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ABSTRACT
The well-known anisotropic diffusion (a.k.a. Perona-Malik
equation, nonlinear diffusion, or diffusion partial differen-
tial equation – PDE) is widely used in image segmentation,
filtering and edge detection. The behavior of the diffusion
highly depends on the appropriate choice of the gradient
thresholding scale parameterK. However, it seems that no
clear relationship between the parameterK and the output
image has ever been established, and hence the choice ofK
is a guesswork. This paper establishes an explicit connec-
tion between the parameterK and the numberν of edge-
elements (edgels) of the filtered image. Let us define that the
frontier between two neighboring pixels(p, q) is an edgel if
|I(p)−I(q)| > τ , whereI(p) is the image intensity atp and
τ is a constant. This connections is valid only for the spatio-
temporally discretized diffusion. In our approach, the user
specifies the desiredν. From this parameter, an appropri-
ateK is automatically computed in every iteration, so that
the final filtered image hasν edgels. Using this approach,
the diffusion converges to a nontrivial piecewise constant
image, whenever a feasible parameterν is specified.

1. INTRODUCTION

Linear scale space is a theory introduced by Witkin [1] and
used to process an image in multiple resolutions. In this the-
ory, Gaussian low-pass filters process the original fine-scale
image, generating simplified coarse-scale images. Unfor-
tunately, coarse-scale images generated by Gaussian filters
present blurred edges that do not spatially match the original
edges.

In order to keep important edges sharp and spatially
fixed, while filtering noise and small edges, Perona and Ma-
lik has introduced the nonlinear scale-space [2]. This the-
ory uses the anisotropic diffusion to simplify the original
image. Recently, the relations between the anisotropic dif-
fusion and the robust statistics have been established, lead-
ing to the robust anisotropic diffusion (RAD) that preserves
sharper boundaries than previous techniques [3].
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The behavior of the anisotropic diffusion depends on
two parameters: the artificial time parametert and the gra-
dient thresholding parameterK. However, if the discretized
diffusion is iterated until the convergence (t→∞), the out-
put image depends only onK. Thus, the appropriate choice
of K is essential to obtain a conveniently filtered image.
Though, it seems that no clear relationship between the pa-
rameterK and the output image has ever been established,
and hence the choice ofK is a guesswork.

Some papers have proposed to automatically chooseK
[3, 4]. We think that such an automated strategy can be ap-
plied only to some specific application, because the amount
of desired filtering is a user’s choice and no automated sys-
tem can predict the user’s mind.

This paper proposes another approach. It establishes an
explicit connection between the parameterK and the num-
ber ν of edge-elements (edgels) of the filtered image. Let
us define that the frontier between two neighboring pixels
(p, q) is an edgel if|I(p) − I(q)| > τ , whereI(p) is the
image intensity atp andτ is a positive constant. For quan-
tized piecewise constant images,τ is usually zero. This con-
nections is valid only for the spatio-temporally discretized
anisotropic diffusion.

In our approach, the user specifies the desiredν. This
quantity is roughly equivalent to the sum of all edge lengths
in the filtered image (distance unit in pixels). From the spec-
ified ν, an appropriate parameterK is automatically com-
puted in every diffusion iteration, so that the final filtered
image hasν edgels. Note that in each iteration, a different
K must be estimated and used. Using this approach, the dif-
fusion converges to a nontrivial piecewise constant image,
whenever a feasible parameterν is specified.

2. ANISOTROPIC DIFFUSION

Perona and Malik defined their anisotropic diffusion as [2]:

∂I(x, y, t)
∂t

= div [g (‖∇I(x, y, t)‖)∇I(x, y, t)] (1)

using the original imageI(x, y, 0) : R2 → R+ as the initial
condition, wheret is an artificial time parameter andg is



an “edge-stopping” function. They suggested using one of
the two edge-stopping functions below (all edge-stopping
functionsgi(x) presented in this paper have been dilated
and scaled so thatgi(0) = 1 and their “influence functions”
ψi(x) = xgi(x) have local maxima atx = K):

g1(x) =
[
1 +

x2

K2

]−1

, g2(x) = exp
[
− x2

2K2

]
. (2)

The right choice of the edge-stopping functiong can greatly
affect the extent to which discontinuities are preserved.
Black et al. [3] used the robust estimation theory to choose
a better edge-stopping function, called Tukey’s biweight:

g3(x) =

{ [
1− x2

5K2

]2

, x2

5 ≤ K2

0, otherwise
(3)

The diffusion that uses this edge-stopping function is called
robust anisotropic diffusion (RAD) and this is the edge-
stopping function adopted in this paper.

Perona and Malik [2] discretized spatio-temporally their
anisotropic diffusion equation (1) as:

I(s, t+1) = I(s, t)+
λ

|ηs|
∑
p∈ηs

g(|∇Is,p(t)|)∇Is,p(t) (4)

whereI(s, t) is a discretely sampled image,s denotes the
pixel position in a discrete 2-D grid,t ≥ 0 now denotes dis-
crete time steps, the constantλ determines the rate of dif-
fusion (usually,λ = 1), andηs represents the set of spatial
neighbors of pixels. For 1-D signals, usually two neigh-
bors are considered:left andright, except at signal bound-
aries where only one neighbor must be considered. For 2-D
images, usually 4-neighborhood is used:north, south, west
andeast, except at the image boundaries. Perona and Malik
approximated the image gradient magnitude in a particular
direction at iterationt as:

∇Is,p(t) = I(p, t)− I(s, t), p ∈ ηs. (5)

Black et al. [3] have noticed that the valueKm where
the influence functionψi(Km) = Kmgi(Km) is maximal
determines the threshold between homogeneous regions and
edges. If‖∇Is,p(t)‖ > Km, the frontier between pixelss
andp is considered by the diffusion as an edgel to be pre-
served. And if‖∇I(x, y)‖ < Km, pixelss andp are con-
sidered to belong to the same homogeneous region and the
difference between them (possibly due to noises) is gradu-
ally suppressed by the diffusion.

3. GRADIENT HISTOGRAM-BASED DIFFUSION

3.1. Automated Selection ofK

We list below some of criteria described in the literature to
choose an appropriate parameterK:

1. SetK by hand at some fixed value [2].

2. Use the “noise estimator” described by Canny [5].
The histogram of the absolute values of the gradi-
ent throughout the image is computed. ThenK is
set equal to the 90% value of its integral at every iter-
ation [2].

3. Use tools from robust statistics to automatically esti-
mate the “robust scale”σe of an imageI: K = σe =
1.4826 medianI [| ‖∇I‖ − medianI(‖∇I‖) |]. It is
not clear ifK is fixed or should be estimated at every
iteration [3].

4. Estimate the noise at every iteration using the differ-
ence between the average intensities of images fil-
tered by morphological opening and closing:K =
average(I ◦ e) − average(I • e), wheree is a struc-
turing element [4].

5. Use the p-norm of the image to estimate the noise:
K = (σ‖I‖p)/m, whereσ is a constant proportional
to the image average intensity andm is the number of
image pixels [4].

All above criteria try to find a parameterK to appropri-
ately separate edges from noises. However, we argue that
the classification of a pair of neighboring pixels in “edge”
or “noise” depends not only on the imageI to be filtered,
but also on the desired scale of the filtered image. If the
user wants to obtain a coarse-scale image with only the key
edges, a largeK should be specified. And if the user wants
to obtain a fine-scale image with all the detailed edges, a
smallK should be chosen. Evidently, no automated pro-
cess can guess the user’s mind.

3.2. An Intuitive Example

We propose a different approach, named Gradient
Histogram-based Anisotropic Diffusion (GHAD). GHAD
establishes the connection between the parameterK and the
numberν of edgels of the filtered image. GHAD is based
on the criterion 2. Although this criterion was proposed in
the original Perona and Malik’s paper, it seems that many
of its consequences remain unexplored.

To explain intuitively our approach, let us consider a
simple example of 1-D signal processing. Figure 1(a) shows
a signal with 201 samples (and consequently 200 possible
edgels) that slowly grows from 0 to 255.

We always normalize the original grayscale sig-
nal/image from integer intensity range[0, ..., 255] to
floating-point range[0, 1] before performing the diffusion.
The diffusion is processed using floating-point operations
and variables, in order to minimize rounding errors. The ob-
tained filtered floating-point signal/image is converted back
to the integer range and saved.



(a) Original signal. (b) Filtered by RAD. (c) Filtered by GHAD.

Fig. 1. 1-D signal processed by RAD and GHAD (see text
for explanation).

Filtering the signal 1(a) by RAD with fixedK until
the convergence, the filtered signal is either almost equal
to the original (black signal of figure 1(b),K = 0.00585)
or a constant signal (red,K = 0.00586). WheneverK ≤
0.00585, the first kind of signal is obtained, and whenever
K ≥ 0.00586 the second kind of signal is generated. The
conventional anisotropic diffusion with fixedK cannot deal
appropriately with smooth edges.

Using GHAD, the user can easily specify the desired
number of edgels of the output signal. Figure 1(c) shows the
original signal processed by GHAD, usingν = 1 (black),
ν = 3 (red) andν = 60 (green).

3.3. The Proposed Technique

In GHAD, the user specifies the desired numberν of edgels
in the final filtered signal/image. Alternatively, the user can
specify the proportion$ = ν/n, wheren is the number of
possible edgels of the image.

In each diffusion iteration, GHAD computes the abso-
lute gradient values throughout the image. In the example
above,n = 200 absolute differences between neighboring
pixels are computed. These values are sorted in increasing
order, generating the ordered sequence~v = (v0, ..., vn−1).

In order to make the output image to haveν edgels, we
setK = vn−1−ν in every iteration. With this setting, the
diffusion considersν frontiers between neighboring pixels
as edgels to be preserved, andn − ν frontiers as homoge-
neous regions where the noise must be suppressed.

The sequence~v does not need to be completely sorted.
It is enough to know the value of the elementvn−1−ν of the
increasing sequence. This value can be efficiently computed
in average timeO(n) using the algorithm that computes the
k-th smallest element of a sequence, derived from the quick-
sort. The description of this algorithm can be found in many
introductory books on algorithms, for example, in [6].

Usually, the anisotropic diffusion uses 4-neighborhood
for 2-D images and 6-neighborhood for 3-D volumes. Some
care must be taken in 2-D/3-D GHAD implementation, to
assure that each frontier between neighboring pixels is com-

puted once and only once in~v. For example, a3× 3 image
has 12 possible edgels, and each one of 12 gradient magni-
tudes must appear once and only once in~v.

4. EXPERIMENTAL RESULTS

4.1. Restoration of Piecewise Constant Images

(a) Original image. (b) Corrupted by Gaussian noise.

(c) Restored by GHAD, PSNR =
40dB.

(d) Restored by RAD, PSNR =
25dB.

Fig. 2. Restoration of a piecewise constant image corrupted
by Gaussian noise.

Figure 2 depicts the restoration of a piecewise constant
image corrupted by Gaussian noise, using GHAD and RAD.
The original image 2(a) has background graylevel 128,
with circles with intensities 89 and 166. This image was
converted to floating-point range[0, 1], and the zero-mean
Gaussian noise with standard deviation 0.08 was added, re-
sulting in figure 2(b).

The original image 2(a) has$ = 0.54% of edgels and
consequently this is the best restoration parameter. Filtering
the noisy image 2(b) by GHAD with$ = 0.54% (number
of iterationst = 1000), the image 2(c) was obtained (PSNR
= 40.11 dB). GHAD did not succeed to perfectly restore
diagonal edges, probably due to the 4-neighborhood spatial
discretization.

Filtering the noisy image 2(b) by RAD withK fixed
at 0.04 (t = 1000), the image 2(d) was obtained (PSNR
= 24.69 dB). RAD could neither eliminate noises nor pre-
serve edges sharp. RAD with anotherK will not do a better



restoration because if a largerK is chosen, the edges will
become more blurred; and if a smallerK is chosen, more
noise will remain unfiltered.

4.2. Filtering Natural Images with GHAD

(a) Original “Lenna” image.

(b) Filtered by RAD,t = 1000. (c) Filtered by RAD,t→∞.

(d) Filtered by GHAD,t = 500. (e) Filtered by GHAD,t→∞.

Fig. 3. Image “Lenna” processed by RAD (K = 0.022) and
GHAD ($ = 5%).

Figure 3 depicts “Lenna” image 3(a) filtered by RAD
and GHAD. RAD’s parametersK = 0.022 and GHAD’s
parameter$ = 5% were chosen so that the final filtered im-
ages 3(c) and 3(e) have roughly the same number of edgels.

RAD eliminates many important edges (red circles in
figure 3(b)) when iterated until the convergence (figure 3(c),
t = 30000). This happens because the grayscale intensity
leaks continously through smooth edges (blue circles in fig-
ure 3(b)). As we noted in section 3, the anisotropic diffusion

with fixedK cannot deal appropriately with slowly varying
edges. A smooth edge will be either eliminated or preserved
unaltered (see figure 1).

GHAD, on the contrary, preserves important edges
sharp (red circles in figure 3(d)) even when iterated until the
convergence (figure 3(e),t = 40000). GHAD converts, if
necessary, smooth edges (blue circles in figure 3(d)) in sharp
edges in order to clearly delimit constant regions. Unfortu-
nately, GHAD shows strong preference for new horizontal
and vertical edges over new diagonal edges. This is proba-
bly due to the 4-neighborhood spatial discretization.

5. CONCLUSIONS AND FUTURE WORKS

This paper has introduced a new variety of anisotropic diffu-
sion named GHAD (Gradient Histogram-based Anisotropic
Diffusion). GHAD produces a piecewise constant image
with ν edge-elements when iterated until the convergence.
We have shown that GHAD outperforms the conventional
robust anisotropic diffusion (RAD) in the restoration of a
piecewise constant image corrupted by Gaussian noise. We
have also shown that the conventional RAD cannot appro-
priately filter smooth edges, while GHAD converts these
edges into sharp ones. In this conversion, GHAD shows
preference for new horizontal/vertical edges over diagonal
ones. We are researching spatial discretizations that do not
have preferences for any particular direction.
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