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ABSTRACT

We propose a new model for the behavior of the Least Mean Square

(LMS) algorithm when implemented in finite precision. We model

the adaptive filter coefficients as a Markov chain and determine its

transition probability matrix for the one-dimensional case. We also

determine conditions to avoid the so-called stopping phenomenon.

The proposed model eliminates the linearizations used in previous

models, accounts for saturation effects and leads to accurate esti-

mations of the mean-square error behavior. Monte Carlo simulation

results illustrate the quality of the proposed model.

1. INTRODUCTION

The LMS (Least Mean Square) is one of the preferred algorithms for

real-time adaptive system implementations because of its simplic-

ity and robustness [1, 2]. Real-time implementations frequently use

hardware that operates with fixed-point arithmetic. In these cases,

infinite precision models become inadequate. The accumulation of

quantization errors and other nonlinear effects inherent to finite pre-

cision operation can lead to behaviors that significantly deviate from

theoretical predictions based on infinite precision models. Thus, it

is of great interest to understand the behavior of the LMS algorithm

when implemented in finite precision.

The finite precision behavior of the LMS algorithm has been

studied by several authors [1]–[9]. In [3] and [4], analytical models

were derived based on a linearized approximation of the quantization

errors, which were modeled by additive white noise. The linearized

model may adequate during the early stages of adaptation, when the

error is large, and if saturation does not occur. After the initial acqui-

sition period, the algorithm behavior can no longer be predicted by

a linear model [8]. In [6]–[9], nonlinear models were derived which

incorporate the nonlinear nature of the quantization in the weight up-

date equation, leading to more accurate predictions of the algorithm

behavior. Such models, however, still do not consider the saturation

effects inherent to the finite precision processing.

In this paper we propose a new modeling technique for the be-

havior of the LMS algorithm. We model the adaptive weight vec-

tor as a state in a Markov chain, and study the signal statistics at

a given iteration conditioned on the state at the previous iteration.

We study the unidimensional case to provide insight on the new ap-

proach while keeping the mathematics simple. The new model ac-

counts for all nonlinearities, including saturation effects.

The paper is divided in four parts. In Section 2 we define the

problem and establish the notation. In Section 3 we determine the

conditional probability density function (pdf) of the adaptive weight

at iteration n, conditioned on the value of the weight at iteration

n − 1. In Section 4 conditions on the step size are given. In Section

5 we use the new model to study the mean-square error behavior.

Finally, we provide simulation results that verify the accuracy of the

theoretical model.

2. PROBLEM DEFINITION

Consider the system identification block diagram shown in Fig. 1.
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Fig. 1. System identification implemented in finite precision

In Fig. 1, xn is the input signal, zn is a zero-mean additive white

Gaussian noise. dn is the desired signal. ŵ is the unknown system

response and wn is the adaptive filter coefficient. Q1, Q2 and Q3

are identical b-bit quantizers. We assume for simplicity that all fi-

nite precision signals and coefficients are quantized with b bits. The

uniform quantization step is then ∆ = 21−b and the quantization

limits are [−1, 1−∆]. Fig. 2 illustrates the transfer characteristic of

the quantizers for b = 3. The input xn is a b-bit quantized discrete

uniform random signal such that −1 ≤ xn ≤ 1−∆. This is a good

model for signals in digital transmission systems. dQn is the quan-

tized version of dn, d̂Qn is the b-bit quantized adaptive filter output1.

eQn is the estimation error represented in b bits. There are N = 2b

levels at the quantizer outputs.

1In general, the output will have at least 2b bits before Q2, because of
the larger accumulator word-length in digital processors.
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Fig. 2. Relation between input and output for a 3 bits quantizer

2.1. LMS algorithm in finite precision

The LMS weight update equation is given by

wn+1 = Q{wn + yQn} (1)

where

yQn = Q{ µeQnxn }
eQn = Q{en}
en = dQn − d̂Qn

dQn = Q{ ŵxn + zn }
d̂Qn = Q{wnxn }

(2)

The pdf of xn is given by

fx(x) =
1

N

k=2(b−1)−1X
k=−2(b−1)

δ(x − k∆) (3)

and the pdf of zn is fz(z) = 1/
√

2πσz exp(−z2/2σ2
z). Note that

we need to define eQn and to include the quantization operation in

the definition of wn+1 because the values of en and wn + yQn can

exceed the saturation limits of the quantizer.

To study the dynamics of wn, we next determine the pdf of

wn+1 conditioned in wn.

3. STATISTICS OF THE ADAPTIVE WEIGHTS

Given (1) and (2), the statistics of wn+1 depends on the statistics of

yQn , eQn , dQn and d̂Qn . We start by studying the statistics of dQn.

3.1. Statistics of dQn

From (1), dQn = Q{dn} with dn = ŵxn + zn. Given ŵ, we define

xon = ŵxn. Then, dropping the subscript n for clarity, Pr{xo =
xo} = Pr{ŵx = xo} = Pr{x = xo/ŵ} and

fxo(xo) =
1

N

k=(2b−1)−1X
k=−2(b−1)

δ(xo − kŵ∆) (4)

Since xn and zn are independent random variables, the pdf of dn is

given by convolution of the individual pdfs. Using (4) and fz(z),

fd(d) =
1

Nσz

√
2π

k=2(b−1)−1X
k=−2(b−1)

e
−

„
d−ŵk∆√

2σz

«2

(5)

To determine the pdf of dQn , we determine the probability that

dn is in the i-th quantization interval [d1i , d2i ]. Denoting this prob-

ability Di, we have Di =
R d2i

d1i
fd(d)dd. Using (5) and integrating,

Di =
1

N

k=2(b−1)−1X
k=−2(b−1)

»
erf

„
d2i − kŵ∆

σz

«

− erf

„
d1i − kŵ∆

σz

«– (6)

with d1i = i∆ − 0.5∆ and d2i = i∆ + 0.5∆ (notice that the

lower limit of the first interval is −∞, and the upper limit of the last

interval is +∞). The pdf is then given by:

fdQ(dQ) =

i=2(b−1)−1X
i=−2(b−1)

Diδ(dQ − i∆) (7)

We now proceed to determine the statistics of eQn.

3.2. Conditional pdf of eQn

From Fig. 1 and from (2), eQn = Q{dQn − d̂Qn}, with d̂Qn =
Q{wnxn}. Random variables dQn and Q{wnxn} depend on xn

and on wn. Then, the conditional pdf of interest is feQ(eQ|k∆, wn).
Notice that en in (2) can exceed the upper and lower quanti-

zation limits. Then, we must set eQn = −1 for en < −1 and

eQn = 1 − ∆ for en > (1 − ∆).

We first determine the pdf of en. Considering that dQmax =

d̂Qmax = 1 − ∆ and d
Qmin = d̂

Qmin = −1, we have that

{en}max = dQmax − d̂
Qmin = 2 − ∆ and {en}min = d

Qmin −
d̂Qmax = −2 + ∆. The pdf of en will then be

fe {e|k∆, wn} =

ke=2b−1X
ke=−2b+1

Ekeδ(e − ke∆) (8)

where Eke is the probability of occurrence of the ke-th state of en.

To determine Eke , let d̂n1 = round{wnk}∆ where, for m ∈ Z,

round{x} = �x� =

(
m, x < m + 1

2

m + 1, x ≥ m + 1
2

(9)

As d̂n1 can exceed the quantizer limits when wn = −1 and xn =

−1, we define d̂n = d̂n1 −∆δ(1− d̂n1) and write en = dQn − d̂n.

Then,

Pr{en = e|k∆, wn} = Pr{dQn − d̂n|k∆, wn} =

Pr{dQn = e + d̂n|k∆, wn}
(10)

Using Pr{dQn} determined from (7), we have:

Eke =
1

N

»
erf

„
d2ke − ŵx

σz

«
− erf

„
d1ke − ŵx

σz

«–
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with (again, excluding the lower limit of the first interval and the

upper limit of the last interval) d2ke = dQn + 0.5∆ = ke∆ + d̂n +

0.5∆ and d1ke = dQn − 0.5∆ = ke∆ + d̂n − 0.5∆.
As we obtain eQn from en by saturation, the probability of oc-

currence of values beyond the quantization interval must be added

to the probability of occurrence of the extreme values in the eQn

distribution. Then, the pdf of eQn is given by:

feQ(eQ|k∆, wn)

=

k1=2(b−1)−1X
k1=−2(b−1)

Pr{eQ = k1∆|k∆, wn}δ(eQ − k1∆)
(11)

where

Pr{eQ = k1∆|k∆, wn}

=

8>>>>>>>><
>>>>>>>>:

Pr{e = k1∆|k∆, wn}, −1 < eQn < 1
ke=2b−1X

ke=2(b−1)−1

Pr{e = ke∆|k∆, wn}, eQn = 1 − ∆

ke=−2(b−1)X
ke=−2b+1

Pr{e = ke∆|k∆, wn}, eQn = −1

(12)

3.3. Conditional pdf of yQn

Consider yn = µeQnxn, with eQn and xn quantized values. Then,

yn = µke∆k∆ = µ(kek)∆2 = µky∆y (13)

where ky = ke k and ∆y = ∆2.

Since max{ky} occurs for min{ke} and min{k}, then kymax =

22(b−1). Now, min{ky} occurs for min{ke} and max{k} or vice-

versa. Then, kymin = −2(b−2)(2b − 2). Since yn = µeQnxn, we

have that eQn = yn/(µxn) = ky∆/k. Then,

Pr{yn = y|k∆, wn} = Pr{µeQnxn = y|k∆, wn}

= Pr

j
eQn =

ky∆

k

˛̨̨
˛k∆, wn

ff
(14)

where Pr{eQ|k∆, wn} can be determined from (11) and (12). Thus,

the pdf of yn can be determined from (14) for ky running from kymin

to kymax . However, as yn results from the multiplication of b-bit

numbers, its values will not be integer multiples of ∆. Quantizing

yn to b bits yields yQn , whose pdf is then given by

fyQ {yQ|k∆, wn}

=

kyQ
=2(b−1)−1X

kyQ
=−2(b−1)

Pr
˘
yQ = kyQ∆|k∆, wn

¯
δ(yQ − kyQ∆)

(15)

with

Pr{yQ = kyQ∆|k∆, wn}
= Pr{y ≥ y1|k∆}U(y − y1) − Pr{y ≥ y2|k∆}U(y − y2)

(16)

where y1 = kyQ∆−0.5∆, y2 = kyQ∆+0.5∆ and U(·) is the unit

step function.

Having determined the statistics of yQn , we proceed to deter-

mine the conditional pdf of wn+1.

3.4. Conditional pdf of wn+1

To simplify the expressions, we define ωn+1 = wn + yQn. Then,

ωn+1 = wn + Q{µeQnxn} = wn + Q{yn} and

Pr{ωn+1 = kw1∆|k∆, wn} = Pr{wn + yQ = kw1∆|k∆, wn}
= Pr{yQ = kw1∆ − wn|k∆, wn}

(17)

This probability can be determined from (15) and (16). Nevertheless,

to determine the statistics of wn+1 we must include the saturation

effects in (17). Then,

fw {wn+1|k∆, wn}

=

kw=2b−1−1X
kw=−2b−1

Pr{wn+1 = kw∆|k∆, wn}δ(wn+1 − kw∆)
(18)

where

Pr{wn+1 = kw∆|k∆, wn}

=

8>>>>>>>><
>>>>>>>>:

Pr{ωn+1 = kw∆|k∆, wn}, −1 < wn+1 < 1
kw1=2b−2X

kw1=2(b−1)−1

Pr{ωn+1 = kw1∆|k∆, wn}, wn+1 = 1 − ∆

kw1=−2(b−1)X
kw1=−2b

Pr{ωn+1 = kw1∆|k∆, wn}, wn+1 = −1

(19)

Eq. (19) allows the determination of the matrix of transition proba-

bilities Pw for the Markov chain wn. This matrix provides informa-

tion about the dynamics of the weights and about the convergence of

the mean-square estimation error (MSE).

4. CONDITION ON THE STEP SIZE

Once we have determined Pw for the Markov chain, we can deter-

mine conditions to be satisfied so that Pw has desirable properties,

which translate into an adequate behavior of the LMS algorithm in

finite precision. For instance, if wn is to converge to a unique op-

timum, Pw matrix must corresponds to an aperiodic and, at least, a

semi-ergodic Markov chain [10].

A typical problem with quantized adaptive algorithms is the pos-

sibility of premature stop or drastic slow-down [8]. To avoid this

phenomenon, we must guarantee that |yQn | = |Q{ µeQnxn }| ≥
∆ or, equivalently, that |µeQnxn| ≥ ∆/2. Considering a high

signal-to-noise ratio (SNR) (the worst case), |eQn | ≥ ∆ whenever

wn �= ŵ. Then the above condition requires |µxn| ≥ 1
2

. The min-

imum value of µ that satisfies this condition occur for |xn| = 1.

Thus, the condition on µ to avoid stopping is

µ ≥ 1

2
(20)

We use this limit in the following example.
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5. PERFORMANCE ESTIMATION

In this section we illustrate the use of the theoretical model to deter-

mine the finite precision LMS adaptive filter behavior.

Consider an example with SNR = 20dB, µ = 1 (thus, µ ≥
1/2), b = 3 bits (8 quantization levels), ŵ = 0.75, σ2

z = 0.0034
and w0 = −1. Using (18) and (19), we determine the transition

probabilities for wn. The matrix P∞
w (steady-state) is given by:

wn
↓

/wn+1 → [ −1 −0.75 −0.5 −0.25 0.00 0.25 0.50 0.75 ]

2
664

−1.00
−0.75
−0.50
−0.25
0.00
0.25
0.5
0.75

3
775 P∞

w =

2
664

0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.69
0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.69
0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.69
0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.69
0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.69
0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.69
0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.69
0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.69

3
775

This matrix corresponds to a semi-ergodic Markov chain [10]. It

shows that E[wn] = 0.5× 0.31 + 0.75× 0.69 = 0.6725 in steady-

state. The steady-state coefficient misadjustment is then −0.1%.

Using (11) and (12), it is possible to determine the probability of

the quantized error eQn for each state of wn. Therefore, we can

evaluate the MSE at the n-th iteration from the knowledge of P n
w .

Table 1 shows the MSE at iteration n for each possible value of wn.

Table 1. MSE for each state of wn

wn MSE
−1 0.5446

−0.75 0.5445
−0.5 0.4781
−0.25 0.3876

0 0.1966
0.25 0.0751
0.5 0.0204
0.75 0.0126

Then, to determine the MSE at iteration n we multiply the MSE

vector by the row of P n
w corresponding to the initial weight value

w0. For this example w0 = −1. Thus, the first line of P n
w must

be considered. In steady-state, we multiply the first row of P ∞
w by

the MSE vector in Table 1, yielding limn→∞ E[e2
n] = 0.015 or

-18.24dB. Fig. 3 shows the MSE obtained from Monte Carlo simu-

lations (100 runs) as the smooth line. The dots correspond to estima-

tions evaluated using the theoretical model. The matrices P n
w used

for the transient period are not shown for space limitations. Note

that there is excellent agreement between simulation and theory.
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Fig. 3. Monte Carlo simulations of eq.(1) (-) versus the MSE ob-

tained from theory (··).

6. CONCLUSIONS

This paper presented a new model for the behavior of the LMS algo-

rithm when implemented in finite precision. The adaptive filter coef-

ficients were modeled as a Markov chain and the matrix of transition

probabilities of the chain was determined for the one-dimensional

case. Linearizations used in other models available in the literature

are eliminated. The new model includes saturation effects in the

quantization process. The theoretical results can be used to deter-

mine the transient and steady-state behaviors of the adaptive weights

and MSE. Monte Carlo simulation results illustrate the quality of the

proposed model.
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