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ABSTRACT

This paper presents a new, simple and elegant technique
to improve the detection of brain regions with increased
neuronal activity in functional magnetic resonance imaging
(fMRI). This technique is based on the robust anisotropic
diffusion (RAD). A direct application of RAD to fMRI does
not work, mainly due to the lack of sharp boundaries be-
tween activated and non-activated regions. To overcome
this difficulty, we propose to estimate the statistical para-
metric map (SPM) from the noisy fMRI, compute the dif-
fusion coefficients in the SPM-space, and then perform the
diffusion in the structural information-removed fMRI data
using the coefficients previously computed. These steps
are iterated until the convergence. We have tested the new
technique in both simulated and real fMRI, obtaining sur-
prisingly sharp and noiseless SPMs with increased statisti-
cal significance. We use Receiver Operating Characteristics
(ROC) curves to show that the proposed technique is supe-
rior than the conventional correlation method.

1. INTRODUCTION

The purpose of Functional Magnetic Resonance Imaging
(fMRI) is to map areas of increased neuronal activity of the
human brain. fMRI has been applied to investigate a variety
of neuronal processes from activities in the primary sensory
and motor cortices to cognitive functions such as percep-
tion or learning. The hemoglobin in the blood is a natural
contrast agent, because it has different magnetic properties
depending on its state of oxygenation. These differences
affect the voxel intensity in the magnetic resonance image.
In a typical fMRI experiment, baseline images are scanned
periodically while the subject is at rest (or in other base-
line condition) and activation images are acquired when the
subject is performing a specific task or receiving a stimulus.
A classical method for identifying activated brain regions
from noisy fMRI 4-D image is the correlation analysis [1].
A correlation coefficient measures the degree of matching
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between the time series of a particular voxel and the ex-
pected activation of the experiment design. For each cor-
relation coefficient, a t-statistics is computed and spatially
disposed, forming a Statistical Parametric Map (SPM). The
classification of voxels as active or non-active is performed
by thresholding the SPM at a particular significance level,
without taking into account any spatial relationship between
voxels.

To include the spatial relationship and improve the de-
tection of active voxels, we proposed a novel technique
called RADSPM. It is based on Robust Anisotropic Dif-
fusion (RAD) and classic correlation coefficient analysis.
A direct application of RAD to fMRI data does not work,
mainly due to the lack of sharp boundaries between acti-
vated and non-activated regions. RAD can be directly ap-
plied to SPM, but it fails to substantially improve the qual-
ity of SPM because it does not take into account the orig-
inating fMRI data. To overcome this difficulty, we use the
gradient magnitudes estimated in the SPM-space as the ar-
guments of an “edge-stopping” function to compute the dif-
fusion coefficients. The diffusion is then performed in the
mean-corrected fMRI data, using the coefficients preciously
computed. These steps are iterated until the convergence.
We have tested the new technique in both simulated and
real fMRI, obtaining surprisingly sharp and noiseless SPMs
with increased statistical significance. We use ROC curves
to show that the proposed technique is superior than the con-
ventional correlation method.

2. ROBUST ANISOTROPIC DIFFUSION

Perona and Malik [2] defined the anisotropic diffusion as

∂I(x, y, t)
∂t

= div [g (‖∇I(x, y, t)‖)∇I(x, y, t)] , (1)

using the original image I(x, y, 0) : R2 → R+ as the initial
condition, where t is an artificial time parameter and g is an
“edge-stopping” function. The right choice of g can greatly
affect the extent to which discontinuities are preserved. Per-
ona and Malik suggested two possible edge-stopping func-
tions in their paper [2]. Black et al. [3] used the robust es-
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timation theory to choose a better edge-stopping function,
called Tukey’s biweight:

g(x) =

{ [
1− x2

5σ2

]2

, x2

5 ≤ σ
2

0, otherwise
(2)

The function g above is the dilated and scaled version of
the original Tukey’s function, where g(0) = 1 and the local
maxima of its “influence function” ψ(x) = xg(x) is situ-
ated at x = σ. The diffusion that uses the Tukey’s function
is called robust anisotropic diffusion (RAD) and this is the
edge-stopping function adopted in this paper.

Perona and Malik [2] discretized spatio-temporally their
anisotropic diffusion equation (1) as:

I(s, t+1) = I(s, t)+
λ

|ηs|
∑
p∈ηs

g(|∇Is,p(t)|)∇Is,p(t) (3)

where I(s, t) is a discretely sampled image, s denotes the
pixel position in a discrete 2-D or 3-D grid, t ≥ 0 now
denotes discrete time steps, the constant λ determines the
rate of diffusion (usually, λ = 1), and ηs represents the set
of spatial neighbors of pixel s. For 2-D images, usually
four neighbors are considered: north, south, west and east,
except at the image boundaries. For 3-D images, six voxels
are usually considered: the above-mentioned four plus “up”
and “down” voxels. The gradient magnitude of a voxel in a
particular direction at iteration t is approximated by:

∇Is,p(t) = I(p, t)− I(s, t), p ∈ ηs. (4)

3. CORRELATION ANALYSIS

Correlation analysis is a simple method widely used to de-
tect active voxels in fMRI images [1]. Each voxel s has
an associated time series Xs = {x1, x2, ...xN}, where N
is the number of volumes of the 4-D functional image.
Y = {y1, y2, ..., yN} is the reference time series, expected
to represent the oxygenation changes in the blood due to the
experiment stimulation. The reference time series can be a
simple square waveform representing the stimulation pro-
tocol, a delayed square waveform, or the convolution of a
square waveform with the Hemodynamic Response Func-
tion (HRF) of the brain [4]. The sample correlation coeffi-
cient

ρs =
∑

(xi − x)(yi − y)√∑
(xi − x)2

∑
(yi − y)2

(5)

describes the matching between the observation and the ex-
pectation. In order to classify the voxel s as active or non-
active, we transform the correlation coefficient ρs into the
random variable τs that follows Student´s t-distribution with
N − 2 degrees of freedom:

τs =
ρs

√
N − 2√

1− ρ2
s

(6)

The image obtained by spatially disposing τs, for every
voxel s, is called statistical parametric map SPM(τ ).

4. THE PROPOSED METHOD

SPM does not take into account any spatial relationship
between voxels. Some papers have proposed to use the
anisotropic diffusion to exploit the spatial correlation be-
tween activated voxels.

Neoh and Sapiro [5] have applied the anisotropic diffu-
sion directly to the SPM. However, it cannot substantially
improve the quality of SPM because it does not take into
account the originating fMRI data.

Solé et al. [6] have proposed another technique named
anisotropic averaging. It computes an initial set of clearly
activated voxels. This set is then used to construct a com-
plex “similarity measure” to compute the averaging coeffi-
cients. Even though Solé et al. try to explain the definition
of their measure with intuitive arguments, we are impelled
to ask if there are no simpler and more natural ways to de-
fine the similarity measure. Moreover, Solé et al.’s algo-
rithm iteratively classifies the voxels into two sets: activated
and non-activated voxels. Consequently, it is adequate to
make binary decisions, but it may not be adequate to get
a multi-leveled SPM (many studies actually care about the
level of activation and not just the binary decision of acti-
vated or not). We propose a new and different technique, di-
rectly related to the RAD, that we have named RADSPM 1.
Our method is simple, elegant and has yielded surprisingly
clear SPMs when applied to both simulated and real fMRI
data. RADSPM increases substantially the statistical signif-
icance of activated regions, what makes it possible to decide
with more confidence if a certain brain region is activated or
not.

Let I ′ be an fMRI data. First of all, the mean value is
removed from I ′, yielding the mean-removed fMRI I:

I = I ′ − I ′ (7)

This pre-processing is very important, because structural
and functional regions of the brain do not necessarily match.
No structural information should be diffused, but only the
activation information. Note that the activation information
is not affected at all by the mean-correction.

Let us denote the fMRI data at iteration t ≥ 0 of the
diffusion process as I(s, n, t), where I(s, n, 0) is the initial
mean-corrected fMRI at spatial voxel position s and volume
n. RADSPM is described below:

1. Let t← 0.

1A earlier version of this technique was published in a local confer-
ence [7].
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2. Calculate the SPM(τ ) T , using equations 5 and 6. Let
us denote the value of the SPM(τ ) at voxel s and iter-
ation t as T (s, t).

3. Compute the diffusion coefficients. The diffusion co-
efficient between a voxel s and its neighboring voxel
p at instant t is:

g(|∇Ts,p(t)|), where ∇Ts,p(t) = T (p, t)− T (s, t).

4. Use these coefficients to perform the diffusion in
I(s, n, t), yielding the diffused fMRI I(s, n, t + 1)
at iteration t+ 1:

I(s, n, t+ 1)← I(s, n, t)+

+
λ

|ηs|
∑
p∈ηs

g(|∇Ts,p(t)|)∇Is,p(t),

where∇Is,p(n, t) = I(p, n, t)− I(s, n, t).

5. Let t← t+1 and repeat steps 2 to 5 some predefined
number of times.

5. EXPERIMENTAL RESULTS

5.1. Simulated fMRI

In order to test our technique, we generated a simple arti-
ficial 4-D fMRI, with 10 × 10 × 3 voxels per volume and
84 volumes. Voxels values were 16000 corrupted by zero-
mean Gaussian noise with standard deviation σ = 4000.
Active voxels had their values increased by 1500. The fMRI
had alternating blocks of 6 non-active and 6 active volumes,
beginning with non-active volumes. Activated volumes had
a 6× 6 activated area in the center of the volume, with two
non-activated holes with 4 voxels each. Figure 1 depicts
one activated volume of the phantom, the SPM(τ ) gener-
ated by the correlation method and the SPM(τ ) generated
by RADSPM. Clearly, RADSPM has produced an SPM(τ )
with better quality than the correlation.

We will make use of the well-known Receiver Operat-
ing Characteristics (ROC) analysis [8, 9, 10] to compare the
correlation and RADSPM techniques. Let TP, FN, FP and
TN be respectively the number of true positives, false neg-
atives, false positives and true negatives obtained by com-
paring the ideal classification (gold standard) and the image
obtained by applying a threshold to the SPM(τ ). Then, the
True Positive Fraction (TPF) and the False Positive Fraction
(FPF) are defined as:

TPF =
TP

TP + FN
, FPF =

FP
FP + TN

(8)

Fig. 2 depicts RADSPM’s and correlation’s ROC curves.
Each point of a ROC curve is obtained by solving equation

(a) Slice 1 (b) Slice 2 (c) Slice 3

(d) Slice 1 (e) Slice 2 (f) Slice 3

(g) Slice 1 (h) Slice 2 (i) Slice 3

Fig. 1. 1st row: Simulated fMRI. 2nd row: SPM(τ ) pro-
duced by correlation method. 3rd row: SPM(τ ) produced
by RADSPM (σ = 2, t = 10).

Method Area doop TPFoop FPFoop poop

Correlation 0.88 0.44 0.85 0.23 0.2
RADSPM 0.99 0.66 0.99 0.06 0.00001

Table 1. Performance metrics.

(8) for a specific threshold value. Table 1 presents some
performance metrics of the two ROC curves, all of them
demonstrating the superiority of the RADSPM: (1) The area
under RADSPM’s curve is larger than those of correlation’s;
(2) The distance doop from the principal diagonal to the op-
timal operating point (OOP) is longer in RADSPM’s curve
than in correlation’s (OOP is the point of the curve most dis-
tant from the principal diagonal); (3) At the OOP, RADSPM
shows larger TPF, lower FPF and lower observed statistical
significance level poop than the correlation method.

5.2. Real fMRI

We have also tested the correlation and RADSPM tech-
niques with a real fMRI data obtained from a visual block
design experiment. Whole-brain BOLD/EPI fMRI data
were acquired on a 1.5T Philips Eclipse system. The condi-
tion for successive blocks alternated between rest and visual
stimulation, starting with rest. Visual stimulation was given
by flickering red LED light with frequency of 2Hz. The vol-
umes were realigned and normalised, resulting fMRI data
with 79 × 95 × 68 voxels per volume and 55 volumes. A
spin echo T1-weighted image was also obtained to be used
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Fig. 2. ROC curves

as the structural image. Figure 3 depicts the SPMs over-
laid on the structural MRI. The first row depicts the slices
obtained with the correlation and the second row with the
RADSPM. Clearly, RADSPM-generated SPM(τ ) has acti-
vated regions with substantially increased statistical signif-
icance, what makes it possible to decide with more confi-
dence if a certain brain region is activated or not.

6. CONCLUSIONS

In this paper, we have presented a new technique named
RADSPM to obtain clear SPMs from noisy fMRI. It is di-
rectly inspired by the robust anisotropic diffusion. Experi-
mental results, using both the simulated and real fMRI data,
have shown that the proposed method generates surprisingly
sharp and noiseless SPMs.

7. REFERENCES

[1] Peter A. Bandettini, A. Jesmanoswicz, Eric C. Wong, and
James S.Hyde, “Processing strategies for time-course data
sets in functional mri of the human brain,” Magnetic Reso-
nance in Medicine, vol. 30, pp. 161–173, 1993.

[2] P. Perona and J. Malik, “Scale space and edge detection using
anisotropic diffusion,” IEEE. Transaction on Pattern Anal-
ysis and Machine Intelligence, vol. 12, no. 7, pp. 629–639,
1990.

[3] M. J. Black, G. Sapiro, D. H. Marimont, and D. Hegger, “Ro-
bust anisotropic diffusion,” IEEE Transaction on Image Pro-
cessing, vol. 7, no. 3, pp. 421–432, 1998.

[4] Gossl C., Auer D. P., and Fahrmeir L., “Hemodynamic re-
sponse function in bold fmri,” NeuroImage, vol. 14, pp. 140–
148, 2001.

[5] Hong Shan Neoh and Guillermo Shapiro, “Using anisotropic
diffusion of probability maps for activity detection in block-
design functional mri,” in Proceedings of the IEEE Inter-

(a) slice 35 (b) slice 50 (c) slice 75

(d) slice 35, σ = 1.5 (e) slice 50, σ = 1.5 (f) slice 75, σ = 1.5

Fig. 3. Real fMRI processed by correlation and RADSPM
techniques. 1st row: SPM(τ ) obtained by correlation (over-
laid on the structural MRI). 2nd row: SPM(τ ) obtained by
RADSPM (σ = 1.5, t = 90).

national Conference on Image Processing, 2000, vol. 1, pp.
621–624.
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