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Granulometry is the process of measuring the size distribution of 

objects in an image of granular material. Usually, algorithms based 

on mathematical morphology or edge detection are used for this 

task. We propose a entirely new approach for the granulometry us-

ing the cross correlations with circles of different sizes. This tech-

nique is primarily adequate for detecting circular-shaped objects, 

but it can be extended to other shapes using other correlation ker-

nels. Experiments show that the new algorithm is greatly robust to 

noise and can detect even faint objects. This paper also reports the 

quantitative structural characteristics of the porous silicon layer 

based on the proposed algorithm applied to Scanning Electron Mi-

croscopy (SEM) images. The new algorithm computes the size dis-

tribution of pores and classifies the pores in circular or square ones. 

We relate these quantitative results to the fabrication process and 

discuss the square porous silicon formation mechanism. The new 

algorithm shows to be reliable in SEM images processing and is a 

promising tool to control the pores formation process. 

Introduction 

Granulometry is the process of measuring sizes of different objects/grains in an im-

age of granular material. The granulometric curve or pattern spectrum of an image is the 

histogram of objects as the function of radius. The objective of the granulometry is, given 

an image, to obtain its pattern spectrum. There are two main groups of image-based gra-

nulometry algorithms:  

 Mathematical morphology-based algorithms;  

 Edge detection-based algorithms.  

Mathematical morphology-based granulometry obtains the pattern spectrum of an 

image without explicitly segmenting it. Dougherty et al. present a popular morphology-

based granulometry for binary images (1). Raimundo et al. used this algorithm to charac-

terize porous material (2). Unfortunately, this algorithm cannot be directly applied to 

grayscale images. If the original image is grayscale, the algorithm must somehow convert 

it into a binary image and any binarization discards many important information. Vincent  

presents a morphology-based granulometry for grayscale images (3). A demonstration 

program of this algorithm with source code is available at (4). This algorithm seems to be 

scarcely used in practice. Indeed, the output of this algorithm is highly non-intuitive, dif-

ficult to be used in practice. It represents the pattern spectrum as the “sum of pixel values 

in opened image as a function of radius.” Ordinaly, the user wants to obtain simply the 



“quantity of objects as a function of radius.” Moreover, in many applications the spatial 

localization of each grain is important, and this information is not provided by grayscale 

morphology granulometry. Edge detection-based granulometry detects the edges of the 

image using conventional gradient operators and thresholding (5). Then, it delimitates the 

objects using the edges. Edge-detection is a noise-sensible operation and may not be reli-

able, especially in blurred low-contrast images.  

This paper presents a entirely new approach to the granulometry. We use cross corre-

lations with circles of different sizes. This technique is primarily adequate for detecting 

circular-shaped grains, but it can detect directly square or equilateral triangle directly. It 

can also be extended to other shapes using non-circular correlation kernels. Experiments 

show that the new algorithm is greatly robust to noise and can detect even faint objects. 

The present work also reports the quantitative structural characteristics of the porous sili-

con layer based on the new algorithm applied to Scanning Electron Microscopy (SEM) 

images. These results allow us analyzing the square pores formation correlated to thermal 

annealing process of the silicon wafer that was metallized previously to the anodization 

process. 

Correlation-Based Granulometry 

The discrete cross correlation between two real-valued images t and a is defined as: 
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In practice, images are defined only inside a rectangular domain. An image is considered 

to be filled with zeros outside of its domain. Cross correlation can be efficiently com-

puted using FFT (Fast Fourier Transform). Cross correlation can be used to find a (usual-

ly small) template t inside a (usually large) image a. This operation, called “template 

matching”, computes the mean-corrected image ttt 
~

 by subtracting the mean grays-

cale t  from each pixel of image t; and then computes the cross correlation 
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),( yxayxtyxc  . The peaks of image c corresponds to the occurrences of t in a. 

Cross correlation is an image contrast-dependent operation. That is, if many in-

stances of t with different contrasts occur in a, the instance with the largest contrast will 

correspond to the highest peak in c. For image-processing applications where the bright-

ness/contrast of the images can vary due to illumination and exposure conditions, this is 

an undesirable property. So, to obtain brightness/contrast-invariance, the normalized 

cross correlation is usually applied instead of the cross correlation. However, for our ap-

plication, the contrast-dependency allows us to distinguish clear objects (a high contrast 

instance in a yields high peak in c) from faint objects (a low contrast instance in a yields 

so low peak in c). Choosing an appropriate limiar to threshold image c allow us to detect 

only the clear objects (high threshold) or even faint low-contrast objects (low threshold).  

 

    
Figure 1. Some of the kernels used in our granulometry. Black pixels have negative val-

ues, white ones are positive, and gray ones are zeros. 

 

To obtain the pattern spectrum of an image a of granular material, we propose to 

compute cross-correlations of a with circular kernels of different radii t1, t2, ..., tn (figure 



1). The sizes of the kernels increase in geometric progression. We have noticed experi-

mentally that 5 kernels per octave are enough to obtain scale-invariance. The radii of in-

ner and outer circles are chosen so that the number of black pixels (that correspond to 

negative values) are nearly equal to the number of white ones (that correspond to positive 

values). Gray pixels are zeros. In each kernel the sum of all negative pixels is -0.5 and the 

sum of all positive pixels is +0.5. So, if the grayscale of the image ranges (for example) 

from 0 to 255, the image resulting from the correlation will range from -255 to 255. Let 

us denote the images resulting from the cross correlation as c1, c2, ..., cn, where:  
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Let us define the maximal correlation image as: 
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A peak in ),( yxC  correspond to a (quasi) circular object in a. The scale of the detected 

object is given by the argument of the maximal correlation: 
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(a) A portion of the 

original image. 

 
(b) Threshold=1. 

 
(d) Threshold=70. 

 
(f) Threshold=100. 

 
(c) Threshold=15. 

 
(e) Threshold=90. 

 
(g) Threshold=140. 

Figure 2. (a) A sub-image of a porous material image with 21 pores located entirely with-

in the image (18 clear pores and 3 faint pores). (b-c) The output of our algorithm detect-

ing all 21 pores or only 18 clear pores depending on the threshold limiar. (d-e) Threshold-

ing with different parameters used as the first step of the morphology-based granulometry. 

(f-g) Canny edge detector used as the first step of the edge detection-base granulometry.  

 

Our algorithm sorts the correlation peaks in decreasing order. A peak (that represents 

a circular object) is discarded if it intersects with some other peak with larger correlation 

in more than S% of the circular object’s area, where S is a user-defined threshold. This 

allows us detecting partially intersecting grains. 

Figure 2 depicts the outputs of our algorithm and compare it with the outputs of thre-

sholding (the preliminary step of binary morphology-based granulometry) and Canny 



edge detection (the preliminary step of edge-based granulometry). In figure 2a, there are 

21 pores that do not intersect with the image canvas, where 18 of them are clearly visible 

and 3 are faintly visible. Our algorithm successfully detected all the 21 pores or only the 

18 clearly visible ones, depending on the chosen limiar. It is not possible to detect all the 

pores after the thresholding (figures 2d and 2e), because if the faint pores become visible 

(threshold=70) then the clear pores get merged. Similarly, it is not possible to detect after 

edge detection (figures 2f and 2g) because edge detector fails to clearly delimit all the 

pores. Moreover, the algorithm yielded double edges, due to the characteristics of the 

SEM images. 

Experiment 

The macroporous silicon layers with circular and square pores were obtained by elec-

trochemical anodization process of the (100) p-type silicon wafer with resistivity of c.a. 

10 cm (6). The anodization process was carried out in the single electrochemical cell 

using HF(48%): DMF mixture where HF correspond to 12% of total volume of the solu-

tion. The cell was anodically polarized at galvanostatic condition fixing the current densi-

ty at 12 mA/cm
2
 for 20 min. The square pores layer was obtained from Al metallized sili-

con wafer. In order to control the square pores density the metallized wafers were an-

nealed in the N2 environment for 1, 2, 4 and 8 hours. The density of square pores at por-

ous layer is of fundamental importance for silicon macrotubes formation. So, the present 

work reports the SEM images processing in order to control the experimental parameter 

for adequate macroporous silicon layer formation. The structural analysis was carried out 

by Scanning Electron Microscopy (SEM) techniques, specifically using NanoSem 400 

microscopy. The images were obtained by excitation with electron beam of 10 kV to 30 

kV using the electron secondary technique. Table I shows the annealing times of the me-

tallized silicon wafers and the thichkness of their porous layers formed after the anodiza-

tion process. 

TABLE I. Annealing time of metallized silicon wafer and thickness of porous layer formed after anodiza-

tion process. 

Annealing time (hours) 1.0 2.0 4.0 8.0 

Thickness of MPS (µm) 24 34 32 38 

 

Image Processing Results 

We wrote a C++ program named Granul specifically to analyze images of macroporous 

silicon layers with circular and square pores (figure 3a). This program consists of four 

sub-programs: 

1. Corrcirc: Implements the proposed correlation-based granulometry to detect both 

circular and square pores. Figure 3b depicts part of the output of this sub-program 

obtained by processing figure 3a. 

2. Classify: Classifies automatically the detected pores in circle or square (figure 3c), 

based on the size of the pore (blue circle) and on the “influence zone”, that is, the 

pore’s neighbor area where there is no other pore (yellow circle). 

3. Edit: Allows to rectify manually eventual errors made by the automatic detection 

and classification (figure 3d). The manual correction is marked in green. 

4. Relat: Computes the area of square pores by a seed growing algorithm (in red, 

figure 3e) and generates the pattern spectrum. 



 

 
(a) Part of the origi-

nal image. 

 
(b) Output of the 

granulometry 

(corrcirc). 

 
(c) Automatic clas-

sification of circu-

lar and square 

pores. 

 
(d) Manual correc-

tion of the classifi-

cation (in green). 

 
(e) Automatic 

calculation of 

areas of square 

pores. 

Figure 3. Output images of each granul subprograms. 

 

The SEM images of macroporous silicon layers were annealed for different times are 

shown in figures 4a to 4d. These images show that the distributions of square and circular 

pores depend on the thermal annealing process. We applied the proposed algorithm to 

obtain the quantitative data of the pores structural features. 

Figure 5a depicts the histogram of circular pores. The circular pores distributions are 

similar for all samples and the predominant pores are those with areas 0.48 m
2
. Figure 

5b shows the histograms of square pores. The samples annealed for one and two hours 

present low square pores density with similar distribution of areas ranging from 0.48 to 

12.86 m
2
. The sample annealed for 4 hours presents the highest square pores density 

and the predominant square pores have areas of 3.72 m
2
. The sample annealed for 8 

hours shows a significant decreasing of the square pores density and predominant pores 

have areas of 9.38 m
2
. These quantitative results give us important information to un-

derstand the mechanism of square pores formation. The square pores are important for 

the silicon macrotubes formation. 

The annealing time of Al metallized sample before anodization process promoted the 

increasing on the sheet resistance (figure 6) and this behavior is well correlated with in-

creasing of the square pores density observed in samples annealed for 1 to 4 hours. How-

ever, in the sample annealed for 8 hours, in spite of the sheet resistance increasing, the 

square pores density decreased. These results suggest that the sheet resistance value on 

silicon surface define the initial pitch distribution of pores formation during anodization 

process and, since the pitch formation is dependent on the electric field intensity, the field 

distribution on the silicon surface at initial stage of anodization process depends on the 

level of the sheet resistance and so the initial pitchs are originated from the breakdown-

like process. In this sense, there is a critical field correlated with annealing time of sam-

ple such that the square pores density decreases. Since this critical field is high intensity, 

the area of pores can increase as consequency. Additionally, in the last case, the long an-

nealing time could have induced Al metal clustering preferentially at some region where 

the initial pores pitch should be formed preferentially. 

The SEM images analysis by the proposed granulometric algorithm yielded a quan-

titative information of the pores size and their distribution in circular and square pores. 

These results were important to understand the mechanism of square macropores forma-

tion.  



 

 
(a) 1 hour 

 
(b) 2 hours 

 
(c) 4 hours 

 
(d) 8 hours 

Figure 4. The SEM images of  the macropores samples obtained after thermal annealing 

for (a) 1 hour, (b) 2 hours, (c) 4 hours and (d) 8 hours. 

Conclusions 

The new correlation-based granulometry showed to be an effective tool for SEM images 

processing, in order to analyze quantitavely the porous materials parameters such as 

pores radii, the size distribution and pores density. Additionally, the proposed granulome-

try allowed us to classify the pores as circular or square ones. The developed algorithm 

can contribute in the porous material research area, allowing rapid analysis of structures 

and rapid extraction of their geometric parameters. The proposed algorithm showed to be 

an excellent tool for discussing the square pores formation mechanism in silicon substrate 

by electrochemical anodization process. The results obtained point out that the annealing 

time of the Al metallized silicon wafer before anodization process is an important para-

meter for controlling the porous density and their sizes. 
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(a)  

Histogram of square pores
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(b) 

Figure 5. The histograms of circular (a) and square (b) pores obtained from the SEM im-

ages. The inner labels describe the pores’ areas (in m
2
) corresponding to each bar of the 

histograms. The white bars represent the total numbers of circular or square pores. 

       Histogram of circular pores 
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Figure 6. The sheet resistance of the silicon wafer surface as a function of anneal-

ing time. The graph depicts also the thickness of porous silicon layers after ano-

dization process. 
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