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ABSTRACT
A near-planar object seen from different viewpoints results
in differently deformed images. Under some assumptions,
viewpoint changes can be modeled by affine transformations.
Shape features that are affine-invariant (af-in) must remain
constant with the changes of the viewpoint. Similarly, shape
similarity metrics that are af-in must rate the difference be-
tween two shapes, regardless of their viewpoints. Af-in shape
features and similarity metrics can be used for the shape clas-
sification and retrieval. In this paper, we propose a new set
of af-in shape features and similarity metrics. They are based
on the area matrix, a structure that contains multiscale infor-
mation about the shape. Experimental results indicate that the
proposed techniques are robust to viewpoint changes and can
rate correctly the dissimilarities between the shapes.

1. INTRODUCTION

An important problem in the object classification and re-
trieval is the fact that an object can be seen from different
viewpoints, resulting in differently deformed images. Conse-
quently, the invariance to viewpoints is a desirable property
in many shape recognition systems. For near-planar objects,
these deformations can be modeled approximately by affine
transformations, if the viewpoints are sufficiently far away.
In the literature, there are some papers on the shape recog-
nition invariant under affine transformations. Some examples
are affine-invariant (af-in) Fourier descriptors [1, 2], af-in mo-
ments [3, 4, 5] and affine curvature scale space [6, 7].

Area matrix is a structure that contains multiscale infor-
mation about the shape. It was proposed by Shen et al. [8]
and designed to be af-in. However, they did not correctly
reparameterize the shape, and the resulting area matrix was
not truly af-in. In a previous work [9], we reparameterized
the shape using the affine-length before computing the area
matrix, obtaining a truly af-in area matrix, insensible to the
initial parameterization. Area matrix has too many informa-
tion, and consequently it must be somehow summarized to
become really useful. There are two ways doing it:
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• The first is to extract af-in shape features, and construct
a feature vector for each shape. Two feature vectors
can be directly compared to rate the dissimilarity of the
corresponding shapes. In our previous work [9], we
extracted some simple features from the area matrix. In
this paper, we propose a new set of af-in shape features:
the central moments of the area matrix columns.

• The second is to construct an af-in shape similarity met-
ric. Given the area matrices of two shapes, an af-in
shape similarity metric performs some processing to
rate their dissimilarity, regardless of their viewpoints.
That is, the distance between two different views of the
same object must be close to zero and the distance be-
tween two different objects must reflect their dissimi-
larity. In this paper, we propose a new set of af-in shape
similarity metrics.

Experimental results indicate that the proposed tech-
niques are robust to viewpoint changes, and make it possible
to distinguish between two shapes that represent two different
objects and two shapes that represent two different views of
the same object.

2. FUNDAMENTAL CONCEPTS

2.1. Closed Curve

Given the image of a shape (for example, the images in fig-
ure 1), its edge pixels are extracted and traversed to yield a
discrete closed curve that represents the shape. A discrete
closed curve is a parametric equation u(t) = (x(t), y(t))
where t ∈ {0, . . . , N − 1} and u(N) = u(0). A discrete
curve is considered to be an approximate version of a contin-
uous curve. The approximation of first and second derivatives
of discrete curve u(t) can be computed by the central differ-
ences:

u̇(t) =
u(t + h) − u(t − h)

2h

ü(t) =
u(t + h) − 2u(t) + u(t − h)

h2

where h is a constant (usually h = 1).
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(a) bat-a (b) bat-b (c) camel-a (d) camel-b

Fig. 1. Images of shapes viewed from different points.

2.2. Affine Transformation

An affine transformation F : R
2 → R

2 of a curve u is [10]:

F(u) = Au + b (1)

where A is an invertible 2 × 2 matrix and b ∈ R
2 is the

translation vector. A general affine transformation contains
translation, scaling, rotation and shearing.

2.3. Affine Parameterization

The normalized affine-length of a continuous curve is [1, 3, 5,
11]:

τ(p) =

∫ p

0
|ẋ(t)ÿ(t) − ẍ(t)ẏ(t)| 13 dt

∫ T

0
|ẋ(t)ÿ(t) − ẍ(t)ẏ(t)| 13 dt

, 0 ≤ p < T (2)

and of a discrete curve is:

τ(p) =

∑p−1
0 |ẋ(t)ÿ(t) − ẍ(t)ẏ(t)| 13

∑N−1
0 |ẋ(t)ÿ(t) − ẍ(t)ẏ(t)| 13

, p ∈ {1, . . . , N} (3)

Given a discrete curve, we reparameterize it so that its ver-
tices become equally affine-length spaced. Figure 2a shows
an arc-length uniformly-spaced curve (in Euclidean distance
sense) and figure 2b shows an affine-length uniformly-spaced
curve. Note that equation 3 must be conveniently interpolated
in order to perform the uniformly affine-spaced reparameter-
ization. This interpolation can produce numerical errors. We
found two ways to circumvent this error. The first is to per-
form repeated reparameterizations. It seems that reparameter-
izing an already almost affine-length uniformly-spaced curve
leads to a more accurate parameterization. The second is
to construct a (cubic) b-spline curve, using the original ver-
tices as the control points. A b-spline curve is continuous,
af-in [12] and its precise derivatives can be computed at any
point of the curve (and not only at the vertices). Thus, it
can be reparameterized precisely. We obtained the best nu-
merical results (that is, the same shape viewed from different
points yielded the most similar features and the smallest sim-
ilarity distances) making first a discrete reparameterization,
followed by another b-spline reparameterization.

(a) Uniform arc-length (b) Uniform affine-length

Fig. 2. Shape reparameterization with 80 vertices.

3. THE METHOD

3.1. Area and Affine Transformation

Let � be the triangle formed by vertices u1 = (x1, y1), u2 =
(x2, y2) and u3 = (x3, y3). Then, the area of � is:

Area(�) =
1
2

∣∣∣∣∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
(4)

where |.| is the determinant. The area is positive if u1, u2

and u3 are counter-clockwise oriented, and negative if clock-
wise. Moreover, let F be an affine transformation and A its
associated matrix. Then Area(F(�)) = |A|Area(�).

3.2. Area Matrix

Let u(t), t ∈ {0, . . . , N − 1}, be an affine-length uniformly-
spaced closed curve and let m = �(N − 1)/2�. Let A′

ti

be the area of the triangle formed by vertices u(t − i), u(t)
and u(t + i). Then, the (non-normalized) area matrix of u is
defined:

A′ = [A′
ti]

t=0,...,N−1
i=1,...,m (5)

The central columns of A′ contain coarse-scale or global in-
formation and the outer columns contain fine-scale or local
information.

3.3. Normalized Area Matrix

The area matrix above is not scale-invariant, because the areas
of the triangles increase and decrease with the changes of the
scale. Moreover, different columns of the area matrix have
different magnitudes (the central columns have large magni-
tudes, while the columns located at left or right regions have
small magnitudes). We would like that all columns to be of
similar magnitudes. To overcome these problems, we divide
each matrix element A′

t,i by the absolute sum of the elements
of column i, obtaining the normalized area matrix A:

At,i ← A′
t,i∑N−1

j=0 |A′
j,i|

(6)
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3.4. Central Moments

The normalized area matrix above is neither rotation-invariant
nor invariant to the choice of the starting vertex, because a ro-
tation (or a change of the starting vertex) will cause a circular
shifting of the matrix rows. To obtain af-in shape features (in-
clusive rotation-invariant), in our previous paper [9] we have
computed the sum, the sum of negative values and the sum of
positive values of the weighted area matrix columns. In this
work, we propose to use the central moments (of order n) of
the columns of A as af-in shape features:

Γn(i) =
N−1∑

t=0

(At,i − Āi)n i = 1, . . . ,m (7)

where Āi is the mean value of column i of matrix A.

3.5. Circular Matching Shape Similarity Metric

There may be different shapes with similar (positive/negative)
sum of columns and similar central moments. In order to dis-
tinguish some shapes that are difficult to identify using only
rotation-invariant features, we propose an af-in metric named
circular matching shape similarity metric (CMSSM).

To compute CMSSM, the descriptor vector ψµ,σ is first
extracted from the area matrix A. The descriptor vector
ψµ,σ depends on a gaussian curve gµ,σ(.) with center µ and
standard-deviation σ:

ψµ,σ(t) =
∑

i

gµ,σ(i)At,i t = 0, . . . , N − 1 (8)

Evidently, the index i should not wander outside the area ma-
trix. We suggest not to place the center µ too close to the first
or the last columns of A, in order to minimize the influence of
the noise in fine-scales. Given two descriptor vectors ψ1 and
ψ2 (computed from the two shapes using the same gaussian
curve gµ,σ), CMSSM distance can be computed by:

CMSSM(ψ1, ψ2) = MINN−1
i=0 {RMSE(ψ1, CSi(ψ2))} (9)

where CSi(ψ2) is the i-th circular shifting of vector ψ2 and
RMSE stands for “root mean square error”. Obviously, other
distance metrics between two vectors (such as the mean abso-
lute error) can also be used.

4. EXPERIMENTAL RESULTS

Figure 1 depicts some animal figures viewed from different
points. The edge pixels were extracted from these images and
traversed to yield discrete closed curves. The closed curves
were reparameterized using 200 vertices roughly equally
affine-spaced, and then reparameterized again with cubic b-
spline curves to yield 200 vertices precisely equally affine-
spaced (figure 2 shows the reparameterization with 80 ver-
tices).

(a) Bat-a in red, bat-b in green.

(b) Camel-a in red, camel-b in green.

Fig. 3. Second central moments.

Fig. 4. Third central moments of the two bat figures.

Figure 3 depicts the second central moments of the four
shapes. It is easy to see that the two bats yield almost the same
features (figure 3a), as well as the two camels (figure 3b),
while the curves between the bats and the camels are quite
different. Indeed, table 1 shows that RMSEs between the sec-
ond central moments of the same animal are approximately
10 times smaller than the RMSEs between different animals.
The same happens with the fourth central moment.

However, using the third or fifth central moments, the bat
can be hardly identified. The difference between the two bats
is of similar magnitude of the differences between bats and
camels. This problem seems to happen only using n-th cen-
tral moments, with odd n. Figure 4 depicts the third central
moments of the two bat figures and it is easy to see that the
features are mismatching only at fine-scales. We suggest ei-
ther not to use odd-order central moments, or to discard the
fine-scale features.

To compute the CMSSMs between the four figures, we
have used three Gaussians gl, gc, and gr (left, central and
right) with standard deviations σ = 5 columns and the cen-
ters located respectively at µl = 0.2m, µc = 0.5m and
µr = 0.9m (where m is the number of columns of the area
matrix). Figure 5 depicts the aligned central descriptor vec-
tors. It is easy to see that two figures of the same animal have
yielded almost the same curves, while figures of different ani-
mals have yielded completely different curves. Table 2 shows

1727



Table 1. Similarities of shapes according to the central mo-
ment descriptors.

Γ2 Γ3 Γ4 Γ5

RMSE ×10−6 ×10−9 ×10−10 ×10−12

(bat-a,bat-b) 11 664 32 180
(bat-a,cam-a) 108 871 132 158
(bat-a,cam-b) 109 978 120 159
(bat-b,cam-a) 109 959 127 131
(bat-b,cam-b) 109 1027 116 140
(cam-a,cam-b) 8 154 16 27

(a) Bat-a in red, bat-b in green.

(b) Camel-a in red, camel-b in green.

Fig. 5. Descriptor vectors with the center µc = 0.5m and
standard deviation σ = 5 columns.

the CMSSM distances between different figures. CMSSM
distances between the same animals are more or less 5 times
smaller than the distances between different animals.

Table 2. Similarities of shapes according to the CMSSM dis-
tances.

CMSSM ×10−6 left central right
(bat-a,bat-b) 76 32 32
(bat-a,cam-a) 305 207 185
(bat-a,cam-b) 317 207 187
(bat-b,cam-a) 310 204 183
(bat-b,cam-b) 327 204 186
(cam-a,cam-b) 59 31 32

5. CONCLUSIONS

This paper has introduced a new set of affine-invariant shape
features and shape similarity metrics. They are based on the
area matrix, properly reparameterized and normalized in or-
der to become truly affine-invariant. The features are the cen-

tral moments of the area matrix columns. We have shown ex-
perimentally that even-order central moments are more stable
under affine transformations than odd-order central moments.
The similarity metric performs a circular matching of the area
matrices in a chosen scale. The proposed features and metrics
made it possible to distinguish clearly two different objects
from two different views of the same object.
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