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ABSTRACT

We propose a new simple model for the input regressor
vectors in adaptive filters. This model allows more insight
on the effect of normalization on the convergence rate and
eigenvalue spread for the normalized least-mean-squares al-
gorithm (NLMS). Using the new model, we show that NLMS
will work best to reduce eigenvalue spread when the input
regressor vector points to all directions with equal probabil-
ity, but with direction-dependent power.

1. INTRODUCTION

The e-NLMS (normalized least-mean-squares) algorithm is
given by the following recursion [1]

e(n) = d(n) — X (n)" W (n), "
= # njen

where the scalar d(n) is known as the desired signal, the
vector X (n) € RM is the regressor (both have zero mean),
and the constant i > 0 is the step-size. The algorithm ob-
tained with ¢ = 0 is usually denominated normalized LMS
(NLMS). When the denominator is set to 1, we obtain the
standard LMS algorithm. An important matrix for the anal-

ysis of these algorithms is R = E X (n)X (n)T, the auto-
correlation of X (n) (E(-) is the expectation operator, and
T denotes transposition).

Normalization is useful mainly because it guarantees
stability if 0 < p < 2. Considerable effort has been spent
trying to find out whether and when normalization allows
faster convergence for a given level of misadjustment [2, 3,
4,5, 6]. As is well-known, a major problem with LMS is its
slow convergence rate when R has a large eigenvalue spread
(i.e., the ratio  between its largest and smallest eigenvalues
is much larger than unity). [6] showed that for e = 0 and
Gaussian d(n) and X (n), normalization reduces (or does
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not increase) . Given the difficulty of the problem, much
of the work in the above references is devoted to the case
where R = 021 (a multiple of the identity matrix, for which
x = 1). In this paper we propose a simple model, derived
from that given in [4], that gives more intuition on when
normalization will result in reduced eigenvalue spread and
faster convergence.

2. MEAN-SQUARE BEHAVIOR OF e-NLMS

Recalling that for stationary d(n) and X (n) there is a vector
W . (known as the Wiener solution) such that [1] d(n) =
X(n)TW, + eg(n), with E(ep(n)X (n)) = 0, we may
define the weight error vector V' (n) 2w, - W (n), and
obtain the error equation

e(n) = X (n)"V(n) + eo(n),
- pX (n)e(n) )

We shall concentrate on the behavior of the mean-square
error E(e(n)?) and of the weight error autocorrelation ma-
trix K(n) = E(V(n)V(n)T). Assuming, as usual, that
sequences { X (n) } and {eo(n)} are iid (independent, iden-
tically distributed) and independent of each other, one can
show that [3] (62 = Eeg(n)?, Tr(-) is the trace of a matrix)

E(e(n)?) = o2 + Tr(RK (), &)
Ko+ ) = K() = ufako) — sKOORLE
X ()X ()7 K () X ()X ()7
*E{ (c+ X(n)7 X (n))? }+&ﬁ’
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One can see from (4) that the convergence of K (n) is gov-
erned primarily by the eigenvalues of R, specially when
is small. The equivalent result for LMS is similar, but with
no divisions, so Ry and R, would be replaced by R.
Elegant results are given in [2, 3], reducing the expec-
tations defining R; and R to one-dimensional integrals for



the case of Gaussian d(n) and X (n). [6] extends the re-
sults, comparing the condition numbers of R (which affects
the convergence of LMS) and R; (which affects the con-
vergence speed of e-NLMS). The expressions for R; and
Ry and for the remaining term in (4) are however quite
complex, and closed-form expressions are provided only if
R = 02] (i.e., the entries of X (n) are uncorrelated), or for
contrived examples for which only one of the M eigenval-
ues \; of R differs from the others.

[5] considers the problem of finding the nonlinearity that
gives the best compromise between convergence speed and
steady-state error, concluding that one should choose (in our
notation) x = 1 and e large. However, the analysis assumes
again that R = o21.

Another approach is taken by [7, 8], which propose a
simple approximation to the expectations in (4), noting that
for large enough filter length M it holds that, for example,

EX(n)X(n)" R
E(e4+ X (n)TX(n)) e+ Tr(R)’

R1%

where Tr(R) is the trace of matrix R. This approximation
gives good results for the steady-state and reasonable results
for the transient behavior of the filter. The problem with the
transient is caused by approximating R; by a multiple of
R: the effect of eigenvalue-spread reduction observed in [6]
is not taken into account. For large filter lengths the ap-
proximation becomes better; however, for some eigenvalue
distributions [6] reports large differences for M =~ 200.

3. NEW INPUT MODEL

Recalling that the behavior of LMS with small step-size de-
pends only on R, [4] proposes using a fictitious input se-
quence X (n) that has autocorrelation R, but with a simple
structure. The proposed model is (| X ||> = X X)

X (n) = s(n)r(n)X(n), Q)

Pr{s(n) = £1} = 0.5, (+1 have equal probab.)
r(n) has the same distribution as || X (n)||,
Pr{X(n) =q;} = pi = mpmy, i=1... M.

Vector g, is the eigenvector of R with respect to eigenvalue
;. Since R is symmetric and positive-definite, it follows
that g7 q; = & ;, that is, {q;} is an orthonormal set. Vari-
ables s(n), r(n) and X'(n) are independent from each other,
and are also assumed iid. Note that the autocorrelation ma-
trix of such X (n) is R, since Er(n)? = Tr(R), and

where

M
E(X ()X (n)") = E(r(n)*) E(s(n)?) Y pigia] =
i=1

M
= Z Nig;q; = R.
i=1

The idea is to assume that the regressor vector is gen-
erated through (5). Since the model is very simple (X (n)
can assume only finitely many directions), it simplifies the
study of properties of adaptive filters. Using this model, [4]
derives several properties of LMS and NLMS and compares
both algorithms. The model however implicitly assumes the
worst-case situation for NLMS, since it predicts that

r(n)?
(T r(m?) MR)) i

R1%E<

As (5) implies that R, is a multiple of R, the model ignores
a possible reduction in eigenvalue spread given by the nor-
malization.

This restriction can be overcome as follows. Let \; be
the eigenvalues of R, v; the eigenvalues of Ry, and assume
that X (n) is iid and generated from

X (n) = s(n)X(n), (6)

where X' (n) = ayq, with probability p;, s(n) = %1, with

probability 0.5 each, o; > 0,7 = 1... M, and g, is as

before. s(n) and X'(n) are independent of each other.
Using this model, we have

M
E(X(n)X(n)") =) piaiqq] =R,
i=1

if p;a? = \; — that is, by choosing p; and «; properly, the
model’s autocorrelation matrix will be R. Similarly,

X(n)X(n)T) N
B =torte) =Y pi—5aq4dl =R
(e+||X<n>||2 ;p erazdidi =

if we choose a; and p; such that p;a? /(e + a?) = v;.
Substituting p;a? = \; above, we solve for «;, p;:
2 _ Ai

Q; = — =6 pi =
Vi

2>

This model needs knowledge of the v;, but as we shall see, it
gives more accurate approximations for the learning curves
of e-NLMS. This model makes an implicit assumption, that
the eigenvectors of R and of R; are the same — [2, 3] show
that this is exact for Gaussian X (n) and d(n).

4. WHEN DOESNORMALIZATION IMPLY
FASTER CONVERGENCE?

Using (6), we can understand a little better what is the influ-
ence of normalization on the convergence rate of e-NLMS.
Let us consider two situations with the same R but with dif-
ferent Rq:

A a} = E[X(n)|* = Tr(R), p; = Ai/ Tr(R). This
is model (5) again, with constant r(n) = «;. As we saw



above, this means that R, is a multiple of R. We can also
evaluate R for this situation, resulting

B Tr(R)
> (e+Tx(R)2 "
and with this, for small step-size we have

"

Kn+1)~ K(n)— mK(n)R—
[ (Pag
T Ot e

and the convergence rate of e-NLMS will be the same ob-
tained with LMS with ppys = p/(e + Tr(R)) (see [1]).
For the limit K (co) = lim,,—,~, K (n), we obtain

pog
e+ Tr(R) "~

n
2(e + Tr(R)) ool )

K(o0)R+ RK(00) =
and thus K (oco0) =~

. N uwTr(R)
and nILH;OEe(n)Q ~ op (1 + m) . (8)

B.p; = 1/M, a? = M\,;. Now we have

e My

Ife <« M) fori =1...M, Ry = Q/M, where Q =
Zi]‘il q,;q7 isan orthogonal matrix: QQ* = I, so its eigen-
value spread will be 1. If € is not so small, we would still
have a considerable reduction in the eigenvalue spread of
Ry, since (assuming A1 > A2 > ... App)

)\max(Rl) _ )\1(€+M>\]u) < i
Amin(R1)  Am(e+ M) = A’

In addition,

M
1 M
R :—E — " _q.q7F.
P M & (e 1 Mx)2 i

For small step-sizes, we have

M M
K(oo)S =2 g +3 — 2 _q.qTK(0) ~
i:16+M/\i van i:16+M/\i van
~ o i g4l 9
V2 A ®

From (3) we obtain, using Tr(K (n)q,;q) = qF K (n)gq,,

M
Ee(n)’ = o5+ Y (Mgl K(n)g,),

i=1

Multiplying (9) to the left by g7 and to the right by g,,, and
recalling that g7 q; = dx,

2
1o
2q} K(0)q;, = ﬁ~

Using the last two results we obtain

M
;i
lim Be(n)2~c2[1+53 —2 ). @
Jizg, Be(r) %(U?zlﬁml—) a0

Comparing cases A (8) and B (10), we note that both steady-
state mean-square errors are approximately equal for ¢ <«
MMy and for € > Tr(R), and that (10) is a little larger
for intermediate values of e. However, specially for small e,
case B will converge much faster than case A.

We conclude that normalization is particularly useful
when the eigenvalue spread of R is caused by a mecha-
nism similar to case B: all directions in R are “visited” by
X (n) with similar probability, but the amplitude of X (n) is
direction-dependent, resulting in a pattern of equal probabil-
ity p; and very dissimilar a;. On the other hand, there will
be little convergence-rate gain when the eigenvalue spread
results from a mechanism similar to case A, that is, when
some directions in R are “visited” less often by X (n),
but always with the same average amplitude, giving a pat-
tern of equal-size «; and very dissimilar p;.

5. EXAMPLESAND SIMULATIONS

Our new model may be used to understand what happens
with a filter in some situations. For example, consider a
two-tap filter with X (n) = [z(n) a(n—1)]", z(n) =
arz(n — 1) + v(n), with v(n) a white-noise Gaussian se-
guence with variance such that E z(n)? = 1. If a; is close
to 1, z(n) and z(n—1) will be highly correlated, and R will
be nearly singular. Normalization will reduce eigenvalue
spread to a certain degree: X (n) will tend to stay close to
the direction [1 1]7 (which is an eigenvector of R). For
X (n) to point to the other eigenvector, [1 —1]7, 2(n — 1)
must necessarily be small (otherwise, given the large value
of aq, the probability of z(n) and z(n — 1) having differ-
ent signs would be very small). Therefore, there is a mix-
ture between cases A and B: normalization will correct the
problem of small magnitude, but not the small probability
problem.

Fig. 1 shows this effect. For a; = 0.99, e = 1072, and
M = 2, we plotted the points (z(n), z(n — 1)) (a) and
(#(n)/(e +2(n)? + x(n — 1)%), 2(n — 1)/ (e + 2(n)* +
z(n —1)?)) (b) for 10* points. The eigenvalue spread was
reduced from 199 for R to ~ 19 for R;.

Our second example is an e-NLMS with M = 30, u =
e=0.1,and

2(n —29)])7,
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Fig. 1. Plots of points (z(n), z(n — 1)) (a) and

(z(n)/(z(n)?* +2(n—1)*), z(n—1)/(z(n)*+z(n—1)?))
(b) for M = 2 with e = 0.01 and a; = 0.99 (see text).

with x(n) taken from an AR filter with transfer function
H(z) = bo/(1-0.327140.8272), with by such that E x(n)?
1. The filter was used to estimate an FIR filter with impulse
response given by a von Hann window normalized so that
WIw, =1, with 63 = 1075. Fig. 2 shows a simula-
tion (an average of 1,000 runs), the model proposed in [8],
and an approximation obtained using (6) (with R, estimated
from 3 x 10° points, and using the new model to approxi-
mate Rs.)

Ee(n)?

Simulation
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1 New model
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Fig. 2. Learning curves for e-NLMS with M = 30, u = 0.1
and e = 0.1 (see text).

We performed simulations for A up to 200, and for . up
to 1. The new model gives closer predictions for all cases,
although the difference between our model and that of [8]
indeed gets smaller for larger M.

6. CONCLUSIONS

We proposed a new model for the input regressor vector in
adaptive filters, modifying an idea first suggested in [4]. Our
new model allows a better understanding of the influence
of normalization on the convergence rate of a filter. The
new model also gives accurate predictions for the learning
curves, at the cost of needing the evaluation of the eigenval-
ues of the normalized autocorrelation matrix R .
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