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ABSTRACT and additive white Gaussian noise. We assum@/&itap finite im-

We extend the affine combination of one fast and one slow least mé rlﬁ'e resgonse (FIR) equallzer,_ with '”p“t."ec“(r’?) and output
square (LMS) filter to blind equalization, considering the combinatidh?) = & ()W (n), wherew(n) is the equalizer weight vector, and

of two constant modulus algorithms (CMA). We analyze the propose indicates transposﬂpn. The equalizer must mitigate .the channel
combination in stationary and nonstationary environments verifyl?l ects and recover thg S|gna(_n) for some Ejelayrd, obta|_n|ng at
that there are situations where the absence of the restriction on the x> PUt of the decision device the estimae — 7). It is well

IX- . ) e
ing parameter can be advantageous for the combination. Further r%\gir;éh[%t] Fﬁ'ﬁ;??g;ﬂ'ﬁgﬁ;g;;ﬁ r‘;}:‘oéci?gjr%“fg;‘; t)h :uaétr)]sence
we propose a combination of two CMAs with different initializationfp ) ’ p "

T ~ —
Preliminary simulations show that this scheme can avoid local mini gtu (n)wo(n) ~ a(n — 74).
and eventually can present a faster convergence rate than that of its u(n)

a(n) . ¥ | Decision [4(1~T,)
components. —>| Channel '#{>| Equalizer '—» oo ——

Index Terms— Adaptive filters, adaptive equalizers, blind equal- /2

o . . ! Fig. 1. Communications system with&/2 FSE.
ization, unsupervised learning, constant modulus algorithm. ) o ) ]
An adaptive combination of two equalizers may obtain a better

1. INTRODUCTION compromise between convergence rate and EMSE. As depicted in

Convex combinations of two fixed step-size adaptive filters have E?taﬁn :E: g:é?:ﬁsoﬁzng equalizers= 1 andi = 2 are combined to

ceived attention due to their relative simplicity and the proof that they
are universal, i.e., the combined estimate is at least as good as the best y(n) = A(n)yi(n) + [1 — A(n)]y2(n), @

of the component filters in steady-state, for stationary inputs [1]. Thiserey; (n) =u” (n)w;(n), i=1,2 and(n) is the mixing parame-
scheme was proposed to improve the fundamental tradeoff betwieenThe coefficients are updated with CMA using different step-sizes,
convergence rate and steady-state excess mean-square er®E)EM:., wi(n +1) = wi(n) + pei(n)u(n), i=1,2, 2)

in adaptive filters. It has also been exploited in nonstationary e MiWhiChe-(n) _ [T _ yg(n)] yi(n), r = E{a*(n)}/E{a?(n)}, and
E

ronments to improve tracking performance, considering, e.g, the alge - : « ' .
rithm proposed in [1] or the combination of algorithms with differen ?} Is the expectation operator [4]. The overall “error” is defined as

2
tracking capabilities of [2]. n) ==y ().

Recently, an affine combination of two least mean-square (LMS)
filters was proposed in [3]. Differently from the convex combination,
the mixing parameter is not restricted to the inteff@all]. Thus, this
method is a generalization of the convex combination.

This paper has two main contributions. First, the affine combina-
tion of [3] is extended to the combination of one fast and one slow con-
stant modulus algorithm (CMA) [4], the most used algorithm for blind
equalization. We analyze this scheme in stationary and nonstationary
environments verifying that there are situations where the use of the
affine combination can be advantageous, and compare this scheme t§ A(n) is restricted to the interval, 1], we have a convex com-
the convex combination of two CMAs proposed in [5]. Second, Wiation [1,5]. Otherwise, we have an affine combination [3]. In the
show by simulations that the combination of two CMAs with differe@nvex combination of two CMAs of [S\(n) is updated via a sig-
initializations can avoid local minima and may present a faster céRidal function and the auxiliary variabt&(n), as shown in Table 1,
vergence rate than that of its components. In order to simplify MBeres.« is a step-size. Theses equations were obtained in [5], using

Fig. 2. Adaptive combination of two blind equalizers.

arguments, we assume that all quantities are real. a stochastic gradient rule to minimize the instantaneous constant mod-
ulus cost/(n) = [r — y2(n)}2. The variablex(n) is used to keep
2. PROBLEM FORMULATION A(n) in the intervall0, 1]. This variable is restricted (by saturation) to

A simplified communications system with/2-fractionally-spaced /i€ inside an interval—a", o], which ensures that it does not stop

equalizer (FSE) is shown in Fig. 1. The transmitted sigrial) is UPdating whenevek(n) is close to O or 1 [1,5].

assumed independent, identically distributed (i.i.d.), and non Gauys-!n the affine combination, the auxiliary variabie(n) and the

sian. The unknown channel is modeled by a transfer functign) sigmoidal fu_nctlpn are not u_sed_ to keep the mixing param_eter in
[0, 1]. Considering the combination of two CMAs, the updating of
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303.361/2004-2, and by FAPESP under 2008/00773-1 and Q0838-5. desirable universal behavior of the combination. Thus, we propose




a stochastic gradient algorithm to minimize the instantaneous squareBy squaring and taking the expectations of both sides of (5) with
decision errot/;(n) = [a(n — 74) — y(n)]?, as shown in Table 1. If A\(n) = A\o(n) and assuming that the varianceXaf(n) is sufficiently

the step-sizeu, is correctly chosen, the decision-error-based adapserall such thalim,, ... E{\%(n)} ~ on(oo), we obtain the follow-
tion can ensure that the affine combination is nearly universal eveiminexpression for the steady-state EMSE of the combination
presence of noise. Similar to the affine combination of two LMS filters _ AGAC

of [3], A(n) is constrained to be less than or equal to 2 foratb ¢~ G2 + A(00)AG = G2 + AT AG (7)
obtain a tradeoff between stability and algorithm'’s tracking capabi

in the initial phase of adaptation, IJI%s expression was also obtained in [1, Eq. (33)] for the convex com-

bination of two LMS filters. Note that whek, (c0) ~ 1, ¢ ~ (11 and

Table 1. Adaptations of the mixing parameter. when), (o) ~ 0, ¢ = (22. On the other hand, sincgn) is restricted
Combination| Mixing parameter adaptation to [0, 1] in the convex combination, only fér < A, (co) < 1 the con-
Convex A(n) =sgm(a(n)) = {1+ exp[—a(n)]}*l vex combination can outperform the component equalizers. We show
ea(n) = [r _ yQ(n)] y(n)[y1(n) — y2(n)] next that in some situations the absence of the restrictiok(ah can
a(n +1) = a(n) 4+ paea(R)AN)[1 — A(n)] be advantageous for the combination.

Affine ea(n) = a(n —1q) — y(n) .
A+ 1) = A(n) + prea(n)yi(n) — ya(n)] 3.1. Stationary performance

Replacing the model (4) witly = 0 in (6) and (7), we obtain for the

stationary case

3. STEADY-STATE ANALYSIS 02— mTr(R)EY ]

Ao(00) =~ and (8)
In the tracking analysis of CMA [6, 7], the optimum solutien, was 2(6-1)
assumed to vary according to a random-walk model,we(n+1) = 1 w205 Tr(R) 9
wo(n) + q(n), whereq(n) is an i.i.d. random zero-mean vector with ¢~ 2(1+0)y — pTr(R)E’ ©)

covariance matrixQ = E{q(n)q” (n)}, and independent afi(m)

for all m < n and of the initial conditionsv, (0), w;(0), A(0) [1, 8].
Assuming thatw;(0), : =1, 2 is close enough tev,(0) and that

u” (n)wo(n)~a(n—r4), the output of the equalizércan be approx-

imated pyyi(z) %Ta(n - Td)—e”v"(")’ v;/helze.we ?hefln(;d tha priori 1" hehavior was observed in [3] for the affine combination of two
ﬁrrorea,a(n) _.3 (.")[‘t'}’f(t"t)h_ WZ(nt)}II.t' sing d? above :Isshump-LMS filters. Comparing. to (22, we conclude that the affine com-
'ons and considering that the constetiation used to gena(alehas o aion can outperform both components in steady-state. Specially,
circular symmetry, we can rewrite the CMA “error” using the mOde\Nhend — 1, i.e., when the components have approximately the same
, (n) & y(n)ea,i(n) + B(n), 5 @) step-size A, (00) — —o0, ¢ — (22/2, and a 3 dB reduction occurs. On
wherey(n) = 3a”(n—74) —r andf(n) = ra(n —7a) —a*(n—7a). the other hand, ifi1 & p2, the convex combination performs close to
The variables(n) is identically zero for constant-modulus constellgj,q of its components, and an EMSE reduction does not occur.
tions, so the variability in the madulus afx) (as measured b§(n)) In order to explain the behavior of the affine combination when

plays the role of measurement noise for CMA [2,7,9]. ~ 2, using (1) and the model (3), the overall steady-state error is
One measure of the equalizer performance is given by the E ten as

defined ag;; £ lim,—oo E{e2 ;(n)}, i = 1,2. In the steady-state _ \ _ T 10
analysis of the combination of two CMA equalizers, we also have to e(n) ei(,@+ (n) y(n)Iwa(n) —wi(n)] u(n).  (10)

where we have definell2 1o/, with 0 < 6 < 1.

To ensure the stability gi;-CMA, p1 < 2%/(3Tr(R)£) must be
satisfied [9, Eq. (14)]. Hence\,(co) is always negative, which does
not occur in the convex combination due to the restriction\én).

estimate the cross-EMSE givendi = lim,,—.oc E{eq,1(n)eq2(n)} d(n) —a(n)
[1,2]. Using (3) in conjunction with the energy conservation relatioRsom the point of view of the computation &f{n), d(n) represents
of [8], ¢;; and(12 can be approximated by [2,7] the signal which has to be estimated, ar{d) plays the role of input
s pip;02Tr(R) + Tr(Q) o signal. Ifw; varies sIowI_y comp_ared ty, the affine combination seeks
Gij =~ = ;6,7 =1,2 (4) the best weight vector in the line> 4+ A\(w1 — w2). In the case of
) . ) o - B f1 & 2, We also havew; ~ ws, an as to assume a large value
where o3 = E{a’(n) —r%a“(n)}, R = E{u(n)u’(n)}, ¥ = to take the combined vector as close as possibteosince the input
3E{a*(n)} —r, & = r(3E{a*(n)} +r), and Tr(-) stands for the signalz(n) depends on the difference between andw,. Thus, if
trace of a matrix. 6 — 0, (w1 —wsz) — 0,and|\| — oc.

An analytical expression for the optimum mixing parameter in The properties of the affine combination in a stationary environ-
steady-state\, (co) can be obtained by equating to zero the derivment can be exploited to improve the EMSE reduction of the combi-
tive of E{.J4(n)} with respect to\(n). Using (1) and assuming thanation. To verify if a larger reduction can be achieved, we consider
yi(n) = a(n — 74) — eq,i(n) whenn — oo [2, 6], we arrive at the scheme of Fig. 3, where the outputs of two affine combinations are

E{ed(n)[y1(n) —y2(n)]} = E{ea(n)[ea,2(n) —eq,1(n)]} = 0. combined with a mixing parameter to obtain the overall output. The
Noting that in steady-state the overalpriori error is a combination first combination considers two CMA equalizers with step-sizes

of thea priori errors of the component filters, i.e., andus = 611 With 0 < 61 < 1. The second combines two CMAs
ea(n) = A(n)eq,1(n) + [1 — A(n)]eaq,2(n), (5) with uz andpus = d23 With 0 < 62 < 1. To obtain the largest EMSE
using (3), and assuming that (n) is independent o, ;(n), after reduction of the scheme, we assume that the four step-sizes are differ
some algebraic manipulations we arrive at ent but close to one another. The steady-state performance of the pro
- Alo posed scheme can be evaluated using (7). Besigdes = 1,...,4,
Ao(00) = AL+ AG’ © (12, and(s4, we have to estimaté; s, (14, (23, and(z4. Thus, after

where A¢; = (i — Ci2, @ = 1,2. A similar expression was alsgsome algebraic manipulations, we conclude that the overall EMSE for
obtained in [1, Eq.(29)] for the convex combination of two LMS filose step-sizes is Ca §C11 (11)
~ G

ters. The difference is that in the convex combinatidn) and con- (51,521>r3<1,1)
sequently), (co) are restricted to the intervig, 1]. which represents an EMSE reduction of 4.26 dB.
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Fig. 3. A combination of two affine combinations to improve the EMSE re-
duction in a stationary environment.

3.2. Nonstationary performance

As in the stationary case, the largest EMSE reduction of the affine
combination in relation to its components occurs widen ~ (2.

This can happen in two situations: (i) wh&n(Q) ~ 1 p203Tr(R); _150 = s s
or (i) when iy =~ po. In case (i), replacing the model (4) under the

. . o . iterations 10°
small step-size approximation in (7), after some algebra, we arrive at ) ) X o
Fig. 4. (a) Theoretical and experimental EMSE for the scheme of Figitl3 w

i ~ 1_’_ 26 , Z:1,2 (12) 751 21073,;13 = 9.4 x 1074,/12 251M1,M4 :52/1,3,51 = d2 = 0.95,
Gi 2 (6+1) andpy, = pr, = px = 0.1. (b) Ensemble-average of(n), A4, (n),
In case (i), we obtain the following limit (recall thgt; ~ (22) A4, (n) and theoretical value 0¥, (co); ensemble-average of 500 independent
2 runs; the theoretical values are indicated by dashed lings; i =1, 2 are the
lim ¢ = @ UﬂTr(R)Tr(Q) (13) mixing parameters of the affine combinations.
d—1 2 2’_}/2C22

Note that the EMSE reduction in both cases is limited by 3 dB. A re- As in [1], we also use in a nonstationary environment the nor-
duction close to 3 dB will occur wheh — 0 in (12) or when the sec-malized square deviation (NSDNSD;(c0) = Gii/Co, @ = 1,2,

ond term of the r.h.s. of (13) can be disregarded in relatiofpg2. NSD12(00) = (12/Co, NSD(00) = (/Co, Whereg, is the optimum

We should notice that case (i) also occurs for the convex combigi@ady-state EMSE of a CMA equalizer [10]. Fig. 5 shows the theoret-
tion. However, in case (i), the convex combination performs as 8! and experimental NSD as a functionf(Q) for the affine and
best component, due to thén) restriction. Although there may exisconvex combinations of two CMAs. Sinde= 0.1, the EMSE reduc-

an EMSE reduction, the minimum steady-state EMSE of both cdifn provided by the affine combination outside the intefyal g:] is
binations is equal to the steady-state EMSE of a CMA equalizer valfnost imperceptible for the level of detail in the figure. In this exam-
optimal step-size.,, which happens whefir(Q) ~ ¢, i = 1,2, ple, both combinations present very similar performance, in spite of

whereg; 2 ;203 Tr(R) [10]. the restriction om\(n) of the convex combination. Note that the max-
‘ imum EMSE reduction is of approximately 1.8 dB (as predicted by
4. SIMULATIONS (12)) and occurs for both combinationsat(Q) ~ 1 p205Tr(R) ~

In the first two simulations, we assume 4-PAM (pulse amplitude madx 107, where¢i: ~ (z2. This reduction makes both combinations
ulation) such that = 8.2, af; = 28.8, andy = 6.8, and an FIR have an EMSE close to the optimum inside, ¢:]. The theoretical
channel with coefficient§.1, 0.3, 1, —0.1, 0.5, 0.2] in the absence models (4), (7), and (6) show good agreement with the experimental
of noise [6]. In the combinations, each component filter hAs= 4 results.
coefficients as &'/2-FSE and is initialized with only one non-null  In order to avoid local minima, we combine two CMAs with the
element in the second position. same step-size but with different initializations. To improve the con-
To verify the behavior of the scheme of Fig. 3, we consider twergence rate of the algorithms of Table 1, we consider a normalized
affine combinations of CMAs with close step-sizes. Fig. 4 shows oaptation scheme similar to that of [11]. Basically, the step-gizes
EMSE and mixing parameter along the iterations estimated from #mel ., are divided by[b(n) + €], whereb(n) = pb(n — 1) + (1 —
ensemble-average of 500 independent runs. To facilitate the visply: (n) — y2(n)]* with the forgetting facto) < p < 1 and the
ization, the curves were filtered by a moving-average filter with 5d@all positive constant. Furthermore, we replace the overall CMA
coefficients. The dashed lines in the figure show the predicted valigesor” e(n) in the adaptation ofi(n) of the convex combination by
of ¢ for each algorithm and their combinations. Since the four comploe decision erroeq(n) to ensure its nearly universal behavior. We
nent equalizers have close EMSESs, we show in Fig. 4 only the EM®Esume the transmission of binary signals with symb#is} through
of u1-CMA and p4-CMA. Although there is no exact agreement béhe channeH (z) = [1 + 0.6z~ '] ™" with signal-to-noise ratio (SNR)
tween analysis and simulation, the predicted values model the ovexfal5 dB, and an FIR equalizer with/ = 2 coefficients working in
behavior of the algorithms and of their combinations. Note that a dife symbol rate. Fig. 6 shows an ensemble averagé®ohdependent
ference of a few dB is common in models for blind algorithms, duans for two different initialization sets. In situation 1 (Fig. 6-a), the
to the strong assumptions necessary for the analysis. We can obsemwbinations perform close to the best component in steady-state and
from the figure that affine combinations of two CMAs with close stemach the global minimum. The affine combination presents a faster
sizes provide an EMSE reduction of approximately 3 dB as predictetivergence, since it seeks the best weight vector in the whole line
by (9). An affine combination of the outputs of the combinations pre~ + A(w1 — w2). Note that in the convergence, the mixing param-
vides a reduction of approximately 4.26 dB in relation to each coeater of the affine combination is negative (Fig. 6-d). The restriction on
ponent equalizer, as predicted by (11). A drawback of this schemg(is) in the convex combination causes its slower convergence. In situ-
that the combinations converge slowly, since the convergence ofétien 2,..2-CMA may converges to two minima with EMSEs of -5 dB
algorithm for the updating of the mixing parameters depends on éimel -20 dB, as shown in Figs. 6-b and c, respectively. In Fig. 6+b, fo
difference of the outputs of the components (see Table 1), whic1® out of10® realizations of the filters, the combinations performed
very small in this case. similarly to situation 1. In the remaining 588 realizations (Fig. 6-c),



the affine combination has an interesting behavior at the beginning of @ O 1L ~CMA (10%)
the convergence: it rapidly achieves -9 dB and gets close to the global = I a1
minimum, but returns to the local minimum whep-CMA converges S -10 1. ~CMA/Convex (10°)
to -5 dB. Note that, in steady-state both components get stuck at the w 2
same local minimum. The convex combination performslikeCMA > 20 ¥ =
and the affine combination makes an useless effort to reverse this situ- u Affine (107) Situation 1
ation sinceE{\(n)} — —200. —30; 05 1 15
20 (b) 3
(@ - = =NSD,@)| © = Of - 1,~CMA (10°)
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Fig. 5. (a) Theoretical and experimental NSD of two CMA equalizers

(u1 = 104, ug = 1079), their cross-NSD, and NSD of their convéX$Dc,

pe = 0.075, ot = 4) and affine NSD,, ux = 0.0075) combinations as iterations (x10%)

a function of Tr(Q); (b) Theoretical and experimental steady-state optimuyrig. 6. EMSE for two CMAs and their convex and affine combinations (a)

m@xing parameter. The experimental 'points are indicatec aypd were ob- w1 (0) = [0.05, —0.4], w¥(0) = [1, 0], o = 0.2; (b) and (c)wT (0) =

tained by an ensemble-average of 50 independent runs. [0.05, 0.4], wZI (0) = [—0.6, 0.4], i = 3; (d) mixing parameterj| = pio =
0.016, at =4, a(0) =0, uy =0.4, p=0.9,e =5 x 10~?; (b) and (c) are
related to the same initialization; in (b) we show an enseraliirage when

5. CONCLUSION 12-CMA achieves a steady-state EM(SI)E of -20dB; in (c) the ense{gahskrage

We proposed and analyzed an affine combination of two CMA equiiyésPonds to the convergence-1b dB. The number of independent runs for
. - . . ..~ ""each situation is in parenthesis.
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