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Analysis of the Hierarchical LMS Algorithm

Vitor H. NascimentpMember, IEEE

Abstract—We analyze the recently proposed hierarchical least x(n) | | | | |
mean-square (HLMS) algorithm, providing expressions for its z 2z z Z z

steady-state mean-square error (MSE). We find conditions for the
hierarchical structure to be equivalent to the optimal (full-length)
Wiener solution. When these conditions are not satisfied, we show () w{'} wilhl  Owih Owll) wil) O wil)
that HLMS will compute biased estimates. Our analysis also shows

that even when these conditions hold, the MSE obtained using

HLMS may be much larger than that obtained using LMS, since

the potentially large MSEs at the subfilters in the first hierarchical ~ y(n)
level directly affect the output MSE.

Index Terms—Adaptive filters, estimation, least mean-square

methods, least square methods, stochastic systems. Y ®
w
2

. INTRODUCTION

I
SIS WELL KNOWN, the least mean-square (LMS) algo l e(n)
rithm has several desirable properties, which explains tne
algorithm’s widespread use: LMS is easily implemented, has@. 1. HLMS structure with two hierarchical levels (level 1: two length-3
low computational cost, is robust to numerical errors, and h@gfilters, level 2: one length-2 subfilter).
good tracking performance. Its one drawback is its slow initial
convergence, especially in situations where there is strong cR¥igth-3 subfilters, and level 2 consists of a single length-2 sub-
relation between the entries of the regressor vector [1], [2]. fiiter. The overall filter length iV = 6.

_ An approach to fight this prob!em was propos_ed recently: the|, general, we split a filter with/ = M; - M, taps into (level
hierarchical LMS (HLMS) algorithm [6], [7]. This method at-1y 1. jength-\r; subfilters. Theth subfilter in level 1 has coef-
tempts to obtain a faster convergence by splitting the LMS filt§fiant vectorW(.l)(n) _ [wgll)(n) B .w(lj\)4 (n)]T (superscript
into several (level-1) independent LMS subfilters (see Fig. 1. yon0tes vectzor transpogition). Thehou]tput of threlevel-1
The output of each subfilter is sent to another (level-2) LM% bfilter is (1)(n) and the error is(l)(n) The single subfilter
subfilter, which weighs each subfilter output to obtain an overa F Yi . @) NG 9 (2) T
output (other intermediate levels may also be used). in level 22has coefficients™™ (n) = [wi™ (n) ... wyy, (n)]",

In this letter, we present an analysis of the HLMS algorithn‘P,UtpUty,( )(n), and errore(n).

showing under which conditions the overall filter response con—The inputs to the filter are the seque_nc{as(n)} (the
verges to the Wiener solution. We also provide a stochastic arf@@9"€Ssor sequence) anfl/(n)} (the desired sequence),
ysis and derive expressions for the overall mean-square etflich we assume to be rea_l and zero-mean. From the
(MSE) under these conditions. Our analysis shows that in maj@'eSSor sequence, we Zdeﬂne t?ﬁ Vectas: 711)) =
situations, the HLMS algorithm converges in the mean to [&(n) - x(”_M+1)]T’TX< '(n) = [le (n) -y, ()7,
biasedestimate of the optimal Wiener solution. In additionand split X (n) = [Xgl) (n) ... X%Z (n)]¥, where each
there is a tendency for the level-2 subfilter to amplify the mingl)(n) is a lengthdZ, vector. With these definitions, we
adjustment error in the level-1 subfilters, which results in a hi%veyi(l)(n) _ ng)"‘ (n)X§1)<n), 651)@) — y(n) (1)<n)’

Ly
output MSE. ¢
P y@(n) = W ()X (n), ande(n) = y(n) — y@(n). The

update equations for each subfilter is

II. HLMS ALGORITHM
To keep the analysis short, we discuss in this letter only a W (n + 1) =W (n) + pe ) XP(n) (1)
two-level version of the HLMS algorithm (Fig. 1), although W(Q)(n 4 1) :W(Q)(n) n uze(n)X<2)(n) )

more levels would be possible [6]. In the figure, level 1 has two

where 1 and us are the step sizes for levels 1 and 2,
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length Wiener solution. That is, we use the hierarchical filtéfhe optimal level-2 coefficient vectof(?) must satisfy
structure, but choose the best weights for each subfilter, #2(2) = p®. (We did not writeQ(? = S—1p2) since in
suming knowledge of the statistics of the input signals, withogeneral S may be singular. When the filters are allowed to

adaptation. adapt,S becomes nonsingular.)
We begin by defining the regressor covariance mafrix The optimal subfilters for levels 1 and 2 are equivalent to a
single lengtha/ filter, Q.. Denoting the entries & byw®,
Ry Ry» ... Rin, 4 !
T ' e for1 <1 < M,, we have
REEX@X Ty = | 2 T e
= n n)) = . . . T T 1T
: : Qeq = [0 0 WPl ]
Rf M, R2T7 v, -+ Ban

In general, this equivalent filter withot be equal to the op-
where H-) represents the expectation operatotimal lengthd/ filter Q. Thus, the optimal coefficients for the
R; & E(Xgl)(n)X,El)T(n)), andR; a E(X(l)(n)Xgl)T(n)). HLMS algorithm will resultin an MSHarger than that obtained

K2

; ; ; ; _ by the optimal solutionf). There are situations, however, for
Note that sinceR is a symmetric matrixR; ; = R ;. y p 0

Itis well known from linear estimation theory that, given twagVhich the optimal HLMS coefficients result in an equivalent
zero-mean stationary sequendé®(n)} and{y(n)}, there is a overall filter that is equal t€2. One case is when only one of

vectorQ such that [4] theQ; is nonzero—i.e., when th_e op_timgl filter has an effective
length equal talf;. The other situation is wheR; ; = 0 for
y(n) = QT X (n) + v(n) (3) i # j. The first case would result if being singular, so for

h (n)i . lated wifki (1), and with vari now we consider only the second. W
wherev(n) is a noise uncorrelated witki (n), and with variance T, . 1
' WhenR; ; = 0 for i # j, the expressions f&®,"’ (5) andS
o3 = Ey?(n) — QT RQ. The vector2 may be computed by 0 reduce’go 7 P S
solving the system alf = M; - M, linear equations
E(X (1) X (1)) = E(X(w)y (1) @ G0
These results can also be 'ap.plied to e level-1 sgbfilters, 0 o Q1 RanQ,
as follows: assume th&k satisfies (3) and (4). Then, in order to
compute the optimal solutioﬁgl) for theith level-1 subfilter, Expression (8) fop(?) does not change, and thus, whéris

we needR; and invertible,Q® =[11 ... 1]7, andQ., = Q.
(na ) — ) T
P’ = BEX; (n)y(n)) =E [Xi (n)(X™ (n)S2 + “("))} IV. STOCHASTIC ANALYSIS OF THEHLMS ALGORITHM
=[Rin ... Rii-1 Ri Riiy1 ... Ria ] In order to continue our analysis of the HLMS algorithm, we

R;is invertibl(e)ifR is nonsingular [3]; therefore, the optimal"OW evaluate the output MSE, i.e.,
igh " for theith level-1 subfilter is gi ,
weight vectoQ2; ™~ for theith level-1 subfilter is given by T(n) 2 Ee(n)? = E(y® (n) — y(n))®
QY =R7[Riy ... R ... Ria,]Q.

)

with the usual independence assumptions [2] (recall that—for
If we split Q in M- subvectors, such thf = [Q7 ... Q{IZ]T, LMS—these assumptions give reasonable approximations for

then small step sizes [5]).
M, 1) The sequence$y(n)} and {X(n)} are independent,
Qfl) =Q + Z R'R; Q. (5) identically distributed (i.i.d.).

2) The noise sequende(n) = y(n) — QT X (n)} is also

k=1,k#i .. .
i.i.d. and is independent X, }.
Note that, in genera(‘;zz(.l) £ Q. In addition to the independence assumptions, we as-
The optimal level-2 regressor vector is therefore given by sume thaf},, = €.

3) R, ; = 0fori# j, so thatd., = Q, andQ'? = Q;.
T T »J q (]
XOm) = [P med . X mel].  ©

] o A. Analysis of Level-1 Subfilters
In order to compute the optimal level-2 coefficients, we must

evaluates 2 E(X(Q)(H)X(Q)T(n)) Under the above assumptions, we can use standard inde-

pendence theory results to evalud&” (n) 2 E(e,gl)(n))2 =
T T
le) Rlﬂgl) le) RLMQQ% E(y,(l)(n) — y(n))2. For this, we need to compute the min-

3

S — @) imum variance of the es(tli)mation error for %a)g,h %the level-1
nT 1 ' nr 1 subfilters, i.e., [defining;”’ (n) = y(n) — Q;7 X, (n) =
oy R @7 O Ry, yn) —~ 07 XD o)
. A
and also the cross correlatipf®) = E(X® (n)y(n)) Jé,lf,) — B (n))? = E(y(n) — QT XD (n))?

@ =0V R0" oD Ryl ] ®) =E(Q7X(n) + v(n) - Q7 X ()2,
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From assumption 3) above, (5), and recalling that) is inde- Ee?(n)
pendent ofX (n) [and thus also OXED(n)], we have

M,

(1 _ 2 T ° A s i 1
s =t k_%ln’“ it R
) o | HIL.MS
Note thaUé}i) may be orders of magnitude larger thah 10714

When we try to approximatﬁgl) = €, using the LMS re-
cursion (1) with step sizg,, the estimation error will be, under 107}
the above assumptions, larger thlér};). Using standard results NLMS
from LMS theory [1] we obtain

lim J,L»(l)(n) ~ Jé}i)

n—oo

T RZ 0 10‘00 20.00 3OIOO 4000 5000

) ) ) ~ Fig. 2. HLMS applied to i.i.d. inputs, with step sizes = ., = 10~2. For
whereTr(A) is the trace of matrix, i.e., the sum of the main comparison, we also plot the NLMS learning curve with= 1. Average of
diagonal elements. Although (10) is approximate (it holds onfp curves.

for “sufficiently small” 111), it shows that the excess MSlﬁ?i

is proportional to the optimum LMS errdré}i) thing to do, it also implies that the HLMS algorithm converges

to abiasedoverall solution, even if the hierarchical structure can
describe the optimal Wiener solution. The bias worsens as
increased.

; ; ; Since the optimum estimation error variand§” of the
This has an important effect on the behavior of the HLMS algo- > 0p A
rithm. as we shall see soon. level-1 subfilters may be much larger tha@, this bias may be

quite significant unlesg; is maintained relatively small. This

B. Analysis of the Level-2 Subfilter is contrary to the goal of the hierarchical structure, which is to

Using (1) to estimate(V), the statistics ofgﬁl)(n) are obtam_faster convergence. The examples in Section V show
' that this problem may be serious.

no longer stationary, which makes the analysis considerably,

) . Before turning to the examples, let us find an approximate
more involved. We study here only the behavior of the Ievel'Eleressionforthe overall MSE for HLMS. First, we assume that

JO TR

ex,t 2

755, (11)

subfilter after steady state is reached, i.e., we assume thal Iy ) :
. ; € level-2 coefficients are fixed and equal to the optimum ones
the level-1 subfilters have already converged, with MS

given by (10). With this assumption, we must find the ne\%xgnfiééﬁl){e?giggdtthe minimum MSE obtainable when the
steady-state level-2 autocorrelation matri%,. Defining P

Wy — b _ 0 : 2
Aw;”’(n) = Q; w; ’(n), and recalling that under our Jé2) —E (y(n) _ y(2)(n)) — Ey?(n) — Q" p®

assumptionsXEls(n) is independent oﬂwgl)(n), in steady "

T
state o2y Z Q' R;Q; JS)T (13)
1 2 1 T 1 2 1 QTRLQL + J(l) ’
e (7m) "= (- a0 () X)) =t
The inputs to the level-2 subfilter are noti.i.d. evefiX(n)} is
=0 RQ;+ an i.i.d. sequence. However, for small we may approximate
Ty (R,LE (Awgl)(n)Awgl)T(n))) _ the level-2 MSE using the independence theory formula, which
gives
The second term in this expression is exactly the steady-state Te(S
excess MSE given by (11). Since th’g), are strictly positive, J? Jéz) (1 + M) . (24)
S, is invertible and equal to 2
T (1)
S W Bl + oy - 0 V. SIMULATIONS
‘ B T 1) Our first example is a length-32 filter withl; = 4 andM, =
0 oo Ban @, + Jeda, 8. The input sequendeX (n)} is Gaussian, with autocorrelation

The cross correlation vectgf?) does not change and is still 2 = 1. The optimum vectof2 has entriegQ2), = e~01(k=1),

given by (8) The Opt|ma| level-2 We|ghts are now and the nOiS@/(n) has VarianC&0_4. The Iearning curves for
HLMS with step sizesi; = pe = 1073 and also for nor-

Q) — "QlTRlﬂl(l) - fozRMzﬂMin  (12) malized-LMS withy, = 1 are shown in Fig. 2. Using expres-
A R+, s, Bty @aty +Jox s, sions (9), (11), (13), and (14), we conclude mg;) varies from

This expression shows that the level-2 subfilter gives less weig’hB—S.S.Jéi?i varies from 0.049-0.11. The theoretical output

to level-1 subfilters with large excess MSE (in comparison MISE is J(?) = 0.4250; from the ensemble-average learning
the optimum variance oj,fl)(n)). While this seems a sensiblecurve, we obtained® ~ 0.4085. If 1, is reduced tal0*,

T
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Fig. 3. HLMS applied to equalization problem, with step siggs= 0.005
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andu. = 0.05, and NLMS withy = 1. Average of 30 curves.

from (14) we findJ(?) = 7.7 . 10~3. Simulating this situation,

an experimental?) ~ 7.1 - 10~3 was obtained.
Next, we have a channel equal'zat'on example. The Cha-nneﬂl] P. Diniz, Adaptive Filtering: Algorithms and Practical Implementa-

has a transfer functiof'(z) = 1/(1 — 0.72=! + 0.2275) and

81

[6], since this would be a very unusual behavior for LMS, which
is well known to converge monotonically [2].

VI. CONCLUSION

We analyzed the performance of the recently proposed
HLMS algorithm, providing expressions for the steady-state
MSE under certain conditions. Our analysis shows that in
general, the HLMS algorithm computes biased estimates for
the optimum length¥/ estimation filter. This bias may be
quite large and worsens as the convergence speed of the level-1
subfilters is increased. This means that in some applications,
the reason for using HLMS (faster convergence) may be
achieved only at the cost of a much larger MSE. However,
other simulations show that, in a situation where the noise
level is very high, this effect may be masked, making HLMS’
performance reasonable.

REFERENCES

tion. Norwell, MA: Kluwer Academic, 1997.

a white Gaussian input with unitary variance, with Gaussian [2] S.Haykin,Adaptive Filter Theory3rded. Englewood Cliffs, NJ: Pren-
output noise with variancg0 4.

Notice that in this examplel?;; # 0, so our analysis in

tice-Hall, 1996.
[3] R. Horn and C. JohnsoriMatrix Analysis Cambridge, MA: Cam-
bridge Univ. Press, 1987.

Section IV does not hold. Note, however, how the HLMS al- [4] T. Kailath, A. Sayed, and B. Hassilijnear Estimation Englewood

gorithm, although converging initially very fast, hag?E) in-
creasing betweef0 < n < 200. Later, the algorithm starts

reducing E2(-)

Cliffs, NJ: Prentice-Hall, 2000.
[5] J. Mazo, “On the independence theory of equalizer convergeBagl,”
Syst. Tech. Jvol. 58, pp. 963-993, May—June 1979.

again but stops at a higher level than NLMS. [6] T.-K.Woo, “Fast hierarchical least mean square algoritHEBZE Signal

Processing Lett.vol. 8, pp. 289-291, Nov. 2001.

This kind of behavior can be seen in [6' Figs. 2 and 3]' but for [7] —, “HRLS: A more efficient RLS algorithm for adaptive FIR fil-

the curve labeled “LMS”. There was perhaps a mislabeling in

tering,” IEEE Commun. Lettvol. 5, pp. 81-84, Mar. 2001.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


