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Abstract

We propose a modified leaky- LMS ﬁlter that ensures sta-
bility of the estimates w(k) in the presence of bounded
noise, without introducing any bias term and with the added
cost of only a comparison and a multiplication per itera-
tion when compared to the classical LMS algorithm. The
new algorithm is further shown to converge for l, noise and
persistently excztmg regressors. It also provides bounded
estimates even'in finite precision arithmetic. ‘The stabthy
and convergence properties of the new algorithm are es-
tablished through a determmzsttc analysis that is based on
the Lyapunov theory for the stabtlzty of nonlmear difference
equanons

1. Ihtrdduction |

The leaky-LMS .algorithm is a widely. used adaptive al-
gorithm [1]. It was.proposed to stabilize the weight drift
problem (i.e., the possibility of unbounded weight esti-
mates) that may occur in LMS in the presence of noise or
in finite wordlength implementations, causing overflow and
degraded performance in many applications.

However, as stated on p. 746 of [5], the prevention of
the weight drift problem by the leaky LMS algorithm “is at-
tained at the expense of an increase in hardware cost and at
the expense of a degradation in performance compared to
the infinite-precision form of the conventional LMS algo-
rithm.”’

The purpose of this paper is to illustrate these varied ef-
fects and to propose a' modification to leaky-LMS that elim-
inates the above expenses.-More specifically, the algorithm
proposed herein solves the weight drift problem without
performance degradation and essentially at the same com-
putational cost per iteration as LMS itself. Its added cost
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is only a single comparisen and a single multiplication per
iteration, which is negligible when compared to an over-
all cost of approximately 4V multiplications and additions
that are required per iteration by LMS for an M —th order
filter.

1.1. The Weight Drift and Bias Problems

In this section, we demonstratg the weight drift problem,
and the performance degradation 1ncurred by leaky LMS,
by constricting a particular example.

To begin with, recall that the standard LMS recursion is
given by :

wik) = wik—1)+plx®e®, 1)
k) = (k) —x(k)Twik—1), @

where w(k) is the weight vector-estimate, x(k)'is the re-
gressor vector (assumed to be a bounded:sequence through-
out this paper), u(k) is the positive step-size parameter,
y(k) is the measurement variable, and €(k) is thé output
estimation error, The measurements {y(k)} are assumed to
arise from a linear model of the form '

VB =MW o) ®)

where w is the true wexght vector that we wish to estlmate
and v(k) is a bounded noise sequence.

The weight drift problem:of LMS can be seen from the
following contrived example. Assume, at each time instant
k, the regression vector x(k) is orthogonal to the weight
error vector w(k — 1) = w — w(k — 1). It then follows
that y(k) — x(k)Tw(k ~ 1) = v(k). Consequently, the
weight error vector satisfies the update- equation w(k) =
W(k — 1) + p(k)x(k)v(k), and taking norms,

W = 1% (k — DIIZ + 1 (k) Ix(K)l50° (k).

Solving this recursion for ||W(NV)||2, we get

H2 = Z#

Mix(B)|130* (k) + 1% (0)]]5 -



Algorithm Stability | Convergence for | Complexity | Condition on | Rate of convergence
l,-noise and PE step-size (with same step-size)

LMS NO YES Oo4M) | B<x2 —

Leaky LMS YES NO O(GM) B < 2 —=2ap | does not converge

Switching-o YES YES O(6M) B <2—"6ag comparable to LMS.

Max-Tap Leaky YES YES oGM) |p<2- %ao comparable to LMS

Circular Leaky YES YES o4M) | B< —\l/;v"‘;;l— ‘ comparable to LMS

Table 1. Comparison of various algorithms (the conditions for stability are for infinite-precision
arithmetic; for finite-precision results, see Section 5).

This relation shows that ||[W(N)||2 — oo with N, if
u(k)||x(k)||2v(k) is not a finite-energy sequence.

This situation does not occur when leaky-LMS is used.
This is because the leaky-LMS algorithm employs a leakage
parameter 0 < a < 1 (see, e.g., [1, 2, 10, 12]):

w(k) = (1 - a)w(k — 1) + p(k)x(k)e(k) 4
In this case, and for the same example, we obtain
W ()13 = (1 — a)llW(k — DIIZ + g2 (&) l|x(k)|[Zv? (k) ,

so || (k)||% remains bounded for 0 < o < 1.

More generally, by a small modification of the argu-
ments of this paper (and also the arguments of [6]), the
following fact can be established. Assume the sequence
w(k)x(k)Tx(k) has a finite upper bound 83, viz.,

B = sup { u(k)x(k)"x(k)} . o)
k>0 ‘ :

Lemma 1 For the leaky-LMS algorithm, if 3 < 2—2a then
|W(k)||2 remains bounded for a bounded noise sequence
v(k).
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Figure 1. Learning curves (e(k)) for LMS,
leaky-LMS and switching-c algorithms.
Adaptive equalization example with gaussian
noise, averaged over 100 runs. In all cases

x_(%%k_) =0.03,a0=5-10"5%and M = 7.

waéver, the leaky-LMS algorithm adds a bias to the
solution, which can be seen as follows. The corresponding
weight-error equation is

w(k) = ((1-a) - pk)x(k)x(k)T) (k- 1)
+ ap(k)w - p(e)x(k)o(k) - ®

Assuming zero noise and infinite precision arithmetic, the
fixed point of the difference equation (6) must satisfy

(oI + p(k)x(k)x(k)T) W = aw Q)

for all k, which clearly has no solution in general (except
for very specific x(k)) when « is nonzero. This means that
for the leaky-LMS algorithm, the weight error W (k—1) will
not converge to zero, even under persistence of excitation.
Only when « is zero does (6) have a fixed-point at w = 0.
The first two lines of Table 1 compare the performances
of LMS and leaky LMS. For an M —th order adaptive filter,
the computational cost increases from O(4M) to O(5M)
for leaky-LMS. Moreover, the simulation in Fig. 1 shows
the degradation in performance due to the bias problem.

1.2. The Switching-o Algorithm

The fact that the leakage term in (4) is only necessary
when w(k) becomes too large suggests that we replace the
constant leakage parameter a by a function-a;(w(k)) such
that 0;;(0) = 0 and a,(w(k)) = ap when ||w(k)||2 is too
large. :

In fact, a solution of this kind to the weight drift and
bias problems has been suggested in the adaptive control
literature and is known as the switching-o algorithm [6]. It
employs a time-variant leakage parameter that is defined as
a function of the weight estimate: .

w(k) = [L—as(w(k-1))]w(k—1)+u(k)x(k)e(k) , (8)
where a; is a function of w(k — 1) defined as follows:

ao if [[w(k)l|2 >

ag(w(k)) = { 0 otherwise ®
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for & bound' Q. that must be larger thaw | wi|x to guarantee
as(w(k)) = 0 when w(k) = w. The following result can:
beestablished: by a modification: of the arguments of [6] It
assures bounded:and unbidsed estimates:

Lemma 2 For the switching-o” algorithm; if 3 < 2—6c:and
Qs > || Wiz then | W (k)||x remuains bounded for a bounded
noise sequerice v(k) Moreover in the noiseless case’ and:
with persistently exciting regressors, W(E) = 0.

Moreover, the arguments'of the:current paper also'cdn be

used: to' establish’ other properties of the switching-¢ algo-
rithm, viz., that it also  provides bounded weight estimates

in: finite precision: implementations: and: that it guarantees:
convergence of the' weight estimates ter the true weight vec-

tor for PE regressors-and noise in l,;; We shall not-establish

these facts hiere;: but rather focus on the iew modifications

that: we' propose: The arguments for these new dlgorithims
are more involved and they can: be: specialized for the case
of the switching:o algorithm:.

In' any’ case; note’ that: while: the switching-o' modifica-
tionsolves the- weight' drift and bids: problems (see Fig. I
for a: comparison: of the: performances: of standard’ LMS;

leaky-LMS; and'switching-¢- algorithms); it does not solve

the increased computational’ (hardware) cost problem: The
third line of Table 1 shows: that: the cost: per iteration’ for
switching=o" is:O{6M ).

2. New Leaky LMS Algovithmis

In' this' section' we' propose’ new’ leakage algorithins,-
which'we referto-as circular leaky and max-tap leaky LMS;

withthe following properties: i):they solve the weight drift
problem, ii)-they solve the bias:problem;-iii) they- are stable
in finite precision-implementations; iv) they guarattee con-
vergence of the: welght estimates: to the- true: weight: vector
for PE regressorsiand noise indy, (e, 07 [u(R)|P < oo
foriany 1' < p- << 00)j-vil) c1rcular leaky: has the samie com-
putational’ requlrements asLMS (ite.,-O(4M) computations

per iteration); and'v.2) max-tap leaky has the sartie compu--
tational requiremients as leaky-L.MS«(O(5M) computations:

per iteration)..
2.1. Circular Leaky LMS: Algorithm’

The circulai version operates-as follows: - it first updates

the weight estimate through'a’standard LMS récursion’and

obtains an intermediate weight vector estimate q(k), say
a(k) =

It then modifies a'single entry of (k) /to obtain'w(k). The
choice of whichientry to modify-is done sequentially: The

wk = 1)+ p(k)x®)e®) . 10)

algorithim: starts' by modifying the top éntey of
lowed by the second entryy of>q(1) and so’ o, until: the 1ast
entry of (M = 1) at which: point the algoril tarns o
the top-entry’ of (M) atid répeats: the process. This can:be
described as follows:

wik) = [[=cg(w(k= 1))e,éek]w(k 1)+u(k)x(k)€((k) y
FI)

where'k = k'mod M (the reiiainder of k /M) and
ao if |e W(k‘)i > 0%
as(wik)) = { ' othér\mse ’ 12)

ek is- the k: th canomcal basxs vector and' Nisa posmvéi

ey in the welght estithate: at d:timie: Morsovet;. this* s précess:
is‘tepeuted circularly.

__Circular L.
-Standard LMS’

3060"

500° 1006 1500

equahzatlon example with: gaus‘smqé noise;:
averaged* over 100' runs: In all cases
- = 003,06 = 5 1075, and M = 7.

(k)T (k)
2.2. Max-Tap Leaky EMS' Algorithri

The:Max-Tap version: applies the' leakage corréction’ to-
the tap entry that correspondsto’ |[w||oo, iie: to'the largest’
entry in magnitude. The: update fort’ in’ thi§ case’ caii’ be
written as follows. Let e, Be-the basis vector with:a:one’
at the position of the largestenitty in'magnitudé of w(k—1);
Then

w(k) = [I = ds(w(k'= 1)) emaxe Wik~ 1)+
p(R)R(BE(R): - (13)
where

and' Q- is'a positive constart;
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2.3. Comparison with LMS

The last two lines of Table 1 compare the new leaky al-
gorithms (circular and max-tap) to the standard LMS algo-
rithm. We see that the circular version has the same com-
putational cost, while max-tap requires O(5M) computa-
tions per iteration. Moreover, the performances of both
algorithms are comparable to. LMS as shown in Fig. 2.
We: should add though: that the condition listed in: Table 1
for the step-size of circular leaky, viz., u(k)||x(k)||2 <
(1 ~ ap)/M*3, is in terms of the filter size M.

3. Stability in Infinite-Precision Arithmetic

In:the remaining parts of this paper, we outline the main
arguments that establish the properties mentioned earlier
about the modified leaky L.MS algorithms.

The derivation relies on the Lyapunov theory-for the sta-
bility of nonlinear difference equations. It involves some
tedious: calculations that we- omit for obvious reasons of
brevity.

To study the stability of (11), we define the Lyapunov
function candidate V (k) =
compute its one-step difference AV (k) = V (k) -V (k—1).
Theorem 1 Under bounded noise v(k) and in infinite-
precision arithmetic, the circular leaky - LMS algorithm (11)
guarantees bounded weight estimates w (k) if the following
conditions.are satisfied:

a +VMMpB <1 (15)
Bag+B<2 (16)
Q> 3wl amn

Proof: Using (11), (17), and applying Young’s inequality
[7], we get after some algebra

Vk+M—-1)—V(k—1) <

M-1 M=-1
—c1 z as(w(k + )@y, . (k +n)+ c2 Z vk +n+1),
n=0 n=0
where c2 = supyso{p(k)} [B + £(1 + 2a08)],
20 10
—[2 5—‘“ 0—“3—K] (18)

and K is any positive number. Under the conditions stated
in the body of the theorem, we can show that there exists a
finite Vo > 0 such that whenever V' (k —~ 1) exceeds Vg, the
difference V(k + M — 1) — V (k — 1) will be negative. The
details are omitted.

[ |

A similar result holds for the max-tap leaky LMS.

V(W(k)) = w(k)Tw(k) and

Theorem:2 Under bounded noise v(k) and in infinite-
precision arithmetic, the max-tap leaky LMS algorithm (13)
guarantees bounded weight estimates w(k) if the following
conditions are satisfied:

23900 +8<2 (19)
Q1 > 3(|wllo (20)

4. Convergence for [,-Noise

In this section we assume that the regression: vectors
x(k) are persistently exciting (PE) and prove that, under
this condition;, the origin of the error equation of the circu-
lar leaky-LMS algorithm: is. exponentially stable, viz., the
origin of the equation

- p(k)x(k)x (k)T o (k — 1)+
+asezel w — p(k)x(k)v(k) . 21y

Using this result, we: can establish the convergence of the

algorithm under /,, noise for any 1 < p < oo. [With minor

alterations of the arguments; the results also hold' for max-
tap and switching-o LLMS algorithms].

w(k) =[I— c»z_,;e,ce,c

Theorem 3 Assume the regression vectors x(k) are PE,
and conditions (16) and (17):are satisfied. It then follows,
in‘the noiseless case, that the origin of (21) is exponentially
stable. Moreover, when u(k) is present, the weight error
vector satisfies-a contractive relation of the form:

on|[W(N)I + 1 o I9(R)I13 <1, @
W (O[5 + 72 Ly lo(k+ )P ~
forany:1 < p < oo, and for some positive finite constants
{a1,az2,7v1,72} that depend on p. In particular, if v € Ly,
for some p, then the weight error converges to zero.

Proof: A brief outline-of the proof is the following. Con-
sider the standard LMS algorithm (1) with v(k) = 0. In’
this case, it is known that w = 0 is an exponentially sta-
ble equilibrium point under a PE condition and if § < 2
[9]. It then follows that there should exist.a. Lyapunov func-
tion U(k, W(k)) and positive constants A, A;, Ay, and B
satisfying [11]
AW (B3 < Uk, W(k)) < AaliW(k)lI3

Uk, %(k)) ~U(k - 1,%(k — 1)) < —A||w(k — 13
oU
a g (
where w(k) is obtained from W(k— 1) using the LMS recur-

sion (1).. This Lyapunov function:-can be used to establish
the result of the theorem. a

We may add that a contractive relation of the form (22)
can be established for LMS for the:special case p = 2 with-
out the additional requirement of PE regressors [4, 8].

kW) “ < BIw(k)ls
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5. Stability in Finite-Precision Arithmetic

The stability results of the circular, max-tap, switching-
o, and leaky LMS algorithms can be extended to the finite-
precision arithmetic case.

We argue here for the circular leaky LMS case. Numeri-
cal errors will modify the error equation (21). In particular,
to compute the new weight vector using (11) we first find

&k) = fl (y(k) — x(k)Tw(k — 1)) (23)
From [3], the above expression caﬁ be evaluated as
&(k) = (y(k) — x(k)Tw(k — 1) + &1 [Ix(n)llw(n — DI} (1 + 63)

where |6;] < 1.01Me, |§,] < &, and ¢ is the machine
precision. Similarly, let z(k) denote the computed value of
wi(k), viz.,

z(k) = 1 [(I - egel o) z(k — 1) + p(k)e(k)x(k)] .

This equation describes another (nonlinear) dynamic sys-
tem. The floating point arithmetic introduces some difficul-
ties into the stability analysis; but it still can be performed

leading to the following conclusion. .
Define '

6 =142 + (8.2 + 2:04sup p(k))Mle, x =[3.03 + 1.02M 3e
k

(L4 &)2M —~ (1 4 k)*

2k + K2
Note that for Me < 1, we have I'(M — 1) ~
Ty (M) ~ 2M.

1+s)M -1
K

(M -1)= , Ty(M) =2

M and

Theorem 4 The circular leaky LMS algorithm (11) still
guarantees bounded weight estimate vectors w(k) under
bounded noise and finite-precision arithmetic if, in addition
to: the conditions of Theorem 1, the following condition is
satisfied:

1-ap ‘~ Fi(M)(S)
M—1) - (22220 24
vM ( ) < ®cr / 70 @9

where, from (18), ¢; = £[1 — 8 — Rag).

A similar conclusion holds for max-tap leaky LMS where
znstead of (24) we require

2—@ao—ﬁ—M—5>o : (25)
3 Qo

Note that in finite-precision arithmetic, the conditions for
stability show that ag should not be too small. This is also

true for the switching-¢ and the leaky-LMS algorithms in

which cases the condition will now read 2 —6ag— 38— & S >
0.
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6. Conclusions

‘We have shown that it is possible to solve the weight drift
and bias problems of LMS and:leaky-LMS. at an additional -
cost of only one comparison, one addition, and one multi-
plication per iteration.

We have also shown how the stepsize p(k) and the leak-
age parameter o should be chosen to guarantee stability in
both finite and infinite-precision arithmetic.

In particular, our: analysis for the finite-precision case
suggests that choosing a very small leakage factor in the
leaky-LMS algorithm with the intent of reducing the bias
could in fact lead to mstablhty

We should note that the conditions on the step-size for
the circular leaky LMS depend on the filter order M ; hence
the larger the filter order the smaller the p.
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