
Ciratefi demonstration programs

Last revision: April 2, 2014

1 Introduction

File Ciratefi.zip contains improved pyramidal Ciratefi demonstration programs and

example image files. Ciratefi (Circular, Radial and Template-Matching Filter) is a

template matching technique invariant to rotation, scale, translation, brightness and

contrast. Ciratefi was defined in papers [Ci22, Ri13].

An example of Ciratefi input/output is depicted in Fig. 1.

(a) Image A to analyze (or search image)

(b) Query

image Q.

(c) Actually,

only the pixels

inside the circle

are used.

(d) Output image. The query image was originally found at locations marked in red (1st

floor of the pyramid). The locations in green are translations of these locations to the

0th floor of the pyramid.
 row col scale angDeg struct color simil rowPyr colPyr scaleP floorP

 149 171 1.1 340.0 0.957 0.969 0.965 74 846 0.6 1

 353 67 1.1 260.0 0.937 0.976 0.957 176 794 0.6 1

(e) The output text file with information about the matches.

Figure 1: An example of Ciratefi input-output files.

2 Installation

The programs require Windows XP, Vista or 7. Probably, they will run correctly also in

Windows 8.

1) Uncompress ciratefi.zip in a directory, say, c:\ciratefi, keeping the subdirectory

structure.

2) Edit “path” environment variable to append c:\ciratefi\bin. In Windows7, you can do

this:

MS-explorer my computer properties advanced environment variables

where you must edit path to append c:\ciratefi\bin.

3 Installation test

Open a command prompt. In some directory, write cirategs or ciratecs:

c:\directory>cirategs

The following prompt must appear:

CirateGS: Piramidal ciratefi for grayscale images v1.05

CirateGS cirategs.cfg [a.pgm q.pgm ci.ppm]

 If [a.pgm q.pgm ci.pgm] are specified, overrides cirategs.cfg

Error: Invalid number of arguments

Note: If the program does not run, install the following VC-2005 redistributables:

vcredist_x86.exe

The same program can be downloaded directly from the Microsoft's site:

http://www.microsoft.com/downloads/details.aspx?familyid=200B2FD9-AE1A-4A14-984D-

389C36F85647&displaylang=en

4 Running the examples

4.1 Running an example

Go to c:\ciratefi\1instance and run:
c:\ciratefi\1instance>ciratecs ciratecs-1instance.cfg a2.jpg q01.ppm c201.ppm

This command will search for q01.ppm in image a2.jpg and write the output in

c201.ppm.

http://www.lps.usp.br/~hae/software/vcredist_x86.exe
http://www.microsoft.com/downloads/details.aspx?familyid=200B2FD9-AE1A-4A14-984D-389C36F85647&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=200B2FD9-AE1A-4A14-984D-389C36F85647&displaylang=en

4.2 Intermediary files

Many intermediary files are generated:

ga.tga: Gaussian filtered search image (a2.jpg)

gq.tga: Gaussian filtered query image (q01.ppm)

actualq.tga: Only the pixels inside the circle are used.

a.avi: Circular (ring) projections of ga.tga

cq.tga: Circular (ring) projections of gq.tga

cp.tga: Cifi’s output and Rafi’s input.

 1st degree candidate pixels in color.

 Embedded scale parameter.

cm.tga: Cifi’s output and Rafi’s input.

 1st degree candidate pixels in color.

 Embedded Cifi’s color similarity measure.

rq.tga: Radial projection of gq.tga.

rp.tga: Rafi’s output and Tefi’s input.

 2nd degree candidate pixels in color.

 Embedded scale and rotation parameters.

rm.tga: Rafi’s output and Tefi’s input.

 2nd degree candidate pixels in color.

 Embedded Rafi’s color similarity measure.

tp.tga: Tefi’s output.

 Matching pixels in color.

 Embedded scale and rotation parameters.

tm.tga: Tefi’s output.

 Matching pixels in color.

 Embedded color similarity measure.

c201.ppm: The output image with circle and pointer.

p.txt: The output text file.

4.3 Configuration file

You can change Ciratefi parameters by editing ciratecs-1instance.cfg. The

parameters the user should know to fine-tune the search are:

pct_cand_1f=2.0

// Percentage of first grade candidates in relation to the total number of

pixels of A. If you increase this parameter, the program will run slower, but

the probability of missing the template decreases. If you want to find more

than one instance of the query image, you should increase this parameter.

pct_cand_2f=1.0

// Percentage of second grade candidates in relation to the total number of

pixels of A. If you increase this parameter, the program will run slower, but

the probability of missing the template decreases. If you want to find more

than one instance of the query image, you should increase this parameter.

qtd_cand_3f=1

// The number of objects to be detected. For example, if qtd_cand_3f=4, the

program will return 4 locations in search image A most similar to the query

image Q.

dist_pixel_3f=0

// The minimal distance between two matching pixels. For example, if

dist_pixel_3f=20, there cannot be two matchings separated by less than 20

pixels. For example, if qtd_cand_3f=2 and dist_pixel_3f=0, the program can

return two neighboring pixels as the two matchings.

ssalpha=0.01 // Weight of brightness.

ssbeta=0.01 // Weight of contrast. Do not set to zero.

ssgama=0.49 // Weight of "structure" or correlation

ssdelta=0.49 // Weight of color or chromaticity

// You can change the weights assigned to brightness, contrast, structure and

color differences.

4.4 Output files

The program marks in red the location where the template was found in the output

image. If the template was not found on the 0-th floor of the scale pyramid, then the

program marks in green the corresponding location on the 0-th floor.

The output text file is p.txt (unless you have changed its name in the configuration file):

 row col scale angDeg struct color simil rowPyr colPyr scaleP floorP

 239 409 1.0 90.0 0.961 0.945 0.957 119 844 0.5 1

Row, column, scale and angle_degrees returns the localization of the template on the 0-

th floor of the scale pyramid. Angle_degrees measures the angle starting at 12 hour and

rotates counterclockwise.

Struct, color and similarity returns the similarity measure. They all ranges from 0 to 1.

Struct is the normalized correlation of the grayscale image. Color is the similarity of

coloration. Similarity is a ponderation between struct, color, brightness and contrast (the

last two measures are not written in the output file).

Row_pyramid, column_pyramid, scale_pyramid and floor_pyramid are the location of

the matching on the floor>0 of the scale pyramid. This is the original location where the

template was found.

4.5 Running the batches

You can run the tests by calling the batch files:

C:\ciratefi\1instance>runc (color tests)

C:\ciratefi\1instance>rung (grayscale tests)

C:\ciratefi\2instances>runc (color tests)

C:\ciratefi\2instances>rung (grayscale tests)

Note: Converting the query image c:\ciratefi\1instance\q14.ppm to grayscale, it

becomes an image with almost constante grayscale. So, Cirategs fails to find this query

image.

5 Recompiling the source programs

1) Install Proeikon library, dev-cpp compiler and run setproeikon.bat as described in:
http://www.lps.usp.br/hae/software/proeikon.html

2) The following commands should recompile the programs
c:\ciratefi\src>cpv cirategs

c:\ciratefi\src>cpv ciratecs

Note: The source code of Proeikon library is not available.

6 References

[Ci22] H. Y. Kim and S. A. Araújo, "Grayscale Template-Matching Invariant to

Rotation, Scale, Translation, Brightness and Contrast," IEEE Pacific-Rim Symposium on

Image and Video Technology, Lecture Notes in Computer Science, vol. 4872, pp. 100-

113, 2007.

[Ri13] S. A. Araújo and H. Y. Kim, “Ciratefi: An RST-Invariant Template Matching

with Extension to Color Images,” Integrated Computer-Aided Engineering, vol. 18, no.

1, pp. 75-90, 2011.

