
FAST AND ACCURATE
BINARY HALFTONE IMAGE RESOLUTION INCREASING

BY DECISION-TREE LEARNING

Hae Yong Kim
Dept. Eng. Sistemas Eletrônicos, Univ. de São Paulo.

Av. Prof. Luciano Gualberto, trav. 3, 158; CEP 05508-900, São Paulo, SP, Brazil.
E-mail: hae@lps.usp.br

ABSTRACT

Digital halftone is the technique used to convert gray-scale images
into binary ones, simulating gray shades by scattering appropria-
tely black and white pixels. Sometimes, there arises the necessity
of increasing the resolution of a halftone image. Some recent
works have proposed a number of learning-based techniques to
zoom binary images. However, they cannot consider a large
neighborhood to decide the colors of the resolution-increased
pixels, because their running time skyrockets with the growth of
the window and the sample images sizes. The use of large window
and samples are required to accurately zoom halftone images. This
paper presents a new technique to zoom quickly and precisely
images generated by any locally-decided halftone algorithm. It is
based on the decision-tree learning and it is very fast, even using a
large window or large samples. The zoomed images obtained by
this technique are incredibly sharp and accurate.

1. INTRODUCTION

Most of ink-jet and laser printers used today cannot actually print
gray scales. Instead, they are suited for printing only tiny black
dots in paper (in this paper, color devices will not be considered.)
Thus, any gray-scale image have to be first converted into a binary
image by a halftone process before the printing actually takes
place. A halftone technique simulates gray shades by scattering
appropriately black and white pixels. That is, given a gray-scale
image G: [,]!2 0 1→ , the halftone generates a binary image

B: { , }!2 0 1→ such that for any l and c:

B l c G l c(,) (,)≅ ,

where B l c(,) is the average value of the image B in a neighbor-
hood around the pixel (l, c).

There is an enormous variety of halftone techniques. The two
most widely known are the error diffusion and the ordered dither
[1]. Many other techniques have derived from them, for example,
clustered-dot orthered dither, dot diffusion and space filling
curves. Some of them are designed specifically for laser printers,
for a laser printer is unable to print isolated dots or too finely
interspersed black and white dots.

In a typical office environment, frequently arises the necessity
of resolution conversion of a digital document. For example, a
digital document originally intended to be impressed in a 300 dpi
device often has to be printed in a 600 dpi printer. Many different
spatial resolution conversion algorithms have so long been devel-
oped for gray-scale and color images. However, binary image

resolution increasing algorithms have only recently been emerged
[2, 3, 4]. They are all based on the machine learning, that is, the
statistically optimal zooming scheme is constructed starting from
sample images. Unfortunately, these algorithms cannot consider a
large neighborhood to decide the colors of the resolution-increased
pixels, because their running time and needed memory skyrocket
with the growth of window and sample size. A small window is
quite good to zoom impressed or handwritten characters, but it
cannot zoom accurately halftone images. Our experimental data
have shown that windows as large as 7×7 or 9×9 are needed to
accurately zoom halftone images.

This paper improves the previous learning-based binary image
resolution increasing algorithms so that even a halftone image can
be accurately zoomed. The new technique is based on the deci-
sion-tree. Its training time is O(wm log m), where w is the window
size and m the sample input-image size. Its application time is O(n
log m), where n is the size of the image to-be-zoomed. This means
that the performance of the new technique deteriorates only very
slowly as the window and sample size increase. Unfortunately, the
works [2, 3] present neither the processing time nor the complexity
analysis. But we deem that, when large window and sample images
are used, the new technique is thousands times faster than [2, 3]
(both in training and in application), employing a conventional
(non-parallel) computer. This estimate is based on the computa-
tional complexity analysis. Morever, the works [2, 3] do not as-
sume any explicit inductive bias, while the decision-tree has a nice
generalization scheme. The new technique is also thousands times
faster than [4] in the training stage, though slightly slower in the
application.

One remark: the new technique is unable to accurately zoom
images generated by the error diffusion (or by any halftone algo-
rithm where the output color is not locally decided.) Though, when
it is applied to zoom a locally-decided halftone image using a large
window, the resulting zoomed image presents an unexpected
remarkably nice quality (see figures 2, 3 and 4.) Certainly, the new
technique can zoom printed or handwritten characters as well.

This paper will be concerned only with the binary zooming by
integer factors. Moreover, to simplify the notation, we will assume
that the column and row zoom factors are equal.

2. WINDOWED ZOOM OPERATOR LEARNING

A binary image is a Boolean function Q: { , }!2 0 1→ . The support
of an image Q is a finite subset of !2 where the image is actually
defined. Out of support, an image is supposed to be filled with a
background color.

Let f be the zoom factor. A windowed zoom operator (WZ-
operator) Ψ is an image transformation defined via a window:

W W Ww= { , , }1 ! , Wi ∈ !2,
and a characteristic function:

ψ:{ , } { , }()0 1 0 1
2w f→ .

Each element Wi of the window is called a peephole and the func-
tion ψ is actually a set of f 2 Boolean functions:

ψ ψ ψ= { , , }1 2! f , ψi:{0,1}w → {0,1}.

The characteristic function ψ converts an input pixel p into f 2

output pixels yi based on the content of the window W shifted to p,
i.e. for 1 ≤ i ≤ f 2,

y Q f p d Q W p Q W pi i i w= + = + +Ψ()() ((), , ())ψ 1 ! ,
where p∈ !2 and di is a displacement vector associated with the i-th
Boolean function. For example, in the figure 1, ψ converts the
pixel p into pixels y1, ..., y4 based on the content of the 3×3 neigh-
boring window.

p y2y1

y4y3

ψ

Fig. 1: WZ-operator with zoom factor f=2 (window 3×3).

In the WZ-operator learning stage, the sample input-image Ax

and the corresponding output-image Ay are presented to a learning
algorithm A. Based on these sample images, the learner A shall
construct a WZ-operator "Ψ such that, when "Ψ is applied to
another image Qx (the image to-be-zoomed) the resulting zoomed-
image " " ()Q Qy x= Ψ is expected to be similar to a supposedly
unknown ideal output-image Qy.

More explicitly, let us denote the content in Ax of the window
W shifted to p as ap

x and call it the sample input-pattern at p:

[]a A W p A W p A W pp w
x x x x= + + +(), (), , ()1 2 ! .

Let us similarly define the pattern to-be-zoomed qp
x from Qx. To

each pattern ap
x , there are f 2 associated output-colors in the

image Ay, called the sample output-pattern at p and denoted as
ap

y :

[]a A f p d A f p dp f
y y y= + +(), , ()1 2! .

Let us similarly define the ideal output-pattern qp
y and the proc-

essed output-pattern "qp
y from the images Qy and "Qy . A pair (ap

x ,

ap
y) is called a training example. Using the set of all training

examples obtained scanning completely the sample images, the
learning algorithm A has to construct f 2 Boolean characteristic

functions "ψ1 , ..., "ψ f 2 such that, for any p and 1 ≤ i ≤ f 2, the

processed color has to be the same as the ideal output color with
high probability. That is, the following probability has to be high:

[] []Pr " [] [] Pr " () ()q i q i q Q f p dp p i p i
y y x y= = = +ψ .

3. DECISION-TREE LEARNING

There are many learning techniques that can be used to achieve the
goal stated above: neural networks, genetic algorithms, radial basis
functions, etc. In fact, the works [2, 3] have proposed to use the
statistical optimization and the work [4] the k-nearest neighbor
learning to solve this problem. As stated in the introduction, their
running time (either the training time or the application time)
deteriorates quickly with the growth of the window or the sample
size, and soon becomes impossible to be used. To be really useful,
the technique has to be fast both in the training and in the applica-
tion, even when window and sample size are large. Fortunately,
the decision-tree learning fulfills these requirements. We briefly
describe below the decision-tree construction algorithm. More
details can be found in [5]. There is a well-known data structure,
very similar to the decision-tree. It is the multidimensional binary
tree, usually abbreviated as kd-tree, and used to find the nearest
neighbor. The construction processes of decision-tree and kd-tree
are quite similar. The differences lie mainly on the searching algo-
rithms. Thus, the reader may consult also any work on the con-
struction of the kd-tree [6, 7].

In the decision-tree generating process, the input-pattern space
{0,1}w is split into two halves, and all sample input-patterns with
black color in the splitting axis Ws will belong to one half-space
and those with white color to another. The dimension of the half-
spaces so obtained is one less than that of the original space, that
is, {0,1}w-1. To obtain an optimized tree, the algorithm must
choose the splitting axis s ∈ {1, ..., w} so that the resulting two
half-spaces contain as equal as possible number of sample points
(input-patterns). This choice maximizes the entropy of each split-
ting. If the difference of points is always zero or one, a perfectly
balanced tree will be created. As the difference of input-sample
quantities in two halves increases, more and more degenerated
trees will be constructed. For each one of the two half-spaces
obtained, the splitting process continues recursively, generating
smaller and smaller spaces. In each splitting, an internal node is
created and the splitting axis s is stored in it. This process stops
when each space contains either only samples with the same out-
put-pattern or only samples with the same input-pattern but with
two or more different output-patterns. In the first case, a terminal
node is created and the output-pattern is stored in it. A terminal
node is also created in the second case, but the bitwise mode of the
output-patterns is evaluated and stored.

Once the decision-tree has been constructed, its application is
quite straightforward: given a pattern to-be-zoomed qp

x , the deci-
sion-tree is traversed from top to bottom, until a terminal node is
reached. The information contained in this terminal node is then
chosen as the zoomed output-pattern "qp

y .
The generalization (also known as inductive bias) is an im-

portant issue in any machine learning process. In the resolution-
increasing, the generalization allows assigning a reasonable out-
put-pattern to never-seen-before input-patterns, which improves
WZ-operator’s accuracy. The decision-tree learning has a good
generalization policy, known as Occam’s razor [5]: “Prefer the

simplest hypothesis that fits the data.” This inductive bias has
already been applied to many different applications with good
results.

Let us analyze briefly the computational complexity of the
decision-tree learning. The construction algorithms of the deci-
sion-tree and kd-tree are quite similar. Therefore, a decision-tree
can be built in average time O(wm log m) like kd-tree, where m is
the quantity of the training examples or, equivalently, the number
of pixels in Ax [7]. If a decision-tree is built from m examples and
if every terminal node contains only one sample, it is easy to see
that the height of the decision-tree will be log2 1m + (where

 ⋅ stands for round up). Thus, if there can exist terminal nodes
with more than one sample, the height will be at most
 log2 1m + . Consequently, the searching of n query points in a
decision-tree can be performed in time O(n log m), for the search-
ing processes in a decision-tree and in a standard binary tree are
identical (n is the number of pixels in the image to-be-zoomed Qx).
Note that the searching complexity does not depend at all on the
dimension w of the input-pattern space. Finally, if every terminal
node contains only one sample, the number of terminal nodes will
be m and the number of internal nodes will be m-1. In practice, the
total number of nodes uses to be much smaller than 2m-1, espe-
cially using a small window, for many terminal nodes contain
much more than one sample. The quantity of informations stored
in a terminal node is O(f 2) and the quantity of informations stored
in an internal node does not depend on any parameter. Considering
f 2 as a constant (for it is always a small number) the total storage
is O(m). Certainly, a careful programming is required to assure
that the program runs within the running time and space com-
plexities stated above.

The analysis above shows that the performance of the con-
struction and the searching algorithms, as well as the quantity of
needed memory, deteriorate only very slowly as the window and
sample size increase. Experimental results presented in the next
section confirm that the technique is indeed very fast.

4. EXPERIMENTAL RESULTS

The proposed technique has been implemented and tested. Two
completely independent 512×512 gray-scale images have been
used for the training and the application (respectively the images
Peppers and Lenna.) They have been converted into 300 and 600
dpi binary images (1050×1050 and 2100×2100 pixels) by a HP
LaserJet driver for the Microsoft Windows. Most HP LaserJet
drivers include 5 halftone techniques: none, coarse, fine, line art
and error diffusion. Let us leave out the options none and line art,
for the option none is a simple thresholding and the option line art
is intended to imitate a handmade halftone. The default option is
coarse and it is by far the best-looking option, when the resulting
image is printed in a laser printer. This option seemingly imple-
ments the dot diffusion algorithm [1]. The option fine implements
the ordered dither algorithm and the option error diffusion imple-
ments the Floyd-Steinberg’s algorithm [1]. In addition, the pro-
posed technique has also been tested with images generated by the
clustered-dot ordered dither algorithm provided by the program
“Image Alchemy.”

Using windows of different sizes, WZ-operators have been
generated by the decision-tree learning. These operators have been
applied to 300 dpi binary halftone images of “Lenna,” generating
resolution increased 600 dpi images.

2a) Sample input-image. 2b) Sample output-image.

2c) Image to-be-zoomed,
300 dpi.

2d) Ideal (unknown)
output-image, 600 dpi.

2e) Zoomed-image, 4×4. 2f) Zoomed-image, 5×5.

2g) Zoomed-image, 7×7. 2h) Zoomed-image, 8×8.
Fig. 2: Resolution increasing of images generated
by HP LaserJet driver, halftone option “coarse.”

window error training application memory
4×4 7.54% 16s 4s 20 kBytes
5×5 2.64% 19s 5s 67 kBytes
7×7 1.81% 32s 5s 258 kBytes
8×8 1.71% 41s 5s 429 kBytes
9×9 1.77% 58s 5s 679 kBytes

4×4, 10-NN 7.53% 507s 3s 33 kBytes
5×5, 10-NN 3 days* 3s* 17 MBytes*

Tab. 1: Computer performance to obtain images in figure 2.
*The last line presents estimated data.

The figures 2a-2b depict a portion of coarse halftone images
used as the training images, the figure 2c is the image to-be-
zoomed and the figure 2d is the ideal output image. The figures
2e-2h depict zoomed images, using different window sizes. The
table 1 shows the accuracy and the computer performance of our
technique. The error is the proportion of pixels in the zoomed-
image that are different from the ideal output. The processing
times were measured in a Pentium-300 computer. Note that, as
expected by the complexity analysis, the application time is af-
fected only slightly by the change of the window size. The needed
memory decreases when the window shrinks because, as the win-
dow size diminishes, there are more and more repeated input

samples. But, as we have analysed before, the memory needed is
upper limited by O(m), and thus even using a huge window the
need of memory will not go beyond a tolerable limit.

The last two lines of the table 1 show the computer perform-
ance of the k-nearest neighbor learning (k=10) using the look-up-
table, as proposed in [4]. As expected, its application is faster and
the accuracy is slightly better than the new technique, but its
training time is far longer than the decision-tree for w=16 and
grows exponentially with the growth of w (the size of the win-
dow).

The figure 3 depicts the zooming of the fine halftone images
and the figure 4 depicts the resolution increasing of clustered-dot
halftone images.

The error rates of the proposed technique, applied to different
halftone techniques, are presented in the table 2. As expected, the
proposed technique did not work properly with the error diffusion,
for this technique does not decide locally the colors of a zoomed
output-pattern (note that the error diffusion error rates are always
larger than 10%, no matter the window used.)

5. CONCLUSIONS

In this paper, we have presented a new technique that improves
previous learning-based binary image resolution increasing
schemes. It makes use of the decision-tree learning. This technique
can use a window as large as 9×9 without significantly compro-
mising the processing time. No previous technique was able to
deal with so large a window, because their running times skyrocket
as the window and sample size grow. This improvement made
possible to accurately zoom even halftone images. The complexity
analysis has shown that the running time of decision-tree learning
deteriorates very slowly as the window and sample size grow.
Moreover, the decision-tree learning presents a reliable and widely
tested generalization scheme that increases the accuracy of the
operator. The experimental data have shown that the decision-tree
learning presents error rates similar to the k-nearest neighbor
learning while the computer performance is greately improved.
The experiments have also shown that indeed this technique can
accurately zoom halftone images generated by any locally-
dependent halftone algorithm.

6. ACKNOWLEDGEMENT

We would like to express our gratitude to CNPq for the partial
financial support of this work.

7. REFERENCES

[1] D. E. Knuth, “Digital Halftones by Dot Diffusion,” ACM T.
on Graphics, vol. 6, no. 4, pp. 245-273, 1987.

[2] R. P. Loce and E. R. Dougherty, Enhancement and Restora-
tion of Digital Documents: Statistical Design of Nonlinear
Algorithms, SPIE Press, 1997.

[3] R. P. Loce, E. R. Dougherty, R. E. Jodoin and M. S. Cian-
ciosi, “Logically Efficient Spatial Resolution Conversion
Using Paired Increasing Operators,” Real-Time Imaging,
vol. 3, no.1, pp. 7-16, 1997.

[4] H. Y. Kim and P. S. L. M. Barreto, “Fast Binary Image
Resolution Increasing by k-Nearest Neighbor Learning,” in
Proc. IEEE Int. Conf. on Image Proc. (Vancouver, Canada),
vol. 2, pp. 327-330 (TA9.06), 2000.

[5] T. M. Mitchell, Machine Learning, WCB/McGraw-Hill,
1997.

[6] J. H. Friedman, J. L. Bentley and R. A. Finkel, “ An Algo-
rithm for Finding Best Matches in Logarithmic Expected
Time,” ACM T. Math. Software, vol. 3, no. 3, pp. 209-226,
1977.

[7] F. P. Preparata and M. I. Shamos, Computational Geometry,
an Introduction, Springer-Verlag, 1985.

3a) Image to-be-zoomed,
300 dpi.

3b) Ideal (unknown)
output-image, 600 dpi.

3c) Zoomed-image, 4×4. 3d) Zoomed-image, 7×7.
Fig. 3: Resolution increasing of images generated

by HP LaserJet driver, halftone option “fine” (ordered dither.)

4×4 5×5 7×7 9×9
coarse 7.54% 2.64% 1.81% 1.77%

fine 2.53% 1.98% 1.62% 1.63%
clustered-dot 4.85% 2.29% 1.84% 1.92%

error diffusion 12.90% 13.01% 14.50% 16.41%
Tab. 2: Error rates.

4a) Image to-be-zoomed,
300 dpi.

4b) Ideal (unknown)
output-image, 600 dpi.

4c) Zoomed-image, 4×4. 4d) Zoomed-image, 7×7.
Fig. 4: Resolution increasing of images generated

by “Image Alchemy,” option “clustered-dot halftone.”

