
 

 

A Projection Pursuit Approach To Blind Source Separation 

 

Abstract— The aim of this paper is to show that projection 

pursuit performed by searching non-Gaussian projections, can 

be used to separate signals and this is the same thing we do to 

estimate the ICA (Independent Component Analysis) model. We 

present a brief overview of ICA and projection pursuit. Finally 

we analyze a gradient ascent algorithm to optimize the projection 

index function based on kurtosis to perform the source 

separation, and present results and conclusions. 

Index Terms—Blind Source Separation, BSS, Higher-Order, 

Independent component analysis, ICA, Projection Pursuit, Signal 

Separation. 

I. INTRODUCTION 

Independent component Analysis (ICA) is a widely used 

method for Blind Source Separation (BSS), which is only 

based on the assumption of non-gaussianity and statistical 

independence of sources. ICA is an important tool when we 

have a signal generated by the combination of two or more 

source signals. Nowadays we can find a lot of applications in 

a wide range of areas such as bioengineering, 

telecommunications and financial applications. A description 

of ICA model is presented in section II. 

Projection pursuit is a statistical technique developed to 

investigate data properties using low dimension projections 

that provide most revealing views of a high dimensional data 

[3], [4]. Projection pursuit was primary developed for 

clustering analysis, but these projections could be used for 

probability density estimation and regression analysis. Usually 

data structuring observed in the full dimension will be 

observable in a lower dimensional projection and each 

projection can provide additional insight. How this can be 

computed and a connection between projection pursuit and 

ICA can found in section III. 

In section IV we present the results of experiments applying 

this method in a set of 2 sound sources mixed by a random 

matrix for extract the components (sources). 

Finally we present an extension of this work in section V 

followed by a conclusion in section VI. 

II. INDEPENDENT COMPONENT ANALYSIS 

Independent component analysis is an important tool when 

we have a signal generated by the combination of two or more 

source signals. For example, at a listening point in a room we 

can probe a signal which is a mixture of the audio signals 

generated by two people talking. This is the well-known 

cocktail-party problem. Independent component analysis was 

originally developed to deal with problems that are closely 

related to the cocktail-party problem. However nowadays we 

can find a lot of other interesting applications [7] such as: 

feature extraction, brain imaging applications and 

telecommunication applications. A brief historical overview 

showing the evolution of ICA technique can be found in [1]. 

ICA is a widely used method for BSS, which is so called 

because we haven’t any previous knowledge of the number of 

sources and how they are mixed. It is only based on the 

assumption of non-gaussianity and statistical independence of 

sources. The ICA linear model can be defined by 

 x sA  (1) 

where x is a vector of mixed signal, A is an unknown mixing 

matrix and s is an unknown vector of source signals. 

For the sake of simplicity we will assume that our signals 

are zero mean and unity variance. After estimating A, given 

mixed vector x, one can compute the source by inverting A as 

shown in equation (2), assuming that A is invertible. 

 s x
-1

A  (2) 

In practice we estimate 
1

A  directly, called here W. 

Therefore we can write the following equation y w x
T

, 

where y is an estimated source, as similar as possible to s and 

w is a weighting vector to be determined that must be close to 

a row vector of the inverse of A. In other words, the estimated 

source is a linear combination of the mixed signals. 

The process of estimation is straightforward. As we do not 

have any previous knowledge about matrix A, we cannot 

determine the exact value of w, but we can find a good 

estimator. Let us make the transformation z
T

A w . 

Having y w x
T

, getting equation. (1) and considering only 

2 sources without loss of generality we can easily write 
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1 1 2 2y z s z s . Based on properties of kurtosis, see 

appendix A, we obtain
4 4

1 1 2 2( ) ( ) ( )K y z K s z K s . As said 

before y has been constrained to be unit variance 

then
2 2 2

1 2E{ } 1y z z . Geometrically this means that z is 

constrained in the unit circle [7]. 

The optimization problem now will be to find maxima on 

the unit circle for the function represented in equation (3). 

 
4 4

1 1 2 2( ) ( ) ( )K y z K s z K s  (3) 

Therefore this happens when one of the elements of z is 

different from zero and all the others are zero, so maximum 

kurtosis is exactly when y si i . 

An algorithm is proposed in [1] to search for a linear 

transformation that minimizes the statistical dependence 

between its components by the expansion of mutual 

information as a function of cumulants of increasing orders. 

ICA weights can be computed by a number of methods with 

differing mixes of advantage and disadvantage over each other 

methods. The present paper is based on the kurtosis 

exclusively because of its computational simplicity. In Section 

V we present an extension that can be applied in this work to 

obtain a algorithm that can be more robust than the present 

one based on kurtosis respect to outliers. 

III. PROJECTION PURSUIT 

Projection pursuit is a statistical technique developed to 

investigate data properties using low dimension projections 

that provide most revealing views of a high dimensional data 

[3], [4]. These projections could be used for purpose of 

density estimation and regression analysis. Usually data 

structuring observed in the full dimension will be observable 

in a lower dimensional projection and each projection can 

provide additional insight. 

It’s not practical to map every possible projection so 

Friedman and Tukey (1974) propose an algorithm whose basic 

idea is to assign a numerical index, in 1D or 2D, to every 

projection characterizing the amount of structure present on it 

for that purpose. This index is then maximized related to the 

parameters defining the projections [4]. E.g. Principal 

component analysis can be regarded as a projection pursuit in 

which the interestingness is the total variation accounted for 

by the projection of data [8]. Friedman and Tukey developed 

an index for projection pursuit that emphasizes the clustering 

structure of data for exploratory data analysis. 

It’s well known that any linear combination 
TX Za has 

unit variance if and only if 1a a
T

 and two linear 

combinations of orthogonal vectors are uncorrelated, thus let 

Y be a random variable in p-dimensional space 
p

 if we 

“sphere” (remove all of the location, scale, and correlation 

structure) Y, called here by Z, performing an eigenvalue-

eigenvector decomposition and assuring the constraint 

1a a
T

 (by definition Z variables are affine invariant), so the 

projection index based on them will be affine invariant. This 

avoids calculating variances in each projection, saving 

computational effort. 

Let X in 
d

 be a projection of Z in 
p

and A a 

matrix d p , therefore a linear projection from 
p

 to 
d

 

can be defined as shown in equation (7). 

 AZX  (4) 

Now in a one-dimension exploratory projection pursuit, by 

definition, we seek a vector row 
Ta  witch maximizing a 

certain projection index such that ( )ap X  is relatively highly 

structured [4]. 

The deep analysis of projection pursuit and projection index 

is out of scope of this paper. For more information see [3], [4] 

and [5]. 

It’s been shown that the most interesting directions are 

those that are as non-Gaussian as possible [5], [8]. The density 

function that is most unpredictable, has maximum entropy [2], 

is the Gaussian density, so based on it, projections in the 

direction of least Gaussian distribution are desirable and this is 

exactly what is necessary to estimate ICA models. In other 

words we see that independent components can be found by 

finding several directions of maximum non-gaussianity using 

a measure of normality, e.g. kurtosis, so this approach is 

closely connected to projection pursuit, in which maximum non-

Gaussian directions are considered interesting for visualization 

purpose and exploratory data analysis [3], [4], [7], [8]. 

IV. EXPERIMENTS 

In this section we describe two experiments. In the first one 

we extract one source and in the second we explain how to 

extract more than one signal from the mixtures. 

For practical reasons we assume that source signals are 

super-Gaussian and we also preprocess the set of mixing 

signals x to be centered by subtracting their means and by 

whitening them by singular value decomposition as mentioned 

before, so the yield components will be uncorrelated with 

unity variance [1], [7]. 

Now let y w z
T

 be an extracted signal from a set of M 

transformed mixtures z by the weight vector w, we must 

observe that rotating w around the origin the kurtosis of 

extracted signal is maximum exactly when y = s and w is 

orthogonal to the projected axes[7]. So it’s easy to derive a 

gradient ascent algorithm to find a w that maximizes the 

kurtosis of extracted signal y as follow. 

The kurtosis of y can be seeing in equation (5) and the 

kurtosis gradient in equation (6). Note that the gradient 

changes both the length and angle of w, whatever only the 

angle is important here because the length do not affect the 

form of extracted signal only the amplitude. We restricted the 

length of w to unity and shown the gradient algorithm in table 1. 
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4( ) ( ) {( ) } 3y w z w z

T TK K E  (5) 

 
3( )

{ ( ) }
w z

z w z
w

T
TK

E  (6) 

To demonstrate this we got M=2 sources signals, a female 

speech signal and a music signal, and mixture them using a 

random mixture MxM matrix, then we apply the procedure 

above to separate one source from the set of mixture signals 

and presented the results in figure 1 and figure 2. One must 

see that this result is rather satisfactory, although the algorithm 

presented here can be improved especially because it is 

sensible to outliers as it is based on kurtosis. Read section V 

for more details. 

 
TABLE1: PROJECTION PURSUIT GRADIENT ASCENT ALGORITHM. 

Note that it extracts one source at time in contrast to 

conventional ICA methods that extract M sources at once. For 

separate multiple sources it’s necessary to remove each 

recovered source from the set of remaining signal mixtures 

using the Gram-Schmidt Orthogonalization (GSO) and apply 

the procedure above again repeating this up to recovery of the 

last source. 

 
Figure 1: Kurtosis of extracted signal y1 in each iteration. 

 

GSO ensures that each extracted signal iy  is orthogonal to 

every mixture of signal yet to be extracted. Let the original set 

of mixtures be 
0 0 0

1( , , )x Mx x  then a weight vector 1w  

is obtained which extracts a signal
0

1 1w x
Ty . Where the 

number superscripted, 0, denote the original set of mixtures. 

Now we can effectively subtract 1y from each signal mixture 

0

ix  as follow, 

 

0
1 0 1 1

2

1

E{ }

E{ }

i
i i

y x y
x x

y
 (7) 

 
 Figure 2: The graph at the top is the original source 1 and the middle is the 

source 2, finally the button graph is the first estimated extracted signal. 

 

So as mention before 1y is orthogonal to every mixture of 

signal
1

ix , in other words 
1

1E{ } 0ix y  for {1, , }i M . If 

the projection pursuit is applied again to the modified set of 

mixtures 
1

x  then the extracted signal 2y can be subtracted 

from each mixture 
1

ix  as similar manner as equation (7). 

This procedure can be repeated until the last signal to be 

recovered. In the noise-free case we can stop when nothing to 

be extracted remains. Figure 4 show extracted signal 2y and 

figure 3 the kurtosis of 2y applying this procedure above. 

 
Figure 3: Kurtosis of extracted signal y2 in each iteration. 
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Figure 4: The graph at the top is the original source 1 and the middle is the 

source 2, finally the button graph is the y2 extracted signal. 

V. EXTENSION WORKS 

Another important measure of non-Gaussianity that can be 

used instead of kurtosis is given by negentropy, which is 

based on the information-theoretic quantily of differential 

entropy. 

Entropy can be interpreted as the degree of information 

observed in a given random variable [6]. For a discrete 

random variable the entropy H is defined as 

 ( ) ( ) log ( )i i

i

H y P y a P y a  (8) 

where ia  are the possible values of y. [2] show the proof of 

the following  fundamental result of information theory: 

“Gaussian variable has the largest entropy among all random 

variables of equal variance”. 

To obtain a measure of non-Gaussianity that is non-

negative for non-Gaussian variables and zero for Gaussian 

variables we can define Negentropy J as 

 ( ) ( ) ( )y y ygaussJ H H  (9) 

where ygauss  is a Gaussian variable with the same covariance 

matrix as y. As we can see to perform entropy calculations we 

may need to estimate the probability density function of y 

We can use J(y) instead of K(y) with the advantage of J(y) 

be more robust than K(y). Unfortunately it’s computationally 

more complex and some approximations are necessary. There 

are several approximations that can be used to estimate the 

negentropy: [8] use higher-order moments, which have the 

same problem of kurtosis method, [1] use a method based in 

cumulants and [6] show an interesting method based on non-

linear function that can be much better than the one given by 

higher-order moments. 

From these results we can derive an algorithm for 

projection pursuit using negentropy as an objective non-

Gaussian measure for optimization.  

VI. CONCLUDING REMARKS 

The procedure described in this paper decomposes the 

mixed signals in much the same way as is done by ICA 

methods, considering the conditions of non-normality and 

independency. In fact, projection pursuit doesn’t consider any 

ICA model; rather, it only searches for a weight vector w such 

that the extracted signal is as non-Gaussian as possible. So, if 

the ICA model fails, the result is only the projection pursuit 

directions, resulting extracted signals which will differ 

significantly from those extracted by several ICA methods. 

VII. APPENDIX 

A. Kurtosis 

The k-th moment { }kE x  of the pdf of a random variable 

x is defined as: 

 E{ } ( )k k

xx f x x dx  (11) 

Kurtosis is defined as the normalized version of the fourth 

central moment of a zero-mean random variable x  as follow: 

 

4

2 2

E{ }
( ) 3

E{ }

x
K x

x
 (12) 

Kurtosis is zero for normal distributions and, in practice, it 

is nonzero for non-normal distributions, therefore kurtosis can 

be used as a measure of normality. Kurtosis can be either 

positive (Super-Gaussian) or negative (Sub-Gaussian), also 

know as platykurtic and leptykurtic respectively. 

The main reason for using kurtosis as measure of non-

normality is its computational and theoretical simplicity. 

Kurtosis can be estimated simply by using the fourth moment 

of sample data and theoretical analysis of kurtosis can be 

simplified because of the following properties: If we have two 

random variables, 1x  and 2x , statistically independent then 

holds the properties below: 

 1 2 1 2( ) ( ) ( )K x x K x K x  (13) 

and 

 
4(a ) a ( )K x K x  (14) 

where a in equation (14) is constant. 
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