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Abstract—We extend the analysis presented in [1] for the affine where p;(n) is a step-size M;(n) is a symmetric non-singular
combination of two least mean-square (LMS) filters to allow fo colored  matrix, e, (n) = d(n) —y;(n) is the estimation error, and(n) is the

inputs and nonstationary environments. Our theoretical moal deals, in desired response. The LMS, NLMS, and RLS algorithms employ the
a unified way, with any combinations based on the following @orithms: ) ' ’

LMS, normalized LMS (NLMS), and recursive-least squares (RLS) step:size$)i(n) and the matrice/I;(n) as in Table I. In this table,
Through the analysis, we observe that the affine combinatiorof two  f, fi; ande are positive constantg,- || is the Euclidian norm] is

algorithms of the same family with close adaptation paramedrs (step- the M x M identity matrix, and0 < \; < 1 is a forgetting factor.
sizes or forgetting factors) provides a 3 dB gain in relationto its best Eqr RLS M;(n) = ﬁfl(n) is obtained via the matrix inversion

component filter. We study this behavior in stationary and nastationary ; ~ . . .
environments. Good agreement between analytical and simuian results lemma [4, Eq.(2.6.4)] applied t&.(n), which is an estimate (with

is always observed. Furthermore, a simple geometrical interetation of ~ forgetting factor;) of the autocorrelation matrix of the input signal,
the affine combination is investigated. A model for the trangnt and i.e., R 2 E{u(n)u”(n)}, whereE{.} is the expectation operator.

steady-state b‘iha‘_’ior of tWOde%ShSib'e 3'9|°”thr|“5_ for ,?Stit'_mio_” tht_hﬁ We assume thad(n) andu(n) are related via a linear regression
o s mey e o evoaan, " model, hat is(n) = u”(n)wo(1n ~ 1)+ (). wherew, (1)
is the time-variant optimal solution andn) is an i.i.d. (independent

and identically distributed) and zero mean random process with
varianceo> = E{v*(n)}, which plays the role of a disturbance
independent ofu(n) [4, Sec. 6.2.1]. Furthermore, the sequences
{u(n)} and{v(n)} are assumed stationary.

Recently, an affine combination of two least mean-square (LMS)In the affine combination, the mixing parametg(n) is not
adaptive filters was proposed and its transient performance analyzestricted to the intervgD, 1] and can be adapted via
[1]. This method combines linearly the outputs of two LMS filters
operating in parallel with different step-sizes. The purpose of the n(n+1) =n(n) + pne(n)y1(n) — y2(n)], 3)
combination is to obtain an adaptive filter with fast convergence aW’hereun is a step-size, and(n) = d(n) — y(n) is the estimation
reduced steady-state excess mean-square error (EMSE). SincegHir of the overall filter. The recursion (3) was obtained in [1], using
mixing parameter is not restricted to the interf@l 1], this method 5 stochastic gradient search to minimize the instantaneous mean-
can be interpreted as a generalization of the convex combinationsg{Jare error (MSE) cost function. In [1f(n) was constrained to
two LMS filters of [2], [3]. be less than or equal to 1 for afl, to ensure stability of (3). In

In this paper, we extend the results of [1] by providing a unifieghis paper, we applied this constraint when using (3). The constraint

analysis, which is valid for colored inputs, nonstationary enviroRgas not necessary when the normalized version of (3) was used (see
ments, and combinations based on LMS, NLMS, and RLS algorithmsec. v).

To explain the behavior of the affine combination of two algorithms,
we present a simple geometrical interpretation. Furthermore, we v(n)*
d(n)

Index Terms—Adaptive filters, affine combination, steady-state analy-
sis, transient analysis, LMS algorithm.

I. INTRODUCTION

also explain why fast-adaptation of the mixing parameter in general
leads to a quite large variance around the optimum value. Then,
we find a model for the transient and steady-state behavior of two | oo oo oo L~
possible algorithms for estimation of the mixing parameter. In order yw(n-1) e(n) .
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to simplify the arguments, we assume that all quantities are real. X e(n) v9 '
y.(n) X |
Il. PROBLEM FORMULATION w,(n-1) = ™ 1 i
A combination of two adaptive filters is depicted in Figure 1. In u' (n) ' " 1y(n)

this scheme, the output of the overall filter is given by - A S : :
y(n) = n(m)y (n) + [1 = n(m)]ya(n), () w,n-1) PO 1w
1
wheren(n) is the mixing parametew;(n), ¢ = 1,2 are the outputs e (n) -¥ !
of the transversal filters, i.ey;(n) = u” (n)w;(n— 1), u(n) € RM D !

is the common regressor vector, and(n —1) € R™ are the weight === -==-==--=-==--=--------

vectors of each IengtM compo_nen_t filter. . . Fig. 1. Affine combination of two transversal adaptive filters
We focus on the affine combination of two adaptive algorithms of

the following general class
wi(n) =w;(n—1) 4 pi(n) M;(n)u(n)e;(n), i =1,2, (2) I1l. STEADY-STATE PERFORMANCE OF ADAPTIVE FILTERS

This work is partly supported by CNPq under grants No. 13GZ58-5 We assume thatin a nonstationary environment, the variation in the

and No. 303361/2004-2 and by FAPESP under grants No. 200880 and Optimal solutionw, follows a random-walk model [4, p. 359], that is,
No. 2008/04828-5. Wo(n) = wo(n — 1) + g(n). In this model,q(n) is an i.i.d. vector



TABLE | TABLE Il
PARAMETERS OF THE CONSIDERED ALGORITHMS ANALYTICAL EXPRESSIONS FOR CROSSEMSE OF THE CONSIDERED
COMBINATIONS.

Alg. pi(n) M; ' (n)
Combination (12
LMS i L
~ 2
NLMS | i/ (e + u(o)ll) p1-LMS and yi2-LMS pap2o, Tr(R) + Tr(Q)
~ ~ w1+ p2 — papeTr(R)
RLS 1 Ri(n) =Y A7 fu(l)u” (1)
=1 Tr(R) [fi1fizo2on, +Tr(Q)]

fi1-NLMS and jio-NLMS

1+ fi2 — [ fi2
with positive-definite autocorrelation matri® = E{q(n)q" (n)}, - X Xs
independent of the initial conditionw,(—1), w(—1),7(—1)} and AMAz |1+ Mo7+Tr(QR)
of {u(l),d(l)} for all [ [4, Sec. 7.4]. A1-RLS andA2-RLS

o A4 A2 — A
One measure of the performance of each component filter is given LA 172
by the excess MSE (EMSE), defined as

Gi(n) & Efeq s(n)}, G

where(; is the steady-state value 6f(n), eq.i(n) = u” (n)w;(n —

1), andwi(n — 1) = wo(n — 1) — wi(n — 1). On the other hand, sing the linear regression model fan), the estimation errors
the overall filter performance can be measured by ei(n), i = 1,2 are related to tha priori errorse, ;(n) via

A1-RLS andpuo-LMS p2d1 o2 Tr(2) + Tr(QX)

lim i(n),

¢(n) = E{ei(n)}, ¢= 7L1LII;O<(TL)7 ei(n) = eqi(n) +v(n). (6)
where Th ing (1) and (6), (5 b itt
ea(n) = n(n)ear(n) + [1 — n(n)]eaz(n). @) en, using (1) and (6), (5) can be rewritten as

To obtain analytical expressions fgr we need expressions fap, E{10(n)[ea,1 (n) —€a2(n)]*} =E{ea2(n)[ea2(n) —ear (n)]}. (7)

i+ =1,2 and for the cross-EMSE [3], [5] To proceed, we assume that

Ci2(n) £ E{ea,1(n)ea2(n)}, G2 = lim Ciz(n). Al. n,(n) is independent ot, i(n), i = 1,2 at the steady-state.
This assumption requires the optimum mixing parameter to be

There have been several works in the literature on the tracking . —
independent of tha priori errors whem — oo.

performance of adaptive algorithms (see, e.g., [4], [6]-[1@ toeir i _ o _
references). Analytical expressions for the EMSE of LMS [4], [9], Thus, using Al and taking the limit for — oo of both sides of
NLMS [4], [7], and RLS [6] algorithms can be obtained from thd7), we arrive at
first three lines in Table Il, usings = 1, fia = pih or /\'2 =\ % ~ . ~ Al
(1 — A1), where Tr(A) stands for the trace of matriA, o, £ Mlo(00) = lim E{ro(n)} & =+,
_92 2 2 . n—oo Cl + C2

E {llu(n)||7?}, v = var{u®(n)}/(var{u(n)})?, andvar{-} is the _
variance. For gaussian inputg,= 2 and a., can be approximated WhereA¢; = ¢; — Gi2, @ = 1,2. The accuracy of (8) depends on the
by 1/[var{u(n)}(M —2)] [11]. the accuracy of the analytical expressions{gfi = 1,2 and¢i2. A

The cross-EMSE for the combination of two LMS filters wagimilar expression was also obtained in [3, Eq.(29)] for the convex
traditional analysis methdd analytical expressions faf;» for the combination,n(n) and consequentlyj,(co) are restricted to the
combinations of two RLS filters and of one RLS with one Lmgnterval[0, 1]. The expressions of Table Il were obtained without the
were obtained in [5]. For the combination of two RLS filters, anothétSsumption of white inputs. Thus, (8) is an extension of [1, Eq. (26)]
expression fot;2 can be obtained using similar assumptions to thogdnce it allows for colored inputs, nonstationary environments, and
of [6]. Since the resulting expression is more accurate than thatf¥tlds for combinations of algorithms of the form (2).
[5], mainly for smaller forgetting factors, we use it here. Analytical Now we obtain an analytical expression for the steady-state EMSE
expressions fo¢;» considering the combination of two NLMS filters of an affine combination. By squaring both sides of (4) wjth) =
are given, for white regressors, in [12]. We give here a straightft  70(n2), taking expectations, and using A1, we arrive at
extension for correlated inputs. All these results are summarized in
Table II, whereX £ [A I + uaR] 'R, E{ez (n)} =E{ni (n)}E{ez 1 (n)} + B{[1 — no(n)]*}E{ed 2(n)}

+ 2E{no(n)[1 =70 (n)]}E{ea,1(n)ea2(n)}. 9)

] ) ] ) o To proceed, we assume for now that
To obtain an analytical expression for the optimum mixing param-

etern, (n) at the steady-stateve differentiate the mean-square erro 2. the hv?rzla$ce Omog) ;S suﬁfl(ingly small at the steady-state
cost functionE{e?(n)} with respect ton(n) and set the derivative such thatlimn—eo E{1(n)} ~ 77" (00).
equal to zero, i.e., Using A2 and taking the limit of both sides of (9) far — oo, we

arrive at
E{e(n) [e1(n) — e2(n)]} = 0. ®) AGACG

Qe+t
. ) | | SRt R FAG
In the traditional method, one computes a recursion for thecautelation
matrix of the weight-error vector of a filter. This expression was obtained in [3, Eq. (33)] for the convex
“Note that we use the subscript™in 70 (n2) to denote the optimum mixing combination of two LMS filters, but also holds for different affine
parameter. Itis optlmum in the mean-square error sense. combinations of algorithms of the form (2)

8)

IV. A STEADY-STATE ANALYSIS OF AFFINE COMBINATIONS

(10)



A. Sationary environments

In an stationary environmen€) = 0), the expressions (8) and (10)
for the combinations of two LMS or two NLMS filters are shown
in Table Ill, whered £ js/py with 0 < 6 < 1, andé 2 fia/fix
with 0 < & < 1. The expressions of Table Ill show two interesting
properties:

i) 7o(oc0) for both combinations is negative, since to ensure thég. 2. Geometric interpretation of the affine combination.

stability of the p;-LMS and fi1-NLMS, the step-sizes are

chosen respectively in the following randes< p1 < 2/Tr(R)

and0 < fix < 2; or when (ii) the component filters have close adaptation parameters.
iy 61 (resp.,0~1) yields ¢~ (/2 for the combination of two In Table IV, we show the analytical expressions dgf and¢ for the

LMS filters (resp., NLMS). Sinc&> < ¢; for both combina- combinations of two LMSs or two NLMSsFrom these expressions,

tions, the affine combination provides a 3dB gain in relation toe can observe that the EMSE reduction in both cases is limited by

the best component filter. In this casgoo) — —oo. 3 dB. A reduction close to 3 dB will occur wheén— 0 (oré — 0) in

Property i) was observed in [1] for the combination of two LMsFase (i) or when the environment tends to be stationi@ry@) ~ 0)
filters, assuming gaussian, white inputs, and the LMS step-size {Brcase (ii)-
maximum convergence speed. Note that, if we also consider the LMS TABLE IV
step-size for maximum speed, i.g = 1/Tr(R) in the expression AnaLyTICAL EXPRESSIONS FORg12 AND ¢ FOR THE CASES(i) AND (ii) IN

(b)

of Table Ill, the steady-state optimum mixing parameter for the A NONSTATIONARY ENVIRONMENT.
combination of two LMS filters will reduce t§,(co) = §/[2(6—1)],
which coincides to the result of [1, Eq.(26)]. Although we exemplify  Combination (i) (ii)
these properties for the combinations of two LMS or two NLM$ a2 C C
algorithms, thgy glso hold for all the comblnat|0n§ considered here. 11-LMS 11 1202 Ca/2 Ca/2
For the combinations of two RLS or one RLS with one LMS, (8
. . 2
and (10) do not reduce to simple expressions as those of Table|lll andjoLMS | xTx(R) 252 +UUTF(R)TY(Q)
even for stationary environments, and are not presented here kor lac (1+0)2 2¢2
of space. fi1-NLMS fin fizo? C2/2 C2/2
TABLE Il ~ 25 o2[Tr(R)]2Tr au
ANALYTICAL EXPRESSIONS FORT]o(00) AND ¢ IN THE STATIONARY CASE. and i2-NLMS Xy (1 +C§)2 + e ;}Cz Q
Combination 1o (00) ¢
— 2 V. TRANSIENT ANALYSI
Jn-LMS andpo-Lms | ST L [ 120, TH(R) } S SIS
206-1) 2 [6+1-p2Tr(R) At each instant, the combination parametgiis adapted based

~ on the projectiong; andy» of wi andws in the direction of the
7i1-NLMS and fio-NLMS 0[2 — fi1] 1 {T{(R)ﬁwgau] regressou. If one tries to adaph quickly, e.g., using the normalized
20 6+1-j2 LMS algorithm instead of (3), a problem arises wheris close to
orthogonal to(w; — w2), as shown in Fig. 3. We show in the figure
the situation for two possible values of the optimum solutien,

In order to explain the behavior of the affine combination when thghndw’ . Note that for both values of the optimum solution, the best
adaptation parameters are close (e.g.~ n2), the overall steady- value of7 is 1/2. However, looking at the projections an in one
state error is written as case one would choose= 0 and for the other case,~ —p, where

e(n) =ea2(n) + v(n) +n(n) [Wa(n) —wi(n)]"u(n). (1) P is a pos_itive_ number. This _example explains why fa_lst-adaptatiqn of
N the combination parameter in general leads to a quite large variance
d(n) —a(n) aroundr,.
From the point of view of the computation gfn), d(n) represents
the signal which has to be estimated, ar{d) plays the role of input
signal. Assuming thatv;, i = 1,2 vary slowly compared tg), (11)
has a simple geometric interpretation as shown in Fig. 2. The affine
combination seeks the best weight vector in the Yinet-n(w; —ws).
In Fig. 2-(a), the best linear combination @f; andw, is w. In the
case of close adaptation parameters (g5 2 OF A1 = A2), we
also havew; ~ wy (Fig. 2-(b)), andn has to assume a large value
to take the combined vector close ¥, since the input signat(n)
depends on the difference between andw.. Thus, if(w; —w2) —  Fig. 3. Updating ofp(n) when the regressoa is close to orthogonal to
0, |n| — oc. (w1 —wa).

We now find a model for the transient behavior of the combination.

B. Nonstationary environments . . S
: . . Assuming that)(n) is independent of tha priori errors, we can show
In a nonstationary environment, the largest EMSE reduction of

the affine combination in relation to its components occurs whensagain, expressions for combinations which involve the RLgodthm are
¢1 =~ (2. This can happen in two situations: (i) wh@h(Q) = gi12  not shown due to space reasons.



that (10) still holds, andi{n(n)} = 77,(n) and It can be shown that this recursion also leads to an unbiased estimate

) of the optimumn,, with variance
E{e’(n)} = 05(n) + o5 (n)[GL(n) + (2(n) = 2Ci2(n)],  (12)
| o3 (n+1) = (121, V2/m/BGH+ DG+ (AG+AG)|
where we have defined

~2 <1C2 412 ~2 2
02(n) = B{e*(n)|nin)=ro(m)} = 02+ ((n), and  (13) X o (n)+i i AG + G T (19
2, v 2 2
oy (n) = E{n"(n)} —1;(n). (9 For large step-sizes, (18) leads to smalgrthan (3). The situation

To simplify the notation, we sometimes omit the time indein the '€Verses for small step-sizes. Through simulations, we noticed that
' recursion (18) is less sensitive to variations in the input power and

following discussion. .

Note that the largest MSE reduction will occur wrBfie* (n)} — the value of the step-size.
o2(n). This happens, for example, when the adaptation parameter%n order to further improve the convergence speed of the algo-
are close (e.gu1 & p2 Or A1 = A2), since in this cas€; ~ (12 ~ thms, we estimated
G, anq the effect of a pos.sibly large’ is reduced. On the other pn+1) = App(n) + (1 = Ap)[y1(n) — y2(n)]?,
hand, if¢1 > (12 > (s (or vice-versa), the second term of the r.h.s.
of (12) will be approximately proportional to the largest @f, (>, where0 < A, < 1 is a forgetting factor, and used as step-sizes
and aﬁ will have to be smaller thamin{(¢1,¢>}/ max{¢1,(2} to  fin = fiy/(e+p(n)) for (3), wheres > 0 is a regularization constant,
make the combination competitive with the best filter. andfi,; = fin/(e++/p(n)) for (18). The algorithm (3) withe,, = fi,

A recursion foro?2 can be found by subtracting, from both sides is called power-normalized LMS (PN) and the algorithm (18) with
of (3), and squaring the result. In the following, we assume that fin = /i, is called normalized signed regressor LMS (NSR).

is constant. Definingn(n) = 7o(n) — n(n), we obtain

flnt 1) = [1 ~ fin(eaaln) - eml(n))g} baln) Wi id t identificati licati ith the initial

_ B 2 B e consider a system identification application wi e initia
+ Halo(n)(€a,2(n) = €a1(n))” = inea2(n)(€az(n) = €an(n)) optimal solution formed withM/ = 7 independent random values
— pnv(n)(ea,2(n) — €a1(n)). (15 petween 0 and 1, and given by

Taking the expected value of (15), it can be shown thgdn(n)} — w2 (0)=[40.90 —0.54 +0.21 —0.03 +0.78 +0.52 —0.09] .
0. On the other hand, squaring (15) and taking expected values we

VI. SIMULATIONS

obtain, assuming that, ;(n) ande, 2(n) are Gaussian, The input signak:.(n) is generated with a first-order autoregressive
model, whose transfer function ig1 — a2/(1 — az™ 1), with a =
2 _ 0.8. This model is fed with an i.i.d. Gaussian random process, whose
or(n+1)=|1—2u, (Al (n) + Ala(n 16 '
l ) { pn (A1 (n) () (16) variance is such thafr(R) = 1. Moreover, additive i.i.d. noise(n)

9 5| o 9 9 with variances? = 0.01 is added to form the desired signal. To
+ 34y (A (n) + Ae(n)) }"n(”) + oy (AG () + AG(M))  jiiain the results shown in Figs. 4 and 5, the algorithm (3) is used
_ _ he mixing parametg(n).
+ 12 [3¢12(n) (AGL(n) + Ala(n 2 (G (n)Ca(n) — ¢ (n)]. to u.pdatet ') ) )
! [ 12(n) (A (m) 2(n) ( H(m)a(m) = Gzl m Fig. 4 shows the EMSE and mixing parameter along the iterations
For stability, we need for the combination of two RLS filters in the stationary case. The
curves were estimated from the ensemble-average of 500 independen

. 2 , (17) runs and filtered by a moving-average filter with 512 coefficients. The
3[AG(n) + AG(n)] dashed lines in the figure show the steady-state predicted valyges of
and the steady-state variance is for each algorithm and their combination. Since the component filters

are adapted with close forgetting factors, i(@.5- X2) = 0.9(1— A1),
lim o = 1, 3Ci2 (AG + AG) — 2 (¢i6e — (o) +o (AC1+ACz) the affine combination provides an EMSE reduction of approximately
n—oo 2 (AC+AC) =3 (A§1+A§2) 3 dB as predicted by the analysis. In this case, the mixing parameter
tends to -7.55, which also agrees with the analysis.
The adaptation law (3) is usually not fast enough to follow the

necessary quick variations op and at the same time avoid a large

. . . — A-RLS
excess mean-square error. As Fig. 3 shows, using an instantaneous (a) -20 . )\l—RLS
normalization, i.e., replacing the step-sizehy(n) = fi,/[€a,2(n)— — . Czombination
ea,1(n))?, will lead to a very largess, or even divergence (see 32
[13]). On the other hand, some form of normalization is necessary, G
otherwise (3) will either be too slow when both component filters Z 26 &
have converged (and,,>(n) — eq,1(n) is small), or will converge g
. . 0 1 2 3 4 5
too fast (and diverge) whem, 2(n) —eq,1(n) is large (e.g., when the
fast filter has already converged, but the slow filter has still a large ®
misadjustment). One possible solution is to normalize the filter using = 35 ,
an estimate oF {[ea.2(n) — ea,1(n)]*}, as in [14]. =
Another possibility is to employ a partial instantaneous normal- e —————
ization, usingu,(n) = fi,/|y1(n) — y2(n)| as step-size (note that 0 ! ie,at,on: * 5
y1(n) — y2(n) = ea2(n) — eq,1(n)). With this choice, the update Fig. 4. (a) Theoretical and experimental EMSE for the comlnnabf two
rule (3) reduces to RLS filters with A1 = 0.9, A2 = 0.91, andu,, = 1 (b) Ensemble-average of

n(n), and theoretical value of, (c0); ensemble-average of 500 independent
n(n + 1) = n(n) + fye(n) sign |y (n) — y2(n)|. (18) runs; the theoretical values are indicated by dashed lines.



To illustrate the accuracy of the analysis in a nonstationary
environment, we show in Fig. 5 the theoretical and experimental
values of the ratial /min{¢1, (>}, as a function 0B = ps/p1 with
fixed 1 = 0.1, considering the combination of two LMS filters
and Q = 031. As predicted by the expressions of Table IV, the
largest EMSE reduction occurs whéi(Q) = p1u202Tr(R) or
whend =~ 1, and is limited in both cases by 3 dB. Moreover, for
each curve of Fig. 5, there is a valuedfor which ¢ = min{(i, ¢2}.

At this point, the combination performs as its best component, which
is adapted with the optimum step-sizg [4, p. 369]. Although the
affine combination can provide an EMSE reduction in relation to
its components, its minimum EMSE coincides with that of LMS
with the optimum step-size,,. These properties can be exploited
to improve the tracking capability of adaptive filters, extending the
convex combination of variable step LMS algorithms (CVS-LMS)
proposed in [3] to the affine combinations considered here (we intend
to pursue this matter elsewhere).

Fig.

Ymingz}

0.6 0.8 1

0.4

Fig. 5. Theoretical and experimental values(@fmin{¢;}, i« = 1,2 for
the combination of two LMS filters withu; = 0.1, po = dp1, pn = 1,
and Q = ogl. The experimental values are indicated @y, [J, and ;
ensemble-average of 50 independent runs.

(1]
Fig. 6 shows the EMSE and mixing parameter for the combinatior[12]
of two LMS filters. We consider a system identification application
with the initial optimal solution formed with\/ = 10 independent
Gaussian random values with zero mean and unit variance. THé]
optimum solution is kept constant, except for a change &t 75000
(by adding a vector of random Gaussian variables with variance O-Ol[)t]
The input signalu(n) is generated as before (again with= 0.8).

two LMS filters with pp = 1072, puo
£ =6x 1074, A, = 0.99) or NSR (i, = 0.0125, £ = 0.1, Ap = 0.99);
(b) Ensemble-average af(n) andjo(n); M = 10, 02 = 10~2, correlated
regressor withvar{u(n)}
independent runs.

Affine, PN
- — — Affine, NSR
Theoretical PN
Theoretical NSR

~
&

EMSE (dB)

15

10
iterations

15

x 10°
(a) Experimental and theoretical EMSE for the combxamabf
103, using PN fi,, = 0.01,

6.

1 and « = 0.8, ensemble-average of 100
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of 100 independent runs. The mixing parameter is adapted with
the PN and NSR algorithms. Both algorithms provide an adequat[%]
behavior for the combination, witB{»(n)} following 7,(n) closely.

As predicted by the analysis, the combined scheme attains the lower
stationary EMSE of the,-LMS and presents the faster convergencel’]
of the p1-LMS. The variance of the mixing parameter is usually
larger for NSR than for PN. However, the mixing parameter adapteﬁ;
with PN may exhibit peaks at the beginning and when the optimum
solution changes. This effect is less pronounced when NSR is used.
In addition, NSR is less sensitive to variations in the simulatiod®]
parameters (such as input and noise power, step-sizes, regular)izatiﬁo]

VII. CONCLUSION [11]

We extended the analysis of [1] and [12] to allow for colored
inputs and nonstationary environments, considering affine combina-
tions based on LMS, NLMS, and RLS algorithms. Good agreemenp]
between analytical and simulation results is always observed. A
simple geometrical interpretation of the affine combination allowed
us to explain its behavior in different situations, including whep, 5
the component filters are adapted with close step-sizes or forgetting
factors. Furthermore, we proposed and analysed two new normalized
algorithms for updating the mixing parameter. The theoretical modéf
explains situations in which the adaptive combination algorithms may
achieve good performance.

bility of adaptive filters via convex combinationlEEE Trans. Signal
Processing, vol. 56, pp. 3137-3149, Jul. 2008.

E. Eleftheriou and D. D. Falconer, “Tracking propertaasd steady-state
performance of RLS adaptive filter algorithm$EEE Trans. Acoust.,
Speech, Signal Processing, vol. ASSP-34, pp. 1097-1110, Oct. 1986.
D. T. M. Slock, “On the convergence behavior of the LMS aihe
normalized LMS algorithms,1EEE Trans. Sgnal Processing, vol. 41,
pp. 2811-2825, Sep. 1993.

] E. Eweda, “Comparison of RLS, LMS and sign algorithms fack-

ing randomly time-varying channels|EEE Trans. Sgnal Processing,
vol. 42, pp. 2937-2944, Nov. 1994.

S. Haykin, Adaptive Filter Theory, 4th ed. Prentice Hall, Upper Saddle
River, 2001.

N. R. Yousef and A. H. Sayed, “A unified approach to theadtestate
and tracking analyses of adaptive filtedEfEE Trans. Sgnal Processing,
vol. 49, pp. 314-324, Feb. 2001.

M. C. Costa and J. C. M. Bermudez, “An improved model for the
normalized LMS algorithm with gaussian inputs and large nundfe
coefficients,” inProc. of ICASSP'2002, vol. Il. IEEE, 2002, pp. 1385—
1388.

J. C. M. Bermudez, N. J. Bershad, and J.-Y. Tourneret, fine
combination of two NLMS adaptive filters - transient mean-squa
analysis,” in Proc. of 42th Asilomar Conf. on Sgnals, Systems &
Computers, 2008.

] N.J. Bershad, “Analysis of the normalized LMS algoritiith Gaussian

inputs,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-34,
pp. 793-806, 1986.

L. Azpicueta-Ruiz, A. Figueiras-Vidal, and J. Aren@sscia, “A nor-
malized adaptation scheme for the convex combination of twptaga
filters,” in Proc. of ICASSP'2008. |EEE, 2008, pp. 3301-3304.



