
Real-Time Opaque and Semi-Transparent
TV Logos Detection

Alex Reis dos Santos, Hae Yong Kim

Escola Politécnica, Universidade de São Paulo, Av. Prof. Luciano Gualberto, trav. 3, 158,
CEP 05508-900, São Paulo, SP, Brazil

alex.santos@ibope.com.br, hae@lps.usp.br

Abstract 1 - One of the most important strategies
created by TV broadcast stations to claim and pro-
tect video content ownership is the TV logo. With
different colors, shapes and styles, TV logos identify
the broadcast station, and sometimes even the kind of
the broadcasted program. Consequently, the detec-
tion of TV logos is useful in applications ranging
from detection of TV commercials to audience meas-
ure. In this paper, we propose an improved edge-
based template matching to detect opaque, semi-
transparent and partially animated logos. The pro-
posed algorithm could be implemented in a DSP for
real-time logo recognition, because it is economic in
memory use and requires low processing power. We
tested during more than 24 hours our implementa-
tion to recognize logos of Brazilian and American TV
channels and achieved 100% of correct recognition
rate.

I. INTRODUCTION

One of the most important strategies created by TV
broadcast stations to claim and protect video content
ownership is the TV logo. These logos can be considered
as a visible watermark and identify the broadcast station,
and sometimes even the kind of the broadcasted pro-
gram. For example, some channels change their logo
from semi-transparent to opaque to indicate alive trans-
mission. Also in most channels, the logo disappears dur-
ing transmission of TV commercials.

Consequently, a good way for audience surveillance
institutes to detect the channel selected by a TV viewer

1 The authors would like to express their gratitude to IBOPE
and CNPq for the partial financial supports of this work under
grants 305065/2003-3 and 475155/2004-1.

is by finding TV logos out of the video stream [1]. An-
other application, proposed in [2, 3], is to use the lack of
logos to indicate the presence of a television commer-
cial. The logo detection is the first step to remove it,
using inpainting techniques [4, 5, 6], where the viewing
experience can be improved with the logo removed.

TV logos can be classified in three types: opaque,
semi-transparent and (partially) animated. Figure 1 de-
picts some examples. On some Brazilian broadcast sta-
tions, the logo changes from semi-transparent to opaque
when the content is being transmitted alive, for example
in Record channel (second row of figure 1).

Discovery (animated)

Discovery (animated)

Record (semi-transparent)

Record (opaque)

Globo

Gazeta

Cultura

MTV
Fig. 1: Examples of captured TV logos: Discovery logo
is partially animated (the terrestrial globe spins).

The aim of this paper is to measure TV audience by
finding a logo in the video stream. We search the video

stream looking for one (or more) logo out of a set of
previously stored TV logos. We propose a single algo-
rithm to detect opaque, semi-transparent and partially
animated logos. The proposed algorithm is economic in
the memory usage, and requires low processing power,
so that it could be implement in a portable DSP board.
Opaque logos are easy to detect. Partially animated logos
can be regarded as opaque ones, because they can be
detected through their immovable parts.

Semi-transparent logos are the most difficult ones to
detect. Our method first discards the color information,
because the hue and the color saturation information do
not contribute in the task of detecting semi-transparent
logos, due the changing background. Then, we proceed
with time averaging (as mentioned by Albiol et al. in
[2]). The time averaging emphasizes the logos while
blurs out the background. Next, we discard the absolute
grayscale by extracting the edges, because the grayscale
of semi-transparent logos vary with the background,
while the edges do not.

Even using only the grayscale edge information, we
achieved 100% of detection accuracy. Our result is in
apparent contradiction with Wang et al.’s paper [7],
where they state “edge-based template matching is weak
for semi-transparent ones when incomplete edges ap-
pear.”

II. Extracting edges

A video stream in PAL-M system (Brazilian broadcast
standard) has 493×720 pixels. Empirically, we observed
that the logos always appear inside 4 rectangular regions
located near the four corners. So, we extracted four sub-
videos (say, F1, F2, F3 and F4) each one with 100×150
pixels. Figure 2 depicts the four sub-regions and figure 3
depicts a frame of the video stream F obtained by con-
catenating the four sub-videos. For other TV systems
with different pixel resolutions (such as NTSC), a
slightly different set of sub-regions must be defined.

Empirically, we have observed that each TV logo can
appear in only one or two sub-videos. For example,
CNN logo always appears in the upper left sub-video F1,
and SporTV logo always appears in the upper right sub-
video F2 or in the lower right sub-video F4. Conse-
quently, it is necessary to search for CNN logo only in

the sub-video F1, and for SporTV logo only in the sub-
videos F2 and F4. We have built a table containing the
information of in which sub-videos each logo can ap-
pear. This process accelerates the processing, essential
for real-time implementation.

Fig. 2: Extraction of the four sub-regions where TV
logos can appear.

Fig. 3: The four sub-regions merged to form video
stream F.

We discarded the color information, because the color
of a semi-transparent logo changes with the background
variation.

Time averaging is used to emphasize the pixels that
either do not vary through the time or vary only a little.
This filtering removes the inconstant background images
and emphasizes the logos. Only one out of ∆t frames are

taken into account in the time averaging. ∆t is approxi-
mately 30 frames (1 second), and the processor uses this
time interval to make the rest of the processing (edge
extraction, logo searching, etc.) Indeed, we have noticed
that it is not worth to use all frames in the time averag-
ing, because averaging similar frames does not help to
get rid of the background. Mathematically:

[]),,(),,(
2
1),,(tkjFttkjFtkjF +∆−= , 0≥t (1)

where),,(tkjF is the time-averaged video stream at
pixel (j, k) and frame t. Note that the time-averaged
frame at time t is a weighted average of the frame t (with
weight 0.5), the frame tt ∆− (with weight 0.25), the
frame tt ∆− 2 (with weight 0.125), and so on. The first
time-averaged frame)0,,(kjF can be defined equal to
the frame)0,,(kjF or as a completely black image.
Figure 4 depicts a time-averaged frame. After the time
averaging, most of the objects in the frame become
blurred, except the logo and perhaps some other time-
invariant objects.

Fig. 4: A time-averaged frame.

Now, the edges can be extracted. There are many dif-
ferent edge-finding methods in the literature. We use the
magnitude G of the gradient of the time-averaged image
F as the edge image:

2
1

22
),(),(),(),(

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
+⎥

⎦

⎤
⎢
⎣

⎡
∂

∂
=∇=

y
yxF

x
yxFyxFyxG (2)

The convolution of the time-averaged image F with
Prewitt operators (figure 5) can be used to evaluate the
two partial derivatives of the equation above. Figure 6
depicts some examples of the edge images G.

We have tested also detecting edges before perform-
ing the time averaging, and similar results were yielded.

111
000
111 −−−

101
101
101

−
−
−

Fig. 5: Prewitt operators

Fig. 6: The edge image G of a video stream and the edge
image of a semi-transparent logo.

III. Template Matching

In order to recognize logos in a video stream, it is
necessary to have a dataset of edge images of logos, say
L1, L2, ..., Ln, obtained by pre-processing the sample
videos as described in the previous section. Associated
with each logo, there must be a list of one or two sub-
videos where the logo can appear. Given a video stream,
the edge image G of the time-averaged video F is com-
puted for each ∆t frames.

Then, the cross-correlation is used to spatially localize
the logo. Before the correlation, the images are first
mean-corrected, that is, the “DC level” is taken out:

),(),(),(~ kjGkjGkjG −= (3)

nikjLkjLkjL iii ≤≤−= 1),,(),(),(~
 (4)

where),(kjG and),(kjLi are the mean grayscale
levels of the edge image G (at frame t) and of the logo
image Li.

Fig. 7: Convolution of the two images of figure 6. The
matching is at the brightest point.

The cross-correlation R between two real-valued im-
ages F~ and iL~ is defined [8, 9]:

∑∑ ++=
j k

i nkmjLkjFnmR),(~),(~),(. (5)

The cross-correlation can be normalized, by dividing
it by the length of vectors F~ and iL~ , and yielding the
correlation coefficient:

[] []
21

22
),(~),(~

),(~),(~

),(

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++

++

=γ

∑∑ ∑∑

∑∑

j k j k
i

j k
i

nkmjLkjF

nkmjLkjF
nm (6)

The correlation coefficient),(nmγ ranges from -1 to
1. Empirically, we estimated the threshold level 0.73 that
did not produce any false alarms and found all logos in
our video streams.

A more statistically sound decision can be made by
performing a hypothesis test. To test the hypothesis, the
cross-correlation is converted into a Student’s t-statistics
τ. Then, the hypothesis “the logo iL~ is located in edge

image G~ at pixel (m, n)” can be statistically tested. The
underlying supposition is that the pixel values in G~ are
generated independently at random (this supposition is
not completely true).

Let us denote the pixel values of image G~ scanned in
some predefined order (like raster order) as one-
dimensional vector Y. Similarly, let us denote the pixel
values of image iL~ translated to position (m, n) and
scanned in the same order as one-dimensional vector X.
Then, the objective is to estimate parameter β that mini-
mizes error ε in the following equation:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ε

ε
+β

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

NNN X

X

Y

Y
MMM
111

 (7)

This equation is usually written in matrix notation as:

ε+β= XY . (8)

ε is the vector of residual errors, which are considered
independent identically distributed normal variables. The
parameters β that minimizes the mean square value of
error ε can be estimated by the least squares procedure:

2X
XY

=β . (9)

The parameter β can be transformed into the Student’s
t statistic τ by computing:

)1(2

2

−
ε

β
=τ

nX

. (10)

For large n, the Student’s t statistic can be approxi-
mated by the normal statistic. The obtained statistic τ is
used to perform the hypothesis test. Assuming that the
null hypothesis 0H indicates no correlation between Y

(the edge image G~) and X (the logo image iL~ translated
to position (m, n)), we would like to know how likely is
our measure τ. The hypothesis test allows us to perform
a comparison between the obtained value τ and the value
τα corresponding to the selected significance level α
(the acceptable false positive rate), accepting or rejecting

the null hypothesis if ατ<τ or ατ≥τ , respectively.

The following simple numerical example clarifies
these ideas:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

ε
ε
ε
ε
ε
ε
ε
ε

+β

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

8

7

6

5

4

3

2

1

5.0
5.0
5.0
5.0

5.0
5.0
5.0
5.0

625.6
625.5

375.4
375.5

625.5
625.3

375.5
375.6

 (11)

The first vector Y is the pixel values of the edge image
G~ of the video stream. The second vector X is pixel
values of the edge image iL~ of the logo shifted to posi-
tion (m, n). Estimating the parameter β, we obtain 10.75,
and estimating the Student’s t distribution with 7 degrees
of freedom we get 4818.15=τ . This means that the
logo image was probably found at position (m, n) of the
video stream. The null hypothesis will be rejected at

01.0=α significance level 14.3=τα for a one-tail t
test. Experimentally, τ assumes values as high as 60
whenever there is a logo matching.

IV. Implementation Details and Experimental Results

A. Implementation in C++

Using the image-processing library called ProEikon
[10], we have implemented the proposed algorithm. This
implementation does not work in real-time. It was used
only to test quickly the ideas developed in the previous
sections.

We have used a TV Card named Play TV Pro Ultra by
PC View [11] to capture videos from broadcast stations
and store them as AVI files.

Ten logos were created from the video files captured

from 10 broadcast stations. Five logos were opaque
(CNN, SporTV, AXN, Record and Universal), four were
semi-transparent (Record, Globo, Gazeta and Cultura)
and one partially animated (Discovery).

After creating the dataset with the ten logos, 10 new
videos from these 10 broadcast stations and other 5 vid-
eos that did not contain any of the 10 logos were cap-
tured. All logos were correctly detected, and all absences
of logos were also correctly detected. However, it took
different times to detect the logos. Opaque logos were
detected in average after 1 second. Semi-transparent
logos were detected in average after 5 seconds, depend-
ing on the variation of the background (the more varia-
tion, the less time takes to detect the logo).

B. Implementation in Embedded System (DSP)

We have implemented a complete embedded system
environment using DSP (digital signal processor) in C
and assembly language. We have used the development
kit Blackfin, model EZ-KIT LITE BF533, from Analog
Devices [12]. This development board contains all the
hardware necessary for this application: volatile flash
memory to store the dataset, non-volatile fast memory to
compute data, a DSP processor with clock up to
600MHz, a decoder of PAL-M video (Brazilian color
TV broadcast standard) and some serial ports to commu-
nicate with a PC computer. Figure 8 and 9 depicts our
system implemented in a Blackfin board.

Fig. 8: Our system implemented in Blackfin DSP board.

Fig. 9: The broadcasting station identified in the PC
monitor.

Our system downloads logos from a PC computer,
makes acquisition of the video stream in real time,
makes video and image processing as described in pre-
vious sections, and sends to PC the identity of the de-
tected logo through an asynchronous serial port.

The video’s decoder receives a PAL-M signal, and
generates a video stream in ITU-656 format [13] in real-
time with 8 bits word. In this application we are inter-
ested just in Y signals (luminance) that represents gray-
scales.

The logo searching is made sequential and exhaus-
tively, logo-by-logo, in the sub-regions specified in the
dataset. This process is called “logo detection.” When
there is a correlation coefficient larger than a specified
threshold, the DSP inform it to the PC through a serial
port. When a broadcast station is identified, another
process called “logo tracking” begins. It consists in con-
firming this logo until it changes or disappears.

Figures 8 and 9 depict the entire application in our
laboratory. The environment consists of a television, the
development board and a PC that displays in its monitor
the identity of the logo found in the video stream.

We have used the same dataset as the implementation
in C++. The same ten logos were used: five opaque lo-
gos, four semi-transparent ones, and one partially ani-
mated.

After creating the dataset with the 10 logos, we have
monitored 15 broadcast stations for more than 24 hours:
10 stations that corresponds to the 10 logos, and 5 sta-
tions that do not correspond to the stored logos. All lo-
gos were correctly detected without false alarms. How-
ever, it took different times to detect the logos. Opaque
logos were detected in average after 1 second. Semi-
transparent logos were detected in average after 5 sec-
onds, and the time delay depends on the variation of the
background (the more variation, the less the time delay).

V. Conclusion

In this paper, we have presented a real-time portable
logo detection system. The proposed algorithm is based
on edge-based template matching, and requires only
small amount of memory and low processing power. It
was implemented on a DSP board. All three kinds of
logos (opaque, semi-transparent and partially animated)
could be detected. We have tested our system for more
than 24 hours and all logos were correctly detected.

REFERENCES

[1] A. Divakaran, . Radhakrishnan, “Logo Detection and
Classification in a Sport Video: Video Indexing for
Sponsorship Revenue Control,” Proc. Int. Soc. Opti-
cal Engineering (SPIE), pp. 183-193, 2002.

[2] A. Albial, M. J. C. Fulià, A. Albial, and L. Torres,
“Detection of TV commercials,” Proc. ICASSP’04,
vol. III, pp. 541-544, May 2004.

[3] J.–H. Yeh, J.–C. Chen, J.–H. Kuo, J.-L. Wu, “TV
Commercial Detection in News Program Video,”
Proc. Int. Sym. Circuits and Systems (ISCAS), vol.5,
pp. 4594-4597, May 2005.

[4] W. Q. Yan and M. S. Kankanhalli, “Erasing Video
Logos Based on Image Inpainting,” in Proc. Int.
Conf. on Multimedia and Expo (ICME), Switzerland,
vol.2, pp. 521-524, Aug. 2002.

[5] W. Q. Yan, J. Wang, and M. S. Kankanhalli, “Auto-
matic Video Logo Detection and Removal” Multi-
media Systems, 10(5), pp. 379-391, July 2005.

[6] K. Meisinger, T. Troeger, M. Zeller, and A. Kaup
“Automatic TV Logo Removal Using Statistical
Based Logo Detection and Frequency Selective In-
painting” Proc. European Signal Processing Con-
ference, September 2005.

[7] J. Wang, L. Duan, Z. Li, J. Liu, H. Lu, and J. S. Jin,
“A Robust Method for TV Logo Tracking in Video
Streams” in Proc. IEEE Int. Conf. on Multimedia
and Expo (ICME), pp. 1041-1044, 2006.

[8] K. R. Castleman, “Digital Image Processing,” Pren-
tice-Hall, 1996.

[9] R. C. Gonzalez, R. E. Woods, “Digital Image Proc-
essing,” second edition, Prentice-Hill, 2002.

[10] http://www.lps.usp.br/~hae/software, accessed on
September 26, 2006.

[11] http://www.pixelview.com.br/, accessed on August
02, 2006.

[12] http://www.analog.com/processors/platforms, ac-
cessed on August 11, 2006.

[13] http://en.wikipedia.org/wiki/ITU656, accessed on
August 05, 2006.

