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1. Introduction

Rotation, scale and translation-invariant grayscale
shape recognition is an important problem in com-
puter vision. However, to our knowledge, all
practical techniques in the literature �rst �sim-
pli�es� the image using operations like segmenta-
tion/binarization and detection of edges and cor-
ner points. Some approaches that achieve RST-
invariance by detecting interest points and edges in-
clude: curvature scale space [1], orientation code
histograms [2], geometric hashing [3], and general-
ized Hough Transform [4]. Other techniques, like [5],
�rst binarizes the image, isolates the shapes, normal-
izes their area and extracts some RST-invariant fea-
tures. The most commonly used RST-invariant fea-
tures are Hu's moments [6] and Zernike's moments
[7]. However, these �image simplifying operations�
throw away the rich grayscale information, are noise-
sensitive and prone to errors. Thus, a segmentation-
free approach is attractive. Segmentation-free ap-
proaches were proposed to recognize printed charac-
ter [8] and handwritten numeral string [9], but they
are not RST-invariant. Mathematical morphology
has been used successfully in many works related to
shape recognition, for example [10]. In this paper,
we present a RST-invariant, segmentation-free gray-
level shape recognition method using mathematical
morphology approach. It is composed of three steps.
In the �rst and second steps, �lters based on dila-
tions and erosions prune out the pixels that have no
chance of matching the query shape. The third step
makes use of the conventional template matching to
recognize the query shape.

2. Algorithm Description

Let A be the grayscale image to be analyzed and
Q the query grayscale template. The problem is to
�nd all occurrences of Q in A. However, the in-
stances of Q in A may be rotated, scaled, translated
and with diverse brightnesses and contrasts. Our
approach consists of three cascaded steps of �lter-
ing. Each �ltering successively excludes pixels that

have no chance of matching the query pattern. In or-
der to measure the similarity between two grayscale
images independent of brightness/contrast, we use
the correlation coe�cient with some modi�cation to
force that shapes with very low contrast yield no
correlation. Let x and y be vectors of same size ob-
tained from the query shape Q and any subimage
of A, respectively. Then contrast-aware correlation
coe�cient is de�ned:

Corr(x, y) =

{
0, if |β| ≤ tβ or 1/tβ ≤ |β|
x̃ỹ

‖x̃‖‖ỹ‖ = βx̃2

‖x̃‖‖ỹ‖ , otherwise

where β = x̃ỹ/x̃2 is the contrast correction factor,
0 < tβ ≤ 1 is a contrast threshold, x̃ = x − x is
the mean-corrected vector, and x is the mean of x.
Similar de�nitions are applicable to y.

In this paper, we de�ne the dilation and erosion
of a grayscale image I by a �at structuring element
B with domain D(B) as:

(I ⊕B)(s, t) = max(x,y)∈D(B){I(s+ x, t+ y)}
(I	B)(s, t) = min(x,y)∈D(B){I(s+x, t+y)} Note

that, di�erently from the usual, our dilation de�ni-
tion does not include the re�ection of the structuring
element.

In the �rst step of the �ltering, gray-level morpho-
logical dilations and erosions by �at annular struc-
turing elements (Figure 1a) are used to determine a
set of pixels of A (called ��rst grade candidate pix-
els�) that have chance of matching Q. For each can-
didate pixel, the probable scale factor is also com-
puted. Given A and a set of l radii {r0, r1, ..., rl−1},
we build a 3D image CA[x, y, k], 0 ≤ k < 2l:

CA[x, y, k] =

{
(A⊕Brk/2)(x, y), if k is even

(A	Br(k−1)/2)(x, y), if k is odd

where Br is the �at annular structuring element with
radius r. In our experiments we have used l = 13,
and the set of radii {0, 2, ..., 24} pixels. Given the
query shape Q and a set of n scales {s0, s1, ..., sn−1},
Q is resized to each scale factor, yielding the resized
queries Q0, Q1, ..., Qn−1. We build a matrix CQ with
n rows (scales) and 2l columns (radii):

CQ[i, k] =

{
(Qi ⊕Brk/2)(x0, y0), if k is even

(Qi 	Br(k−1)/2)(x0, y0), if k is odd

where (x0, y0) is the central pixel of Q and 0 ≤ i < n,
0 ≤ k < 2l.
The matrices CQ and CA and a contrast threshold

tβ are used to detect the correlation CisCorr at the
best matching scale for each pixel (x, y):



CisCorrA,Q(x, y) =
MAXn−1

i=0 [|Corr(CQ[i], CA[x, y])|]
A pixel (x, y) is classi�ed as a �rst grade candidate

pixel if CisCorrA,Q(x, y) ≥ t1, for some threshold
t1. The probable scale of (x, y) is si, where i is the
argument that maximizes CisCorr.

The second step upgrades some of the �rst grade
candidate pixels to second grade, while discards
those that are not upgraded. For each second grade
candidate pixel, the probable rotation angle is esti-
mated. This �ltering uses �at structuring elements
disposed on radial lines (Figure 1a). Given Q and
the set of m angle inclinations (in our example,
α0 = 0, α1 = 10, ..., αm−1 = 350) a vector RQ with
2m elements is built:

RQ[j] =
{

(Q⊕Brl−1
αj/2)(x0, y0), if k is even

(Q	Brl−1
α(j−1)/2)(x0, y0), if k is odd

where (x0, y0) is the central pixel of Q, B
rl−1
α is the

�at radial structuring element with inclination α and
length rl−1 (the largest sampling circle radius) and
0 ≤ j < 2m. For each �rst grade candidate pixel
(x, y), the vector RA is computed:

RA[x, y, j] =

{
(A⊕Bλαj/2

)(x, y), if k is even

(A	Bλα(j−1)/2
)(x, y), if k is odd

where λ = sirl−1 is the largest radius resized to the
probable scale si of pixel (x, y), and 0 ≤ j < 2m.
The vectors RA[x, y], RQ and a contrast threshold
tβ are used to detect the correlation RasCorr at the
best matching rotation angle:

RasCorrA,Q(x, y) =
MAX2m−1

j=0 [|Corr(RA[x, y], cshiftj(RQ))|]
where �cshiftj� denotes circular shifting j positions
of the argument vector. A �rst grade pixel (x, y)
is upgraded to second grade if RasCorrA,Q(x, y) ≥
t2. The probable rotation angle of each candidate
pixel (x, y) is αj where the argument j maximizes
RasCorr.

In the third step, the second grade candidate pix-
els are �ltered using a conventional template match-
ing. This task is easy because the probable scale and
angle for each candidate pixel are known. If the ab-
solute value of contrast-aware correlation coe�cient
between the query shape Q and the image A at po-
sition (x, y) is larger than a threshold t3, the query
shape is considered to be found.

3. Experimental Results

Some experiments were executed to evaluate the
performance of the proposed method (Figure 1.
We have applied the method to detect three query
shapes (frog, bear and mouse) in three images where
the query shapes appear in di�erent rotations and

(a) (b)

Figure 1. Detection of the frog shape. (a) Query shape Q
(51×51 pixels), Annular structuring elements and Radial
structuring elements. (b) Analyzed image A (465×338
pixels) where the red �x� indicate shape matchings.

scales. All shapes were correctly detected. Our algo-
rithm takes 69s while the brute force algorithm takes
4 hours (this algorithm performs template matchings
between each pixel of A and Q rotated by every angle
and scaled by every scale). We also executed success-
fully some other experiments using remote sensing
images.
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