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Abstract

We treat here the computation of the learning curves of
the LMS algorithm by simulation (that is, the computa-
tion of the MSE as a function of the time instant). Since
closed-form analytic expressions for learning curves are
quite hard to obtain in most practical situations, one usu-
ally approximates learning curves by performing several re-
peated experiments and by averaging the resulting squared-
error curves. We show, both by examples and analytically,
that when the step-size is large, this approximation of the
MSE can be misleading. This is contrary to what one would
expect, given the excellent agreement one obtains between
simulations and theory for small step-sizes and independent
inputs, even using only as few as 10 experiments. Our the-
oretical analysis explains both the good results obtained for
small step-sizes, and the discrepancies that arise for large
step-sizes.

1. Introduction
An important performance measure for adaptive filters is
the mean-square error (MSE) defined by

Ee(n)? =E(y(n) - zzwn_1)2,

where {y(n)} is the desired sequence, {®,} is the input
(regressor) sequence, and w,—; is the weight estimate at
time n — 1. The signal y(n) is assumed to be generated via

y(n) = Tw, +v(n),

for some unknown vector w, that should be estimated, and
where {v(n)} denotes measurement noise.
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The famed LMS algorithm updates the weight estimates
w,, by means of the recursion [4, 10]

Wp = Wn—1 + pne(n),

for some initial condition wy and using a positive step-size
parameter u.

The plot of the MSE as a function of the time n is
known as the learning curve of the algorithm, and it is de-
pendent on the step-size x. In general it is not a simple
task to find analytical expressions for the learning curve
or for the steady-state MSE, except when the assumptions
of independence theory [4, 10] are used. In practice, the
learning curve is estimated by experimentation or repeated
simulations. More specifically, several independent simula-
tions are performed, say L of them. In each of the exper-
iments, the LMS algorithm is applied for N iterations, al-
ways starting from the same initial condition and under the
same statistical conditions for the sequences {y(n)} and
{zn}. From each experiment i, a sample curve e (n),
1 < n < N is obtained. After all L experiments are com-
pleted, an approximation for the learning curve is computed
via an averaged curve,

L
Ee(n)? ~ E(n) = %Ze(i)(n)z, 1<n<N.
i=1

E(n) is referred to as an ensemble-average learning curve.
If the step-size p is small, an average of few tens of ex-
periments is enough to obtain experimental learning curves
E(n) that are close to the one predicted by independence
theory. This one in turn can be shown to approximate the
actual learning curve E e(n)? (i.e., in the absence of the in-
dependence assumptions) to first order in y [5].

To exemplify this behavior, consider a length M = 10
LMS adaptive filter operating with Gaussian inputs with co-
variance matrix Ea:k:z:f = I, step-size u = 0.08, and no
noise. The learning curve for this case was computed the-
oretically in [6]. In Fig. 1 we plot this theoretical curve, in



addition to an ensemble-average learning curve that is ob-
tained from the average of L = 100 simulations. Note how
both plots are close to each other.
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Figure 1. Learning curves computed by simu-
lation and theoretically, with Gaussian iid in-
puts, M = 10, . = 0.08, and L = 100.

Given the good agreement for sufficiently small step-
sizes between the ensemble-average learning curve and the
actual learning curve, it is now common in the literature to
use the average of few independent experiments to predict
or confirm theoretical results from simulation results (a few
relatively recent examples include {2, 9], which use 10-20
independent experiments, and [7, 8], which use 100 inde-
pendent experiments).

In this paper, we show by examples and also analytically
that for larger step-sizes, it may be necessary to perform a
considerably larger number of experiments to correctly ap-
proximate the average Ee(n)2. In other words, we claim
that for large step-sizes more care is needed while interpret-
ing ensemble-average learning curves. These curves can
lead to erroneous conclusions unless a large enough num-
ber of experiments are averaged (at times of the order of
tens of thousands or higher). We study this phenomenon
and provide a theoretical justification for its occurrence.

2. Simulations and examples

We start with a few examples. Consider again the adap-
tive LMS filter of length M = 10, with Gaussian input
(i.e., the entries of &, are Gaussian distributed, with zero
mean and variance 1), and Gaussian noise v(n) with vari-
ance 02 = 10~%. In this case, due to independence assump-
tions, it is possible to compute the learning curve E e(n)?
exactly. In Fig. 2, we plot this theoretical curve, as well as
ensemble-average curves computed with L = 10, L = 100,
and L = 10,000, now all with step-size 4 = 0.16 (which
is twice the value of the step-size used to generate Fig. 1).
Note how all simulation curves are noticeably far (and,
most of the time, below) the (dotted) theoretical curve, al-
though the simulations get closer to the theoretical curve
as L is increased. Note also that the simulation curves con-

Figure 2. Learning curves computed by sim-
ulation and theoretically, with Gaussian inde-
pendent input vectors, Gaussian noise with
a-?, =10"%, M =10, u = 0.16, and L = 10,
L = 100,and L = 104,

verge faster than the theoretical curve. This situation should
be contrasted with that of Fig. 1, where an almost-perfect
agreement was obtained between theory and simulation.

The curve for L = 10 in Fig. 2 (the darker line) also
shows the mechanism by which the average E e(n)? is at-
tained — for most of the time, the curve L = 10 is be-
low average, but occasionally there are bursts of large error
(in this case the largest one is around n = 500). These
(relatively rare) large bursts, averaged over the ensemble of
curves e(?)(n), increase the average to the level predicted
by theory.

When the independence assumptions do not hold,
these effects still occur. In the next example, the input
vectors &, are not iid, but have a delay-line structure. Let
the sequence from which the elements of x, are taken
be {an}. Assuming that this sequence is iid uniformly
distributed around —0.5 and 0.5, for M = 2, the results of
[3] can be used to obtain, analytically, the learning curve
Ee(n)?. In Fig. 3 we plot this theoretical curve, as well as
ensemble-average curves for L = 100 to L = 10, 000, with
step-size p = 8.3.

With this value of p, E e(n)? diverges (and the analytical
learning curve indeed increases with n), but the simulations
show + %, e®(n)? converging (see Fig. 3 (a)). For L =
100, there is no hint of divergence (b). Only for L = 1,000
and 10,000 we can see that there is something wrong; the
curve in (c) is increasing fromn = 1ton = 5, and the
curve in (d) is increasing fromn = 1 ton = 10.

These simulations show that the behavior of the
ensemble-average curves may be significantly different than
that of the theoretical learning curves, if the step-size is
large. This may lead to wrong conclusions when one at-
tempts to predict performance from simulation results.

1172



100 (a)

10

E ek’

1072°°

o 200

©) L=1000

E ek’

o 20 40 60 80

e ® L=100
10°
=
k3
w
10° }
10
o 20 40 60 80
K
. (d) L=10000
10
10° ///
o T~
= \ﬁ\’\’\\
ws 10° .\\J. )
N\ NP
107°
() 20 40 60 80

Figure 3. Learning curves computed by simulation and theoretically, with tap-delayed input vectors,
M =2,p=283,and L =100, L = 1,000, and L = 10,000 (a); theoretical curve and L = 100 only
(b); theoretical and L = 1000 only (c); theoretical and L = 10, 000 only (d).

In addition, the simulations are consistently below the
theoretical curves, and in fact after some time they tend to
converge faster than predicted by theory (around n = 0, the
convergence rate predicted by the theory is a good approx-
imation). In the next sections we study the reasons for this
behavior, assuming the filter length is 1 (M = 1) and that
the input is iid.

3. Theoretical analysis in the scalar case

A simple model is used in this section to explain the dif-
ferences observed between the simulations and theoretical
results. More specifically, we study the scalar LMS recur-
sion with independent and identically-distributed stationary
inputs {wn} We also assume that z,, is uniformly dis-
tributed between —a and «, and that the noise is zero.

3.1 Condition for mean-square stability

With the above assumptions in mind, we square both
sides of the LMS error equation to obtain

@) = (1 - pal)’ @}, )
where W, = w, —w.. This is a stochastic difference equa-
tion relating two positive quantities, @2 and @2 _,. The
relation between both quantities is a random multiplicative
factor, which we denote by u(n) = (1 — umi)z. To sim-
plify the notation, we also denote Y, = @?2. Our simplified

model is then
Y, = u(n)Ynoy = You(l)u(2)...u(n). 2)

Note that from our assumptions on {&,}, it follows that
the u(n) are iid. Our experiments in the last section showed
that there is a distinction between the plots of EY,, and of
+ E,L:l Y,V over several experiments.

In this section we study this model, assuming that the ini-
tial condition, Y, = @3, is deterministic. The first task is to
find under which conditions E Y,, converges. Note first that
the variance of @, is 2 = ?/3 and its fourth-order mo-
ment is 04 = ot /5. From (2), and using the independence
of the u(z), we obtain

2 2 41"m
EY, = [I—M%+u2%} Yo. 3)

From this equation, one concludes that EY,, converges to
0 if, and only if, the coefficient on the right-hand side is
strictly less than 1, ie., 0 < po? < 10/3. Observe also
from EY,, = Eu(n)EY,_; that the logarithm of the rate
of convergence of EY,, is equal to In Eu(n) (a result that
we shall invoke later).

What we just did was the standard mean-square stability
analysis using independence theory. The theory thus tells
us that the recursion (1) will be mean-square stable if, and
only if, 0 < pa? < 10/3.
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3.2 Behavior of a sample curve

We now study the behavior of a typical curve Y,. We
show in the remainder of this section that, for large n and
large step-size u, Yy, decays (or increases) at a rate signif-
icantly different than that of EY,, predicted by (3). We
obtain this result by studying conditions under which Y,
converges to zero with probability one (or almost surely).

Compute the logarithm of Yy,

n
InY, =Y+ Inu(),
i=1
which is therefore a sum of independent and identically dis-
tributed random variables with bounded variance (this last
fact follows from the distribution of the u(¢)). Therefore,
we can use the law of large numbers [1] to conclude that

ln:" il E(lnu(i))éE(lnu). 4

That is, for large n, (In Y, )/n will almost surely converge
to a constant, Elnu. We evaluated this expectation as a
function of pa?, Elnu=

{ln(l - ,u,az)2 Varctanh( op) —4, pa®<l,

In(1 - pa ) + Va.rccoth(a‘/ﬁ) —-4, po?>1,

and plotted the result in Fig. 4 further ahead.

We now need to translate the above result directly in
terms of Yy, instead of its logarithm. To do so, we need
to find how fast is the convergence of (InY},) /n to its limit.
‘We use a result from [1, pp. 66 and 437] stating that

. InY, —-InY; — nE(Inu)
lim sup

n—o0 ni/2(Inlnn)*/?

=vV20my as. (5

where o, ,, is the variance of Inu. This relation can be in-
terpreted as follows. Denote by w the experiment of choos-

ing a sequence {;},_ . For each experiment w, compute

the sequence Y, (w) for alln > 1 (starting always from Yp). -

Equation (5) implies that, with probability one (over the ex-
periments w), there exists a positive number K (w) such that
forall n > K (w), Y,(w) satisfies

InY,(w) =nE(lnu) + nY, + &(n),
where the error §(n) satisfies
[6(n)| < V2 g1p yn*/? (Inlnn) 12,

We stress that K (w) depends on the experiment w.
Therefore, (4) implies that, with probability one, the
curve (n, Y, (w)) will eventually enter (and stay in) the set

0= {(n> y(n)) . y(n) < YbenElnue\/ann(lnn)o-lnu}_
(6)

Unfortunately, the convergence is not uniform, that is,
there is no finite K such that for almost all experiments,
(n, Ya(w)) € © forn > K.

Since Elnu does not depend on the time n, the first
exponential in (6) dominates the second when n is large,
which implies that

fn) & A "Bt omuy/2nin(lnn) _y g

if, and only if, Elnu < 0.

Note also that for large n, when (n,Y,) is already close
to or inside ©, the rate of convergence of Y, is dictated pri-
marily by the term e" £ % This implies that, for large n,
the rate of convergence of Y, = 4?2 is given primarily by

2
- 2
e? tn(1-ux3) . We conclude that Y,, converges to zero a.s.

if, and only if, ElInu < 0. This leads to a different condi-
tion on pa? than the one derived for mean-square stability.
Moreover, the logarithm of the rate of convergence of Y,, is
equal to FInu. This should be compared with In Eu, the
logarithm of the rate of convergence of EY,,. One of the
implications of this result is that Y, converges to zero with
probability one for 10/3 < pa? < 6.1, even though EY,,
diverges for ua? in that range.

Refer now to Fig. 4 and compare the plots of Eln v as
a function of ua? (the continuous line in the figure) and
of In(Eu) (which corresponds to the logarithm of the rate
of convergence of EY,, from (3)). Note that both plots are
close together for small pa?, but they become significantly
different as pa? increases. In particular, they are quite dif-
ferent at the minima of each plot (which correspond to the
fastest rates of convergence). In the ranges of a2 for which
the curves are significantly different, the rate of conver-
gence of Y, will be significantly different than the rate of
convergence of EY,, for large n.

With this result we can explain why the ensemble-
average curves computed for small step sizes are close to
the “theoretical” predictions using E @2 ., and why these
plots are so different for large step-sizes.

For small step-sizes, the rates of convergence of both
Efvf1 and of > are, with probability one, very close, so
we expect that an average of a few simulations will produce
a reasonable approximation for E @2,

For large pa? and large n, with probability one the rate
of convergence of ﬁrf, is significantly different (and faster)
than (3), so we should expect to need a larger number of
simulations to obtain a good approximation to E 2.

Another interesting observation is that Elnu is nega-
tive well beyond the point where In (E u) becomes positive.
This implies that there is a range of step-sizes for which Y,
converges to zero with probability one, but EY,, diverges.
This explains the simulations in Fig. 3.

This is not a paradox. Since the convergence is not uni-
form, there is a small (but nonzero) probability that a sam-
ple curve Y,, will exist such that it assumes very large values
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Figure 4. Graphs of EIn(1 — uwg)’ (continu-
ous line) and In E(1 — px2)? (broken line).

for a long interval of time before converging to zero. The
following theorem has been proved.

Theorem 1. Consider the scalar LMS algorithm with iid
inputs {wn} Assume that the noise is identically zero
and that T, is a stationary random variable uniformly dis-
tributed between —a and o. Then, with probability one,
there is a finite constant K (dependent on the realization)
such that (n, W?) stays inside the set © defined above for
alln > K. In particular, '&;i converges to zero with proba-
bility one if and only if Eln(1 — ym%)z <0.

3.3 Differences between theory and simulation

The above result can be used to understand the differ-
ences between theoretical and simulated learning curves for
large step-sizes, as we now explain. Let {wz},L:l be L in-
dependent experiments, with the corresponding Yy, (w;) and
K(w;), and let Y, I L, Ya(wi) be the ensemble-
averaged learning curve. Since (n,Yn(w;)) stays inside
© for n > K(w), (n,¥,) will also stay inside © for
n > K = sup K (w;). This means that eventually (for large
enough n), all ensemble-averaged learning curves will stay
far from the average EY,, (if ua? is large). Nevertheless,
the more simulations we average, the larger we expect K to
be, so the difference between the ensemble-averaged curves
and the true average will be significant only for increasingly
large n.

Consider now the square error e(n)? = z2@?2. Since
x?2 is stationary and independent of w32, the qualitative be-
havior of e(n)? is the same as that of @2, that is, e(n)?
converges when ﬁyz does, and the rates of convergence are
the same.

4. Concluding remarks

We have shown that there are situations in which the be-
havior of the LMS errors are significantly different than that
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of their averages. These situations arise when one uses large
step-sizes (to obtain faster convergence). Our simulations
and analysis show that in some cases, it may be necessary
to average a significantly large number of simulations to ob-
tain a good approximation to the mean-square behavior of
an adaptive filter. In particular, one must be careful when
analyzing ensemble-average learning curves when the step-
size is large.

Looking at the same results from another perspective, we
might conclude that, for large step-size, the average perfor-
mance may not be a good design parameter.

Although our analysis was performed only for the scalar
LMS algorithm, one should expect to observe similar
behavior in several other gradient-based algorithms and
their variants, such as signed-LMS, leaky-LMS, CMA, etc.
We are currently working on the extension of the analysis
to the vector case and to other signal distributions.
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