no degradation in performance, compared

to using full wordlength for all variables.

VIII. SIGNAL MODALITY CHARACTERIZATION

As we have already discussed, one of the main advantages of the combination approach to adaptive filters

is its versatility. In the rest of this tutorial we illustrate the applicability of this strategy in different fields

where adaptive filters are generally used.

As a first application example, combination of adaptive filters can be employed to characterize signal

modality, for instance, whether a particular signal is generated through a linear or non-linear process. This

observation has been successfully applied to track changes in the modality of different kinds of signals,
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ARENAS-GARCÍA ET AL.: COMBINATIONS OF ADAPTIVE FILTERS 25

Time, n
λ(

n)
   

   
   

   
   

   
u(

n)

Linear 1 Nonlinear 1 Nonlinear 2Linear 2

Mixing 
Parameter, 

λ(n)

Unknown 
time 
series

Fig. 10. Signal modeling characterization using a combination of a linear and a non-linear filters. As can be seen, the mixing

parameter is an effective indicator of the linear/non-linear nature of the input signal generation process.

including EEG [55], complex representations of wind and maritime radar [56], or speech [22]. To illustrate

the idea, we consider the characterization of the linear/nonlinear nature of a signal along the lines of [22],

which uses a convex combination of a normalized LMS (NLMS) filter and a normalized nonlinear gradient

descent (NNGD) algorithm to predict future values of the input signal

û(n+ 1) = λ(n)ûNLMS(n+ 1) + [1− λ(n)]ûNNGD(n+ 1).

The mixing parameter of the combination, λ(n), is adapted to minimize the square error of the prediction. A

value λ(n) ≈ 1 means that an NLMS filter suffices to achieve a good prediction allowing us to conclude that

the input signal u(n) is intrinsically linear. In the other extreme, when λ(n) approaches 0, the predominance

of the NNGD prediction suggests a non-linear input signal. Figure 10 shows the time evolution of the mixing

parameter for a single realization of the algorithm, when we evaluate a signal that alternates between linear

autoregressive processes (of orders 1 and 4) and two benchmark nonlinear signals described in [22, Eqs. (9)–

(12)]. As it can be seen, information about the linear/nonlinear nature of the signal can be easily extracted

from the evolution of the mixing parameter λ(n).

IX. ADAPTIVE BLIND EQUALIZATION

Adaptive equalizers are widely used in digital communications to remove the intersymbol interference

introduced by dispersive channels. In order to avoid the transmission of pilot sequences and use the channel

bandwidth in an efficient manner, these equalizers can be initially adapted using a blind algorithm and

switched to a decision-directed (DD) mode after the blind equalization achieves a sufficiently low steady-

state mean-square error (MSE). The selection of an appropriate switching threshold is crucial, and this

selection depends on many factors such as the signal constellation, the communication channel, or the SNR.

An adaptive combination of blind and DD equalization modes can be used, where the combination layer

is itself adapted using a blind criterion. This combination scheme provides an automatic mechanism for
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Fig. 11. Peformance of blind equalization methods. Top panel: MSE time evolution averaged over 1000 runs. Bottom panel:

Distribution of switching times from blind to DD mode (-16 dB).

smoothly switching between the blind and DD modes. The blind algorithm mitigates intersymbol interference

during the initial convergence or when abrupt changes in the channel occur. Then, when the steady-state

MSE is sufficiently low, the overall equalizer automatically switches to the DD mode to get an even lower

error. The main advantage of this scheme is that it avoids the need to set a priori the transition MSE level

[57], and automatically changes to DD mode as soon as a sufficient equalization level is attained.

Figure 11 illustrates the performance of the combination scheme as well as of other well-known schemes

for blind equalization [58]–[61]. In all cases, the multimodulus algorithm (MMA) and the LMS algorithm

were used for the blind and DD equalization phases, respectively. The communication scenario considers the

transmission of a 256-QAM signal through a telephonic channel with an SNR of 40 dB, including an abrupt

change at n = 2.5× 105. The top panel of Fig. 11 shows the MSE evolution for all methods averaged over

1000 independent runs, whereas the bottom plot illustrates the distribution of the switching time between

blind and DD modes, considering that the switching to DD mode is complete when the MSE reaches −16

dB for a particular run. We can conclude that the combination scheme does a better job at detecting the
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right moment for commuting to DD mode. Furthermore, the smaller variance observed in the switching

iteration suggests that the combination method is more robust than other methods to the particularities of

the simulation scenario.

This example shows that the combination approach can be used beyond MSE adaptive schemes. Here, we

considered blind cost functions that exploit properties of high-order moments of the involved signals, both at

the individual filter and at the combination layer levels. Similar uses can be conceived in other applications

where high-order moments are frequently used, such as blind source separation.

X. SPARSE SYSTEM IDENTIFICATION

Sparse systems have gathered a lot of attention. These systems are characterized by long impulse responses

with only a few nonzero coefficients, and are frequently encountered in applications such as network and

acoustic echo cancellation [62], compressed sensing [63], High-Definition TV [64] and wireless communi-

cation and MIMO channel estimation [65], [66], among many others.

In the literature, several adaptive schemes have exploited such prior information to accelerate the con-

vergence towards the sparse optimum solution. For instance, proportionate adaptive filters assign to each

coefficient a different step size proportional to its amplitude [23], [67]. A recent approach [68] promotes

sparsity based on adaptive projections where the sparsity constraints are included considering `1 balls and

giving rise to a convex set whose shape is a hyperslab. An important family of sparse adaptive algorithms

[69]–[71] incorporates sparsity enforcing norms into the cost function minimized by the filter.

The Zero-Attracting LMS (ZA-LMS) filter [69] uses a stochastic gradient descent rule in order to minimize

a cost function that mixes the square power error and the `1-norm penalty of the weight vector. The update

equation for this adaptive scheme reads:

w(n+ 1) = w(n) + µe(n)u(n)− ρsgn[w(n)], (24)

where function sgn[·] extracts the sign of each element of the vector, and parameter ρ controls how the

sparsity is favored in the coefficient adaptation. In fact, ρ = 0 turns (24) into the standard LMS update,

removing any ability to promote sparsity. This scheme has shown improved performance with respect to the

standard LMS algorithm when the unknown system is highly sparse; however, standard LMS outperforms

ZA-LMS scheme when the system is dispersive. For this reason, there exists a tradeoff related to the degree

of sparsity of the system, which unfortunately is usually unknown a priori, or can even vary over time.

In this subsection, we cover two approaches specially designed to alleviate this compromise:

• Scheme A: An adaptive convex combination of the ZA-NLMS filter, i.e., a sparsity-norm regularized

version of the NLMS scheme and a standard NLMS algorithm [72]. This approach constitutes the
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Fig. 12. Block diagram of Scheme B. Each block of the adaptive filter w(n) is represented as a complete filter computing its

output using just the indicated coefficients.

straightforward application of combination schemes in order to alleviate the compromise regarding the

selection of parameter ρ in the ZA-NLMS filter.

• Scheme B: A block-wise biased adaptive filter, depicted in Fig. 12, where the outputs of Q non-

overlapping blocks of coefficients of an adaptive filter are weighted by different scaling factors to

obtain the overall output [73]

y(n) =

Q∑
q=1

λq(n)yq(n), (25)

where yq(n) is the partial output of each block, and λq(n) ∈ [0, 1] with q = 1, ..., Q are the shrinkage

factors that adapt to minimize the power of e(n) = d(n)−y(n). This scheme manages the well-known

bias vs variance compromise in a block-wise manner [73]: if the mean-square deviation in the q-th

block is much higher than the energy of the unknown system in this block, λq(n) will tend to zero,

biasing the output of the block yq(n) towards zero but reducing the output error. The shrinkage factors

λq(n) therefore act as estimators for the support (set of nonzero coefficients) of the filter.

Regarding the estimation of these scaling factors λq(n), with q = 1, ..., Q, it can be shown that their

optimal values lie in interval (0, 1) [73]. Therefore, proceeding as in [38], we can reinterpret each

element in the sum of (25) as a convex combination between yq(n) and a virtual filter whose output

remains constant and equal to zero. This is useful, because it implies that we can employ rules similar

to cvx-LMS and cvx-PN-LMS reviewed in Section IV for adjusting parameters λq(n). It should be

noted that, for this kind of scheme, the ability to model sparse systems increases with the number of

blocks Q, since the length of each block decreases. However, the computational cost associated with
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Q = 128 and Q = 256 blocks. The sparseness of the plant varies over time.

the adaptation of the mixing parameters also increases with Q.

To illustrate both approaches, we have carried out a system identification experiment with an unknown

plant with 1024 taps, whose sparsity degree changes over time considering white noise as input signal and

SNR = 20 dB. We start with a very sparse system (only 16 active taps), that abruptly changes at n = 40000

to a plant with 128 active coefficients, and finally, at n = 80000, we employ a more dispersive unknown

system with 512 active taps. Figure 13 shows the MSD reached by Scheme A and Scheme B, considering

two different possibilities for the number of blocks Q.

As expected, Scheme A shows a robust behavior with respect to the sparsity degree of the unknown plant,

behaving as well as its best component filter. Scheme B provides an attractive alternative, whose performance

improves when the length of each block is reduced. Comparing both schemes, the computational cost of

Scheme B is smaller than that of Scheme A, even when Q = 256. In this situation, we also observe that

Scheme B outperforms Scheme A in terms of MSD for highly and medium sparse systems.

XI. ACOUSTIC ECHO CANCELLATION

Combination filters have been successfully employed in acoustic signal processing applications, such as

active noise cancellation [30], [31], adaptive beamforming [29], and acoustic echo cancellation, where com-

bination schemes have been used in linear cancellation (considering both time-domain [23] and frequency-

domain [24] schemes), and in nonlinear acoustic echo cancellation [25], [26], [74].

The abundance of portable devices has been motivating the inclusion of nonlinear models in the adaptive

scheme of acoustic echo cancellers (see Fig. 14), in order to compensate for the nonlinear distortion caused

by low-cost loudspeakers fed by power amplifiers driven at high levels. One of the main solutions used for
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Fig. 14. Acoustic echo cancellation scenario. Signal u(n) stands for the input signal, e0(n) is the background noise at microphone

location, h(n) represents the room impulse response that describes the acoustic propagation (linear in nature), and where depending

on the behavior of the loudspeaker and the power amplifier, nonlinear distortion can be found in desired signal d(n). The adaptive

scheme tries to minimize the power of the error cancellation e(n), incorporating nonlinear models if necessary.

this purpose is the Volterra filter (VF), which is able to represent a large class of nonlinearities with memory

[75].

The output of a VF can be calculated as the addition of partial outputs of different kernels, each one

representing an order of nonlinearity, i.e.,

y(n) =

P∑
p=1

yp(n) =

P∑
p=1

Np−1∑
i1=0

· · ·
Np−1∑
ip=ip−1

hp,i1,...,ip

p∏
q=1

u(n− iq), (26)

where yp(n) corresponds with the output of the p-th kernel with length Np, P is the number of kernels

that compose the VF and hp,i1,...,ip represents the adaptive coefficients of the p-th kernel. For instance, the

output of a VF of order P = 2 can be obtained as y(n) = y1(n) + y2(n), where y1(n) is the output of

the linear kernel, and y2(n) represents the output of the quadratic kernel, responsible for the modeling of

second-order nonlinearities. Despite the large computational cost associated with the operation of a VF,

the success of this nonlinear filter lies in the simplicity of the adaptation of the coefficients in each kernel

hp,i1,...,ip , which permits the employment of update rules similar to those of linear adaptive filters. For this

reason, VFs present similar tradeoffs to those of linear filters, in particular the selection of the step size,

and the memory of the kernels.

In [25], two different schemes were proposed to alleviate such compromises, named combination of

Volterra filters and combination of kernels (CK) —see Fig. 15. The first approach constitutes a straightforward

application of the combination idea, i.e., the output of the combined scheme is calculated mixing different

VFs outputs, each one obtained by means of (26), and following any of the schemes included in Section VI.

However, the second scheme proposes a special kind of VF, where each kernel is replaced by a combination

DRAFT Tuesday 15th September, 2015
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of kernels with complementary settings. For the case of a combination of two kernels per order, the output

of the CK scheme reads

y(n) =

P∑
p=1

yp(n) =

P∑
p=1

λp(n)yp,1(n) + [1− λp(n)]yp,2(n), (27)

where the outputs of two kernels of order p, yp,1(n) and yp,2(n), are combined by means of the mixing

parameter λp(n). Both algorithms reach similar performance but CK is a more attractive scheme regarding

the computational cost [25].

We should notice that the performance of VFs is also subject to a tradeoff related to the number of kernels,

since the degree of nonlinearity present in the filtering scenario is rarely known a priori. This compromise

directly affects the nonlinear acoustic echo cancellers: if only linear distortion is present in the echo path,

the adaptation of nonlinear kernels degrades the performance of the whole VF, which behaves worse than

a simple linear adaptive filter.

In order to deal with these compromises, a nonlinear acoustic echo canceller, represented in Figure 15

using both the combination of Volterra filters and the CK approaches, was proposed in [25] considering two

requirements: the robustness with respect to the presence or absence of nonlinear distortion, and the fact that

the acoustic room impulse response h(n) is strongly variant. The first requirement is dealt with considering a

combination of a quadratic kernel and a virtual kernel named All-Zeros Kernel, with all coefficients equal to

zero and no adaptation, whose partial output is always zero. Regarding the second requisite, a combination

of two linear kernels with different step sizes serves to provide a fast reconvergence and a low steady-state

error.

The output of this algorithm, considering the CK scheme, is:

y(n) = λ1(n)y1,1(n) + [1− λ1(n)]y1,2(n)︸ ︷︷ ︸
linear part

+λ2(n)y2,1(n) + [1− λ2(n)] · 0︸ ︷︷ ︸
nonlinear part

, (28)

where y1,1(n) and y1,2(n) are the outputs of two linear kernels with different step sizes, λ1(n) is the mixing

parameter to combine them, y2,1(n) is the output of the quadratic kernel, and λ2(n) is the mixing parameter

to weight the estimation of the nonlinear echo.

Figure 16 represents the performance of the proposed nonlinear acoustic echo canceller, compared with

that of all the adaptive filters (linear and nonlinear) that could be designed with its kernels, in terms of the

Echo Return Loss Enhancement (ERLE) computed as:

ERLE(n) , 10log
E{[d(n)− e0(n)]2}
E{[e(n)− e0(n)]2} . (29)

As it can be seen, the proposed scheme reaches the best performance, behaving as a combination of linear

filters when only linear distortion is present (t ≤ 30 s). In this case, λ2(n) ≈ 0 and the quadratic kernel is
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Fig. 15. Nonlinear acoustic echo canceller based on combination of filters. On the left: A hierarchical combination of filters (linear

and VFs) where each filter adapts employing its own error signal, for instance eL,1(n) = d(n)− yL,1(n). On the right: A special

VF based on the CK, where each kernel adapts using an error signal employing its own output and the combined outputs of the

kernels of different orders (see [25]). The mixing parameters λ1(n) and λ2(n) update to minimize the power of the global error

signal, i.e., e(n) = d(n)− y(n).
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Fig. 16. Performance of the proposed scheme as a function of the linear-to-nonlinear ratio of echo powers (LNLR), including

an abrupt change in the room impulse response at t = 60 s. From top to bottom: ERLE achieved by the combination of kernels

scheme and of all possible filters (linear and VFs) using its constituent kernels; time evolution of the mixing parameters. In this

experiment, we employ Laplacian speech-like colored noise as input signal; experiments with real speech can be found in [25].
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not considered in the output of the filter, without degrading the performance of the proposed scheme with

respect to that of linear filters. At the end of the experiment (t > 90 s), when strong nonlinear distortion

is considered, λ2(n) ≈ 1, and the output of the quadratic kernel is fully incorporated, providing the ability

to model nonlinearities. In an intermediate case, during 30 s < t ≤ 90 s, the proposed scheme slightly

outperforms both linear and nonlinear filters. In addition, the algorithm shows a suitable reconvergence

when the room impulse response abruptly changes, thanks to the combination of two linear kernels with

different step sizes, as it can be seen after t = 60 s.

XII. CONCLUSIONS AND OPEN PROBLEMS

Combinations of adaptive filters constitute a powerful approach to improve the performance of adaptive

filters. In this paper, we have reviewed some of the most popular combination schemes, highlighting their

theoretical properties and limits. Practical algorithms to combine adaptive filters need to implement estimation

methods to adjust the combination layer, taking into account the possibly time-varying conditions in which

the filter operates.

We have reviewed several of the methods that have been proposed in the literature, paying special

attention to gradient methods. Power-normalized algorithms are particularly interesting, since they simplify

the selection of parameters and result in a more robust behavior when the statistics of the filtering scenario

are (partly) unknown, which is frequently the case. The versatility of the approach has been demonstrated

through several examples in a variety of applications. We have seen that, in all studied scenarios, combination

schemes offer competitive performance when compared to state-of-the-art methods for each application.

This fact, together with the inherent simplicity of the approach, make combination structures attractive

for demanding applications requiring enhanced performance, as illustrated by the several examples and

references mentioned in the body of the article.

In our opinion, some of the most interesting open problems to be addressed are:

• the selection and design of component filters with reduced cross-EMSE, with the goal to minimize the

overall EMSE,

• providing and exploiting strategies to reduce the cost of combined schemes, trying to develop new

structures whose complexity is close to that of an individual filter, and

• extensions to other application domains where different kinds of compromises and performance tradeoffs

may be present.
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[51] J. Arenas-Garcı́a, V. Gómez-Verdejo, and A. R. Figueiras-Vidal, “New algorithms for improved adaptive convex combination

of LMS transversal filters,” IEEE Trans. Instrumentation and Measurement., vol. 54, no. 6, pp. 2239–2249, Dec. 2005.

[52] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford, UK: Oxford University Press, 1995.

[53] L. A. Azpicueta-Ruiz, J. Arenas-Garcia, V. H. Nascimento, and M. T. M. Silva, “Reduced-cost combination of adaptive filters

for acoustic echo cancellation,” in Proc. Intl. Telecommunications Symposium (ITS), Sao Paulo, Brazil, Aug. 17–20, 2014, pp.

1–5.

[54] V. H. Nascimento, M. T. M. Silva, and J. Arenas-Garcı́a, “A low-cost implementation strategy for combinations of adaptive

filters,” in Proc. IEEE ICASSP, Vancouver, Canada, May 26–31, 2013, pp. 5671–5675.

[55] L. Li, Y. Xia, B. Jelfs, and D. P. Mandic, “Modelling of brain consciousness based on collaborative filters,” Neurocomputing,

vol. 76, no. 1, pp. 36–43, Jan. 2012.

[56] B. Jelfs, D. P. Mandic, and S. C. Douglas “An adaptive approach for the identification of improper signals,” Signal Processing,

vol. 92, no. 2, pp. 335–344, Feb. 2012.

[57] M. T. M. Silva and J. Arenas-Garcı́a, “A soft-switching blind equalization scheme via convex combination of adaptive filters,”

IEEE Trans. Signal Process., vol. 61, no. 5, pp. 1171–1182, Mar. 2013.

DRAFT Tuesday 15th September, 2015
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