
Alteration-Locating
Authentication Watermarking for Binary Images

Hae Yong Kim1 and Ricardo Lopes de Queiroz2

1 Escola Politécnica, Universidade de São Paulo, Brazil,
hae@lps.usp.br,

WWW home page: http://www.lps.usp.br/~hae
2 Universidade de Braśılia, Brazil,

queiroz@ieee.org

Abstract. In image authentication watermarking, hidden data is in-
serted into an image to detect any accidental or malicious image alter-
ation. In the literature, quite a small number of cryptography-based se-
cure authentication methods are available for binary images. This paper
proposes a new authentication watermarking method for binary images.
It can detect any visually significant alteration while maintaining good
visual quality for virtually all types of binary images (possibly excluding
dispersed-dot halftones). As usual, the security of the algorithm lies only
on the secrecy of a secret- or private-key. This paper also presents a vari-
ation of the proposed scheme that can locate the modified region with
good spatial resolution. A possible application of the proposed technique
is in Internet fax transmission, i.e. for legal authentication of documents
routed outside the phone network.

1 Introduction

Classically, steganography (also known as data/information hiding) studies how
to hide secret messages in other messages, such that the secret’s very existence
is concealed. In this paper, data hiding scheme simply means the technique to
embed a sequence of bits in a still image and to extract it afterwards without
worrying about the confidentiality of the secret’s existence.

A watermarking technique makes use of a data-hiding scheme to insert some
information in the host image, in order to make an assertion about the image
later. Watermarking techniques can be classified as either “robust” or “fragile.”
Robust watermarks are useful for copyright and ownership assertion purposes.
They cannot be easily removed and should resist common image-manipulation
procedures such as rotation, scaling, cropping, brightness/contrast adjusting,
lossy compression, printing, scanning, etc. On the other hand, fragile water-
marks (or authentication watermarks) are easily corrupted by any image pro-
cessing procedure. However, watermarks for checking the image integrity and
authenticity can be fragile because if the watermark is removed, the watermark
detection algorithm will correctly report the corruption of the image.



In the literature, there are many authentication-watermarking techniques
(AWTs) for continuous-tone images [2, 3, 5, 13, 17, 22–24, 26, 27]. Also, there are
many techniques for data hiding in binary and halftone images [1,6,9–11,18,19,
21, 25]. However, quite a small number of secure AWTs are available for binary
and halftone images. We mean by “secure AWT” a scheme where the security
does not lie on the secrecy of the algorithm but only on the secrecy of the key.
The watermarking algorithm and the fact that an image is watermarked may be
made public without compromising the security. Hence, usually a secure AWT
relies upon cryptography, and it seems to be very difficult to design a really se-
cure AWT without making use of the solid cryptography theory and techniques.
Moreover, a secure AWT must detect any visually significant change made to
an image. A cryptography-based secure AWT [14, 15] was recently devised for
dispersed-dot halftone images but the visual quality for a generic binary image
is poor.

In a typical cryptography-based AWT, an authentication signature (AS) is
computed from the whole image and inserted into the image itself. In cryptog-
raphy, an AS is called message authentication code (MAC) using a secret-key
cipher or digital signature (DS) using a public/private-key cipher. An AS con-
tains information about the host image content that may be checked to verify
its integrity. However, inserting the AS into the image alters the image itself,
hence modifying its AS and invalidating the watermark. Typically, the image
has to be somehow divided into at least two parts: a portion to maintain the im-
age integrity and another portion to carry the AS. For continuous-tone images,
many AWTs compute the AS from the image clearing the least significant bits
(LSBs) and insert the AS in LSBs. In other words, the host image is divided in
two parts: LSBs and the remainder of the image excluding LSBs. Clearly, the
LSB-clearing technique cannot be applied to binary images.

In this paper, we propose a new cryptography-based secure AWT for binary
images that has good visual quality when applied to generic binary images (ex-
cluding dispersed-dot halftones). It can be used in conjunction with secret-key
or public/private-key ciphers. We also present a variation of the algorithm that
can spatially locate the modifications (besides detecting them). This version does
not lose its alteration-locating capability even with image cropping. A possible
use of our method is to send faxes and documents over uncontrolled networks
and the Internet. In this case, the receiver of a document can verify its integrity
for a given originator.

2 Data Hiding and Authentication Watermarking

There are three basic ways of embedding a sequence of bits in binary/halftone
images:

Pixel-wise: Change the values of (usually pseudo-randomly chosen) individ-
ual pixels [7, 10, 11]. This approach is well suited for dispersed-dot halftone
images. However, visible salt and pepper noise will appear when applied



to other types of binary images. It can be applied to the binary image or
directly to the halftone screen in its design step [16].

Component-wise: Change the characteristics of pixel groups (for example,
the position or the area of connected components) [18]. Unfortunately, the
success of this approach depends on the type of the host image.

Block-wise: Divide the host image into blocks and modify some characteristics
of each block [1, 12,19,21,25].

Many data hiding schemes for binary images can be transformed into AWTs
by simply dividing the host image Z in two regions: the first region Z1 where
the AS is to be stored, and the second region Z2 from where the AS is to be
computed. This idea was recently used to transform a pixel-wise data hiding
scheme [10, 11] into an AWT for dispersed-dot halftone images that can detect
even single pixel toggling [14, 15]. However, some caution must be taken when
transforming a data-hiding scheme into an AWT, because although the region
Z2 is well protected (with the security assured by the cryptography theory), the
region Z1 is not. For example, let us take the component-wise data-hiding scheme
that inserts one bit per connected component, forcing it to have an even or odd
number of pixels. A connected component can be forced to have the desired
parity by toggling one of its boundary pixels. This scheme can be transformed
into an AWT by dividing the host image in regions Z1 and Z2, computing the
AS of Z2 and inserting it in Z1. Yet, a malicious hacker can arbitrarily alter
the region Z1 without being noticed by the AWT, as long as all the parities of
its connected components remain unaltered. For example, a character “a” in Z1

region can be changed into an “e” (or any other character that contains only
one connected component) as long as its parity remains unchanged. We refer to
this as a “parity attack.”

3 The Proposed Method

As we noted in previous section, there are some data hiding techniques for binary
images. Among them, an interesting technique is template ranking [8,25], which
can be applied to most binary images with excellent visual quality. It can be
summarized as follows:

– Divide the image Z to be marked into blocks (e.g. 8× 8).
– The neighborhood of each pixel (usually a 3 × 3 template) is analyzed to

rate its visual significance. A pixel with low visual significance may change
its color with small visual impact. Figure 1 depicts two possible rankings of
3 × 3 templates. It seems that the most visually pleasant ranking depends
on the nature of the image Z to be marked.

– Insert one bit in each block by forcing the block to have even or odd number
of white pixels, to insert bits 0 or 1 respectively. If the block already has the
desired parity, it is left untouched. Otherwise, toggle the pixel in the block
with the lowest visual significance.



(a) A suggested template ranking [8]. (b) Another rank where hatched pixels
match either black or white pixels (the score
of a given pattern is that of the matching
template with the highest impact).

Fig. 1. Two template rankings (in increasing visual significance order from left to right,
top to bottom). Mirrors, transposes and reverses of each pattern have the same score.
All white or all black patterns have the highest visual impacts.

As different blocks may have different quantities of low-visibility pixels, it is
suggested to shuffle image Z before embedding data. The template ranking data
hiding technique can be employed in a secure AWT for binary images. That was
hinted in [25] but not elaborated before. We refer to this technique as AWTR
(Authentication Watermarking by Template Ranking). The first version of the
AWTR insertion algorithm is:

Step 1) Let be given a binary image Z to be marked. Using a pseudo-random
number generator with a seed, construct an auxiliary data structure called
shuffling vector, so that the image Z can be viewed as a completely shuffled
sequence of pixels Z̃. In the secret-key version of our technique, the secret-key
is used as the seed of the pseudo-random generator. In the public/private-key
version, the seed must be made public.

Step 2) Let n be the length of the adopted AS, and m be the number of pixels
in each block. Divide the shuffled sequence Z̃ into two regions:
– First region Z̃1 with n × m pixels, where the AS is to be stored. This

region is subdivided into n blocks with m pixels each. In each block, one
bit of the AS will be inserted.

– Second region Z̃2: the remainder of the shuffled sequence Z̃. The insertion
algorithm will compute AS of this region.

Step 3) Using a cryptographically secure hashing function H, compute the fin-
gerprint of the second region H = H(Z̃2). Encrypt the fingerprint H using a
secret- or private-key k, obtaining an authentication signature S = Ek(H).

Step 4) Insert S into the first region, obtaining the watermarked image Z ′.
Insert one bit of S in each block as previously described.

We remark here that AS cannot be made too short without seriously com-
promising security. A 64-bits-long message authentication code does not with-
stand a birthday attack [3]. Usually, a message authentication code (MAC) with



128-bits is considered secure. The best known digital signature (DS), RSA, is
considered secure with 1024 bits. A newer scheme, DSA, is considered secure
with 320 bits. A brand new scheme, BLS, is supposedly secure with only 160
bits [4]. The reader is referred to introductory books on Cryptography for more
details (for example, [20]). The verification algorithm of a watermarked image
Z ′ is straightforward:

Step 1) Compute the same shuffling vector used in the insertion. Note that in
the secret-key version, the secret-key is also the seed of the random number
generator and consequently only the owner of the key can reconstruct the
shuffling vector. However, in the public-key version, the seed is public and
so is the shuffling vector.

Step 2) Divide the shuffled sequence Z̃ ′ into two regions Z̃ ′
1 and Z̃ ′

2, in the same
way done in the insertion. Compute the fingerprint H = H(Z̃ ′

2).
Step 3) Extract the authentication signature S stored in Z̃ ′

1 and decrypt it
using the secret- or public-key k, obtaining the check data D = Dk(S).

Step 4) If D = H, the watermark is verified. Otherwise, image Z ′ has been
modified or a wrong key was used.

(a) Part of a page of magazine scanned at
300 dpi which can be considered as a “typ-
ical” binary document.

(b) AWTR-marked image (1024 bits em-
bedded, enough for embedding the RSA
digital signature).

(c) Exclusive-or between figures 2(a) and
2(b).

(d) Region-defining map: Black pixels be-
long to region 1, while white ones to region
2.

Fig. 2. Quality of a “typical” binary document marked with the AWTR.

Figure 2(a) depicts a zoom of a magazine page scanned at 300 dpi, which
can be considered as a “typical” binary document (3200×2432 pixels for the full
page). Figure 2(b) is the corresponding image after embedding 1024 bits using
64-pixel blocks. Note in figure 2(c) that only a few pixels have changed their
values.



Figure 3(a) shows a very small binary image (160× 370 pixels) to be water-
marked. Figure 3(b) shows the AWTR-watermarked image with 800 bits embed-
ded using 64-pixel blocks. The quality of the marked image is acceptable, even
though many bits have been embedded.

(a) A very small image (160 × 370) to be
watermarked.

(b) Image with 800 bits embedded.

(c) Region-defining map: Black pixels be-
long to region 1, where a parity attack can
be mounted.

(d) A fake image generated by a parity at-
tack, undetectable by the first version of the
AWTR, but detectable by the second ver-
sion.

Fig. 3. Quality of a very small image marked with the AWTR and the parity attack.

4 Parity Attack

The proposed method detects any alteration of the second region of a water-
marked image, even if one single pixel is toggled. Indeed, the probability of not
detecting a modification in this region is only 2−n (n is the length of the AS),
which can be neglected.

Unfortunately, any alteration that maintains the parities of the blocks in the
first region cannot be detected by AWTR. For example, if two pixels that belong
to the same block change their values, the parity of this block does not change
and this modification will pass undetected. We named this a “parity attack.” If
the host image Z is large enough, pixels of the first region constitute isolated
pixels randomly dispersed in the image and it is unlikely that a malicious attacker
will be able to introduce any visually significant alteration by changing only the
region-1 pixels (while maintaining the parities of all blocks). For example, in
Fig. 2(d), black pixels belong to the region 1 and they are quite dispersed. Thus,



no visually meaningful alteration will result by modifying only these pixels. As
a rule of thumb, we can consider that no visually significant parity attack can
occur if the number of pixels of the first region is, say, less than 5% of total host
image pixels.

However, if image Z is small, region-1 pixels can form contiguous areas.
This rises the possibility of a visually meaningful modification that would pass
undetected. For example, Fig. 3(c) shows pixels that belong to region 1 in black.
Any region-1 pixel can be modified, provided that another pixel in the same block
is also modified. To obtain a fake image, a hacker changes a pixel p of block i.
Then, the hacker looks for the pixel within block i with the lowest visibility and
flips its value. Figure 3(d) shows a fake image constructed by repeating this idea.
This alteration will pass undetected by AWTR.

Actually, the above described scenario only applies to the public-key version
of the AWTR, where the locations of regions 1 and 2, as well as the subdivisions
of region 1 into blocks are publicly known. Unfortunately, we could not find
any technique to thwart the parity attack for public-key AWTR, except forcing
region-1 to be much smaller than the size of the host image. This can be achieved
by using small blocks and/or short digital signatures.

For secret-key AWTR, we do not have to worry much about a parity attack,
because the secret-key is used to generate the shuffling vector. So, an attacker will
not know how the watermarked image is divided into regions 1 and 2, and how
region 1 is subdivided into blocks. However, we have to pay some attention to
this potential attack because the hacker may have many different ways to obtain
“clues” about the location of regions and blocks. For example, let us suppose that
the hacker has access to a database of original and marked binary documents,
all of the same size and all watermarked using the same secret-key. Then the
hacker will know that all those pixels whose values are different in the original
and the watermarked images belong to region-1 (although it will not be known
how region-1 is subdivided into blocks). Nevertheless there are always means to
make the division into regions to be image dependent, therefore unique for each
image. In any case, in order to minimize the possibility of a parity attack, we
suggest the following improvement of step 4 of the secret-key AWTR insertion
algorithm:

Step 4) Insert S into the first region using the following algorithm, to obtain
the watermarked image Z ′:
For i← 0 to n− 1 {
– Insert bit i of S into the i-th block forcing it to have odd or even number

or white pixels;
– Compute the new AS S, feeding the hashing function with the

content of block i, and encrypting it with the key k: S ←
Ek(H(S, pixels of block i));

}

In this way, block n−1 can still suffer a parity attack without being detected.
However, if block n − 2 is modified without modifying its parity, with 50% of



chance this modification will be detected. If block 0 is changed (maintaining its
parity), there is a probability of 1− 2−(n−1) of detecting this change. Obviously,
the AWTR verification algorithm must be changed accordingly. Unfortunately,
this idea cannot be used with the public-key AWTR, because the digital signa-
ture must be completely extracted before decrypting it with the public-key.

5 Locating Alterations

The AWTR can be transformed into an authentication watermarking capable
of spatially locating the altered regions. Let us call this technique AWTRAL
(Authentication Watermarking by Template Ranking with Alteration Locating).
The naive idea of dividing the host image into sub-images and authenticating
independently each sub-image is not safe. Wong [22, 23] has proposed a similar
idea to authenticate continuous-tone images and it was demonstrated later to
be subject to many kinds of attacks, including the “cut and paste,” “vector
quantization counterfeiting” and “birthday” attacks [2,3,13,24]. A few works [3,
5,24] present different approaches to protect the host image against such attacks.
Wong and Memon [24] propose a technique where the AS of each sub-image is
dependent of its index and a unique identifier of the host image. However, the
image identifier has to be somehow stored outside of the host image, what is
a significant inconvenience. Barreto et al. [3] present a technique called “hash
block chaining” that uses the contexts of sub-images and a non-deterministic
digital signature to obtain the security. Using this technique, there is no more
need to use an image identifier. However, the obtained spatial resolution is twice
the size of each sub-image. Celik et al. [5] propose a hierarchical watermarking.
The spatial resolution of this scheme is nearly the size of each sub-image. It
does not lose its alterations-locating capability even with an image cropping:
it can use a “sliding window” to resynchronize with sub-images. We will use
the hierarchical watermarking with two layers to construct the AWTRAL. Two
layers are sufficient to obtain the desired security.

The idea of AWTRAL is to divide the image to be marked into sub-images
(say, with 128× 128 pixels). Then, we watermark independently each sub-image
with secret-key AWTR (first layer), and watermark the whole image (composed
by all AWTR-marked sub-images) with another public- or secret-key AWTR
(second layer). Note that if the host image is not large enough to hinder par-
ity attacks, secret-key AWTR must be used in both watermark layers. Using
secret/public-key AWTRAL, anyone can verify if the marked image is authentic
using the public-key. If an image is found to be fraudulent, the owner of the
secret-key can spatially locate the alterations to help discovering the intentions
of the hacker. We describe below the secret/public-key AWTRAL:

Step 1) Let be given a binary image Z to be marked. Pseudo-randomly shuffle
Z, obtaining the shuffled sequence of pixels Z̃.

Step 2) Divide the sequence Z̃ into two regions:
– Region Z̃A with n2×m pixels, where the second-layer DS is to be stored

(n2 is the length of adopted DS and m is the size of each block).



– Region Z̃BC : the remainder of Z̃ from where the DS is to be computed.
This region will be further subdivided into regions Z̃B and Z̃C .

Step 3) Divide the original non-shuffled image Z into sub-images (say, with
128× 128 pixels) Z1, Z2, ..., Zl.

Step 4) Pseudo-randomly shuffle each sub-image Zi, obtaining Z̃i, and divide
it into three sub-regions:
– Sub-region Z̃iA, constituted by the pixels of sub-image Z̃i that belong

to the region Z̃A determined in step 2.
– Sub-region Z̃iB with n1 ×m pixels, where the first-layer MAC is to be

stored (n1 is the length of adopted MAC and m is the size of each block).
– Sub-region Z̃iC : the remainder of Z̃i from where the MAC is to be com-

puted.
Step 5) For each shuffled sub-image Z̃i, compute the fingerprint of sub-region

Z̃iC : Hi = H(Z̃iC). Encrypt the fingerprint Hi with a secret-key, obtaining
the MAC Si = Ek(Hi). Insert Si into sub-region Z̃iB , as described in sections
3 and 4.

Step 6) Compute the fingerprint of region Z̃BC : H = H(Z̃BC). Encrypt the fin-
gerprint H with the private-key, obtaining the digital signature S = Ek(H).
Insert S into region Z̃A, as described in sections 3 and 4.

The AWTRAL verification algorithm is:

Step 1) Given an AWTRAL-marked image Z ′, shuffle it as in the insertion,
obtaining the shuffled sequence Z̃ ′.

Step 2) Divide the sequence Z̃ ′ into regions Z̃ ′
A and Z̃ ′

BC , as before. Compute
the fingerprint H of Z̃ ′

BC .
Step 3) Extract the DS S stored in Z̃ ′

A and decrypt it using the public-key k,
obtaining the check data D = Dk(S).

Step 4) If D = H, the watermark is verified and no further processing is neces-
sary. Otherwise, image Z ′ was modified and the following steps can determine
the altered locations.

Step 5) Divide the watermarked non-shuffled image Z ′ into sub-images Z ′
1, Z ′

2,
..., Z ′

l , as in the insertion.
Step 6) Shuffle each sub-image Z ′

i, obtaining Z̃ ′
i, and divide it into three sub-

regions Z̃ ′
iA, Z̃ ′

iB and Z̃ ′
iC , as before.

Step 7) For each shuffled sub-image Z̃ ′
i, compute the fingerprint Hi of sub-

region Z̃ ′
iC . Extract the MAC Si stored in sub-region Z̃ ′

iB and decrypt it,
obtaining the check data Di = Dk(Si). If Hi = Di, the watermark of sub-
image Z ′

i is verified.

Let us make three remarks on the AWTRAL algorithm. First, the above-
described algorithm loses its capability of locating alterations after row or column
cropping. Celik et al. [5] suggest using a sliding window to obtain a cropping-
surviving watermark. Step 5 of the verification algorithm may be modified as
follows to locate alterations even after image cropping:



Step 5) Slide a window (of the same size as the sub-images used in the AW-
TRAL insertion) over the non-shuffled image Z ′ to obtain all possible sub-
images Z ′

1, Z ′
2, ..., Z ′

l within Z ′.

Second, there may be some sub-images almost completely white (black) with
only a few black (white) pixels. These sub-images have few low-visibility pixels
and the watermark insertion may make visible salt-and-pepper noise. We suggest
not watermarking neither verifying these sub-images, because it is not possible
to introduce any visually significant alteration without significantly increasing
the number of black (white) pixels. And if the number of black (white) pixels
increases significantly, the MAC verification will detect the forgery.

Third, the first-layer MAC can be shorter than the usual 128 bits, because
the AWTRAL cannot be assaulted by a conventional birthday attack. If a birth-
day attack takes place and a sub-image is replaced by another fake sub-image,
the second-layer DS will detect this alteration. However, the AWTRAL can be
assaulted by an “improved birthday attack” similar to that described in [3]. It
consists in replacing simultaneously two sub-images by two fake sub-images such
that the two sub-images’ MACs and the DS of the whole image remain valid.
Hence, the first-layer MAC must be longer than 64 bits: we recommend using a
96-bit or longer MAC.

(a) Part of a page of a magazine scanned at
300 dpi.

(b) AWTRAL-watermarked image.

(c) A faked image: A letter “m” was trans-
formed into a letter “n” and the word
“DNA” was inserted.

(d) Locating the alterations.

Fig. 4. The use of the alteration-locating watermark AWTRAL.

Figure 4 illustrates the AWTRAL. Figure 4(a) is part of a page of a magazine
which was scanned at 300 dpi yielding 3200×2432 pixels per page. This image was
marked by the AWTRAL, resulting in Fig. 4(b). The host image was subdivided



into 475 sub-images each with 128×128 pixels. Each sub-image was marked with
a 96-bits-long MAC, using blocks of 64 pixels. A 1024-bits-long DS, also using
blocks of 64 pixels, was used to protect the whole image. Almost completely
white (black) sub-images, with 6 or less black (white) pixels, were not marked.
Figure 4(c) is a fake image, where a letter “m” was switched by the letter “n”
and the word “DNA” was inserted. Figure 4(d) shows the result of the AWTRAL
verification algorithm, where the modified sub-images are clearly marked.

6 Conclusions

This paper has proposed a new cryptographically secure authentication water-
marking technique for binary images (AWTR). The proposed technique is suit-
able to watermark most binary images with excellent visual quality. We also de-
scribed a variant of the AWTR that can locate the alterations, besides detecting
them. The AWTR can be used in trusted FAX machines, i.e., to electronically
sign binary documents. Further research is necessary to adapt the method to
scanned documents.

7 Acknowledgements

The authors would like to express their gratitude to Dr. Paulo S. L. M. Barreto
for warning us about the possibility of an improved birthday attack against the
AWTRAL. One of the authors, H. Y. Kim, would like to thank FAPESP and
CNPq for the partial financial supports of this work under grants 2003/13752-9
and 305065/2003-3, respectively.

References

1. Z. Baharav and D. Shaked, “Watermarking of Dither Halftone Images,” Hewlett-
Packard Labs. Tech. Rep. HPL-98-32, 1998.

2. P. S. L. M. Barreto and H. Y. Kim, “Pitfalls in Public Key Watermarking,” Sibgrapi
– Brazilian Symp. Computer Graphics and Image Processing, pp. 241-242, 1999.

3. P. S. L. M. Barreto, H. Y. Kim and V. Rijmen, “Toward a Secure Public-Key
Blockwise Fragile Authentication Watermarking,” IEE Proc. Vision, Image and
Signal Processing, vol. 149, no. 2, pp. 57-62, 2002.

4. D. Boneh, B. Lynn and H. Shacham, “Short signatures from the Weil pairing,”
Advances in Cryptology - Asiacrypt’2001, Lecture Notes in Computer Science 2248,
pp. 514-532, 2002.

5. M. U. Celik, G. Sharma, E. Saber and A. M. Tekalp, “Hierarchical Watermarking
for Secure Image Authentication with Localization,” IEEE Trans. Image Process-
ing, vol. 11, no. 6, pp. 585-595, 2002.

6. Y.-Y. Chen, H.-K. Pan and Y.-C. Tseng, “A Secure Data Hiding Scheme for Binary
Images,” IEEE Symposium on Computers and Communications, pp. 750-755, 2000.

7. I. G. Chun and S. Ha, “A Robust Printed Image Watermarking Based on Iterative
Halftoning Method,” 2nd Int. Workshop on Digital Watermarking, Lecture Notes
on Computer Science 2939, pp. 200-211, 2003.



8. R. de Queiroz and P. Fleckenstein, “Object Modification for Data Embedding
through Template Ranking,” Xerox Invention Proposal, 1999.

9. M. P. Deseilligny and H. Le Men, “An Algorithm for Digital Watermarking of
Binary Images, Application to Map and Text Images,” available at
www-ima.enst.fr/˜maitre/tatouage/MPdS HK.ps, 1998.

10. M. S. Fu and O. C. Au, “Data Hiding by Smart Pair Toggling for Halftone Images,”
IEEE Int. Conf. Acoustics, Speech and Signal Processing, vol. 4, pp. 2318-2321,
2000.

11. M. S. Fu and O. C. Au, “Data Hiding Watermarking for Halftone Images,” IEEE
Trans. Image Processing, vol. 11, no. 4, pp. 477-484, 2002.

12. H. Z. Hel-Or, “Watermarking and Copyright Labeling of Printed Images,” Journal
of Electronic Imaging, vol. 10, no. 3, pp. 794-803, 2001.

13. M. Holliman and N. Memon, “Counterfeiting Attacks on Oblivious Block-wise
Independent Invisible Watermarking Schemes,” IEEE Trans. Image Processing,
vol. 9. no. 3, pp. 432-441, 2000.

14. H. Y. Kim and A. Afif, “Secure Authentication Watermarking for Binary Images,”
in Proc. Sibgrapi – Brazilian Symp. on Comp. Graph. and Image Proc., pp. 199-
206, 2003.

15. H. Y. Kim and A. Afif, “Secure Authentication Watermarking for Halftone and
Binary Images,” to appear in Int. J. Imaging Systems and Technology.

16. K. T. Knox and S. Wang, “Digital Watermarks Using Stochastic Screens, Color
Imaging: Device-Independent Color, Color Hard Copy, and Graphic Arts II,” SPIE
Proc., vol. 3018, pp.316-322, Feb. 1997.

17. C. T. Li, D. C. Lou and T. H. Chen, “Image Authentication and Integrity Veri-
fication via Content-Based Watermarks and a Public Key Cryptosystem,” IEEE
Int. Conf. Image Processing, 2000, vol. 3, pp. 694-697.

18. N. F. Maxemchuk and S. Low, “Marking Text Documents,” Int. Conf. Image Pro-
cessing, vol. 3, pp. 13-17, 1997.

19. S. C. Pei and J. M. Guo, “Hybrid Pixel-Based Data Hiding and Block-Based Water-
marking for Error-Diffused Halftone Images,” IEEE Trans. on Circuits and Systems
for Video Technology, vol. 13, no. 8, pp. 867-884, 2003.

20. B. Schneier, Applied Cryptography, John Wiley & Sons, 1996.
21. Y.-C. Tseng, Y.-Y. Chen and H.-K. Pan, “A Secure Data Hiding Scheme for Binary

Images,” IEEE Trans. on Communications, Vol. 50, No. 8, Aug. 2002, pp. 1227-
1231.

22. P. W. Wong, “A Watermark for Image Integrity and Ownership Verification,” IS&T
PIC Conference, (Portland, OR), May 1998 (also available as Hewlett-Packard
Labs. Tech. Rep. HPL-97-72, May 1997).

23. P. W. Wong, “A Public Key Watermark for Image Verification and Authentica-
tion,” IEEE Int. Conf. Image Processing, 1998, vol. 1, pp. 455-459, (MA11.07).

24. P. W. Wong and N. Memon, “Secret and Public Key Image Watermarking Schemes
for Image Authentication and Ownership Verification,” IEEE Trans. Image Pro-
cessing, vol. 10, no. 10, pp. 1593-1601, 2001.

25. M. Wu, E. Tang and B. Liu, “Data Hiding in Digital Binary Image,” IEEE Int.
Conf. Multimedia and Expo, ICME’00, New York, USA, 2000.

26. M. M. Yeung and F. Mintzer, “An Invisible Watermarking Technique for Image
Verification,” IEEE Int. Conf. Image Processing, 1997, vol. 1, pp. 680-683.

27. J. Zhao and E. Koch, “Embedding Robust Labels into Images for Copyright Pro-
tection,” Proc. Int. Cong. Intellectual Property Rights, Knowledge and New Tech-
nologies, 1995, pp. 242-251.


