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ABSTRACT

An object seen from different viewpoints results in differ-
ently deformed images. Affine-invariant shape classifica-
tion must classify correctly the object, disregarding its view-
point. In this paper, we propose new local and global fea-
tures invariant under affine transformation. These features
can be used for supervised or unsupervised shape classifi-
cation, and for shape-based image indexing and retrieval.
One of the proposed features is related to the convex de-
ficiency and the others are extracted from the area matrix.
Area matrix was used by Shen [1] for the similarity match-
ing in image retrieval. However, differently from the Shen’s
work, we parameterize the shape contour using the affine-
length parameter. This makes our features robust to affine
parameterization, while Shen’s’s work does not have this
property. Experimental results indicate that our method can
classify correctly even highly deformed and noisy shapes
using small training sets.

1. INTRODUCTION

An important problem in object classification is the fact that
an object can be seen from different viewpoints, resulting
in different images. Consequently, the invariance to view-
points is a desirable property in many shape recognition
systems. For near planar objects, these deformations can
be modelled approximately by affine transformation, if the
viewpoints is sufficiently far away. In the literature, there
are many papers on the shape recognition invariant under
affine transformation. Some examples are affine-invariant
Fourier descriptors [2], affine-invariant moments [3, 4, 5]
and affine curvature scale space [6]. In these works, the un-
derlying idea is to use an affine parameterization, usually
the affine-length parameter [2, 3, 5, 7].

Usually, a good classification rate can be achieved by
using simultaneously local and global features. Convex de-
ficiency is a global feature that contains information about
concavities of the shape. This feature provides invariance
to translations, rotations and can be easily made tolerant
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to scaling. In this paper, we show that the convex defi-
ciency can also become tolerant to affine transformation.
The other proposed features are extracted from the area ma-
trix. Area matrix was used by Shen [1] for the shape sim-
ilarity matching in affine-invariant image retrieval. This
matrix has two interesting properties. The first is that it
can be made tolerant to affine transformation. The sec-
ond is that its columns contain multiscale information: cen-
tral columns contain coarse-scale or global information and
outer columns contain fine-scale or local information. Dif-
ferently from Shen’s work, we parameterize shapes using
the affine-length parameter. This procedure makes the area
matrix to become invariant under affine parameterization.
Computational complexity of Shen’s work depends on the
dimension of the area matrix. On the contrary, we extract
and process only the relevant information, decreasing com-
putational complexity. In the recognition phase, we use the
k-nearest neighbors algorithm.

2. FUNDAMENTAL CONCEPTS

2.1. Closed Curve

Let us consider the discretized parametric equation of a
closed curve:

u(t) = (x(t), y(t)) (1)

wheret ∈ {0, . . . , N − 1} andu(N) = u(0). In gen-
eral, curves of an application may have been parameter-
ized with different number of verticesN . The first and
second derivatives ofu(t) are denoted, respectively, as
u̇(t) = (ẋ(t), ẏ(t)) andü(t) = (ẍ(t), ÿ(t)).

2.2. Affine Transformation

A general affine transformationT in R2 is defined as

T (X) = AX + b (2)

whereX ∈ R2, A is an affine matrix (a real matrix2 × 2
with positive determinant) andb ∈ R2 is the translation vec-
tor. A general affine transformation contains translation,
scaling, rotation and shearing. The following matrix rep-
resents a shear transformation and the parameterκ, called



shear ratio, controls the amount of deformation.

Aκ =
[

1 κ
0 1

]
(3)

2.3. Area and Affine Transformation

If T is an affine transformation andA its matrix then:

Area(T (4)) = |A|Area(4) (4)

where|A| is the determinant ofA. Considering equation 4
and the fact that any simple 2-D polygonu can be decom-
posed as a set of triangles, we can state:

Area(T (u)) = |A|Area(u) (5)

Let CH(u) denote the convex hull of the curveu. Clearly,
a point belongs to CH(u) if, and only if, it also belongs to
CH(T (u)). Consequently, we can also state:

Area(T (CH(u))) = |A|Area(CH(u)) (6)

Based on equations 5 and 6, we define our first affine-
invariant feature by dividing the convex deficiency ofu by
the area of convex hull ofu:

F1 =
Area(CH(u))− Area(u)

Area(CH(u))
(7)

2.4. Affine Parameterization

We normalized the number of vertices of all shapes, because
the proposed features depends on the choice of this number.
We also re-parameterized all shapes using the affine-length
parameter [2, 3, 5, 7]:

τ(p) =

∫ p
0
|ẋ(t)ÿ(t)− ẍ(t)ẏ(t)| 13 dt∫ N

0
|ẋ(t)ÿ(t)− ẍ(t)ẏ(t)| 13 dt

(8)

Hence, our features are also invariant under parameteriza-
tion (besides being affine-invariant). To assure thatτ is a
strictly increasing function, we remove all vertices with the
second derivative equal to zero. This is equivalent to remov-
ing vertices that belong to straight lines.

3. AFFINE-INVARIANT FEATURES

3.1. Area Matrix

Let u(t), t ∈ {0, . . . , N − 1}, be a closed curve and let
m = N/2. Let Ati be the area of the triangle formed by
verticesu(t − i), u(t) andu(t + i). Then, the area matrix
of u is defined:

A = [Ati]
t=0,...,N−1
i=1,...,m (9)

The i-th column vector ofA contains local (fine scale) in-
formation wheni is small or close tom, and contains global
(coarse scale) information wheni is situated in the central
region ofA. Indeed, each column vector of the area matrix
analyzes the shape in a determined scale, and the whole area
matrix contains multiscale information of the shape.

3.2. Normalized Area Matrix

We normalize an area matrixA in two steps: first, we make
A to become affine invariant by dividing each element of
A by the sum of all elements ofA. Second, we make all
columns to be of similar magnitudes: We divide each col-
umni of A by a weightw(i). The weight vectorw is com-
puted from an affine-invariant area matrixR of a represen-
tative shape using the following equation:

w(i) = max
t=0,...,N−1

{|Rt,i|} i = 1, . . . ,m (10)

3.3. Vectors with Local and Global Information

An area matrix contains too much information. To be use-
ful, it must be reduced and organized somehow. We ex-
tract relevant information from a normalized area matrixA
and store it in three vectorsψl, ψc andψr that summarizes
respectively information of columns situated at left, center
and right of matrixA. Vectorψl is computed by:

ψl(t) =
∑
i gl(i)At,i∑
i gl(i)

t = 0, . . . , N − 1 (11)

wheregl is a Gaussian curve. The center of this Gaussian is
situated at the left side ofA. It cannot be too close to the
leftmost column, in order to reduce noise present in very
fine scales. The standard deviationσ is chosen to extract all
information present in the left side ofA, without mixing up
with information of the central region ofA. Vectorsψc and
ψr are similarly computed.

In this work, the three Gaussians were set according to
Table 1:

Table 1. Configuration of the three Gaussians (m is the
number of columns ofA).

Gaussian σ center
gl 5 0.20m
gc 5 0.50m
gr 5 0.85m

3.4. The Proposed Features

We use five features to classify shapes:

• FeatureF1 was defined in equation 7.



• FeatureF2 is the sum of negative values ofψl, that is,
F2 =

∑
ψl(t)<0 ψl(t).

• FeatureF3 is the sum of positive values ofψl, that is,
F3 =

∑
ψl(t)>0 ψl(t).

• FeatureF4 is the sum ofψc, that is,F4 =
∑
ψc(t).

• FeatureF5 is the sum ofψr, that is,F5 =
∑
ψr(t).

All these features are invariants under affine transformation.
They are also invariant to starting point. In order to usek-
nearest neighbors classification, we normalized all features
to have mean zero and standard deviation one.

4. EXPERIMENTAL RESULTS

We applied our method to the supervised recognition of
static hand gestures. We used part of static hand gesture
contours considered by Milios and Petrakis [8]. All con-
tours were normalized with 140 vertices. We labelled man-
ually 150 closed contours as examples for the supervised
training. They are divided into six classes, each class with
25 examples, as depicted in Figure 1.

A B

C D

E F

Fig. 1. Hand gestures of classes A, B, C, D, E and F.

We tested affine invariance of our features, specifically
for the rotation and the shear transformation. We took one
representative contour of each class (that does not belong to
the training set) and generated 9 rotated versions, rotating
the original contour by20◦, 40◦, ..., 180◦. Then, we de-
formed the6× 9 rotated versions with shear ratiosκ = 1, 2

and 3, obtaining3×6×9 deformed shapes. Figures 2 and 3
depicts the original and deformed shapes with shear ratios
κ = 2 and3, respectively.

Fig. 2. The upper-left gesture belongs to class F. The others
are deformed shapes withκ = 2.

Fig. 3. The upper-left gesture belongs to class F. The others
are deformed shapes withκ = 3.

For the recognition phase, we usek-nearest neighbors



Table 2. Classification of test data.
A B C D E F

A 25 0 0 0 0 0
B 1 24 0 0 0 0
C 0 0 25 0 0 0
D 0 1 0 24 0 0
E 0 0 0 0 25 0
F 0 0 0 1 0 25

algorithm. We tested this algorithm withk ranging from 1 to
25. All deformed shapes were correctly classified, using any
k ∈ {1, . . . , 25}. This shows the robustness of the proposes
features under affine transformation.

We also labelled manually 150 non-deformed test con-
tours, with 25 contours in each class. The set of test con-
tours was disjoint from the set of training contours. Table 2
summarizes the classification of test hand gestures for non-
deformed shapes, using the 5-nearest neighbors algorithm.
In this table, the element (rowi, column j) corresponds
to the number of hand gestures manually labelled asi and
classified asj by the algorithm. The error rate is very low,
what shows the aptness of the proposed features to the shape
classification. Figure 4 depicts some shapes that belong to
classes E and F, and their classifications.

1 2 3 

4 5 6 

Fig. 4. Gestures 1, 2 and 3 belong to class E and they were
correctly classified by our algorithm. Gestures 4, 5 and 6
belong to class F. Gestures 4 and 5 were correctly classified,
but gesture 6 was classified as D.

5. CONCLUSIONS

In this paper, we have proposed a set of new features in-
variant under affine transformation. We have tested them in
supervised shape classification, but they can also be used in
unsupervised shape classification and in shape-based image
indexing and retrieval. We have parameterized the shapes
using an affine-invariant parameter, to make our features
also invariant under parameterization. Experimental results
have shown that our features are able to correctly discrimi-
nate shapes severely deformed by affine transformation.
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