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Abstract 1 - One of the most important strategies 
created by TV broadcast stations to claim and pro-
tect video content ownership is the TV logo. With 
different colors, shapes and styles, TV logos identify 
the broadcast station, and sometimes even the kind of 
the broadcasted program. Consequently, the detec-
tion of TV logos is useful in applications ranging 
from detection of TV commercials to audience meas-
ure. In this paper, we propose an improved edge-
based template matching to detect opaque, semi-
transparent and partially animated logos. The pro-
posed algorithm could be implemented in a DSP for 
real-time logo recognition, because it is economic in 
memory use and requires low processing power. We 
tested during more than 24 hours our implementa-
tion to recognize logos of Brazilian and American TV 
channels and achieved 100% of correct recognition 
rate. 

 

I. INTRODUCTION  
 

One of the most important strategies created by TV 
broadcast stations to claim and protect video content 
ownership is the TV logo. These logos can be considered 
as a visible watermark and identify the broadcast station, 
and sometimes even the kind of the broadcasted pro-
gram. For example, some channels change their logo 
from semi-transparent to opaque to indicate alive trans-
mission. Also in most channels, the logo disappears dur-
ing transmission of TV commercials.  

Consequently, a good way for audience surveillance 
institutes to detect the channel selected by a TV viewer 
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is by finding TV logos out of the video stream [1]. An-
other application, proposed in [2, 3], is to use the lack of 
logos to indicate the presence of a television commer-
cial. The logo detection is the first step to remove it, 
using inpainting techniques [4, 5, 6], where the viewing 
experience can be improved with the logo removed.  

TV logos can be classified in three types: opaque, 
semi-transparent and (partially) animated. Figure 1 de-
picts some examples. On some Brazilian broadcast sta-
tions, the logo changes from semi-transparent to opaque 
when the content is being transmitted alive, for example 
in Record channel (second row of figure 1). 

 

 
Discovery (animated) 

 
Discovery (animated) 

 
Record (semi-transparent)  

Record (opaque) 

 
Globo 

 
Gazeta 

 
Cultura  

MTV 
Fig. 1: Examples of captured TV logos: Discovery logo 
is partially animated (the terrestrial globe spins). 

 

The aim of this paper is to measure TV audience by 
finding a logo in the video stream. We search the video 



stream looking for one (or more) logo out of a set of 
previously stored TV logos. We propose a single algo-
rithm to detect opaque, semi-transparent and partially 
animated logos. The proposed algorithm is economic in 
the memory usage, and requires low processing power, 
so that it could be implement in a portable DSP board. 
Opaque logos are easy to detect. Partially animated logos 
can be regarded as opaque ones, because they can be 
detected through their immovable parts.  

Semi-transparent logos are the most difficult ones to 
detect. Our method first discards the color information, 
because the hue and the color saturation information do 
not contribute in the task of detecting semi-transparent 
logos, due the changing background. Then, we proceed 
with time averaging (as mentioned by Albiol et al. in 
[2]). The time averaging emphasizes the logos while 
blurs out the background. Next, we discard the absolute 
grayscale by extracting the edges, because the grayscale 
of semi-transparent logos vary with the background, 
while the edges do not.  

Even using only the grayscale edge information, we 
achieved 100% of detection accuracy. Our result is in 
apparent contradiction with Wang et al.’s paper [7], 
where they state “edge-based template matching is weak 
for semi-transparent ones when incomplete edges ap-
pear.” 

 

II. Extracting edges  

 

A video stream in PAL-M system (Brazilian broadcast 
standard) has 493×720 pixels. Empirically, we observed 
that the logos always appear inside 4 rectangular regions 
located near the four corners. So, we extracted four sub-
videos (say, F1, F2, F3 and F4) each one with 100×150 
pixels. Figure 2 depicts the four sub-regions and figure 3 
depicts a frame of the video stream F obtained by con-
catenating the four sub-videos. For other TV systems 
with different pixel resolutions (such as NTSC), a 
slightly different set of sub-regions must be defined. 

Empirically, we have observed that each TV logo can 
appear in only one or two sub-videos. For example, 
CNN logo always appears in the upper left sub-video F1, 
and SporTV logo always appears in the upper right sub-
video F2 or in the lower right sub-video F4. Conse-
quently, it is necessary to search for CNN logo only in 

the sub-video F1, and for SporTV logo only in the sub-
videos F2 and F4. We have built a table containing the 
information of in which sub-videos each logo can ap-
pear. This process accelerates the processing, essential 
for real-time implementation. 

 

 
Fig. 2: Extraction of the four sub-regions where TV 
logos can appear. 

 

 
Fig. 3: The four sub-regions merged to form video 
stream F. 

 

We discarded the color information, because the color 
of a semi-transparent logo changes with the background 
variation.  

Time averaging is used to emphasize the pixels that 
either do not vary through the time or vary only a little. 
This filtering removes the inconstant background images 
and emphasizes the logos. Only one out of ∆t frames are 



taken into account in the time averaging. ∆t is approxi-
mately 30 frames (1 second), and the processor uses this 
time interval to make the rest of the processing (edge 
extraction, logo searching, etc.) Indeed, we have noticed 
that it is not worth to use all frames in the time averag-
ing, because averaging similar frames does not help to 
get rid of the background. Mathematically: 

[ ]),,(),,(
2
1),,( tkjFttkjFtkjF +∆−= , 0≥t  (1) 

where ),,( tkjF  is the time-averaged video stream at 
pixel (j, k) and frame t. Note that the time-averaged 
frame at time t is a weighted average of the frame t (with 
weight 0.5), the frame tt ∆−  (with weight 0.25), the 
frame tt ∆− 2  (with weight 0.125), and so on. The first 
time-averaged frame )0,,( kjF  can be defined equal to 
the frame )0,,( kjF  or as a completely black image. 
Figure 4 depicts a time-averaged frame. After the time 
averaging, most of the objects in the frame become 
blurred, except the logo and perhaps some other time-
invariant objects. 

 

 
Fig. 4: A time-averaged frame. 

 

Now, the edges can be extracted. There are many dif-
ferent edge-finding methods in the literature. We use the 
magnitude G of the gradient of the time-averaged image 
F  as the edge image: 
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The convolution of the time-averaged image F  with 
Prewitt operators (figure 5) can be used to evaluate the 
two partial derivatives of the equation above. Figure 6 
depicts some examples of the edge images G. 

We have tested also detecting edges before perform-
ing the time averaging, and similar results were yielded. 
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Fig. 5: Prewitt operators 

 

   
Fig. 6: The edge image G of a video stream and the edge 
image of a semi-transparent logo. 

 

III. Template Matching 

 

In order to recognize logos in a video stream, it is 
necessary to have a dataset of edge images of logos, say 
L1, L2, ..., Ln, obtained by pre-processing the sample 
videos as described in the previous section. Associated 
with each logo, there must be a list of one or two sub-
videos where the logo can appear. Given a video stream, 
the edge image G of the time-averaged video F  is com-
puted for each ∆t frames. 

Then, the cross-correlation is used to spatially localize 
the logo. Before the correlation, the images are first 
mean-corrected, that is, the “DC level” is taken out: 

),(),(),(~ kjGkjGkjG −=  (3) 



nikjLkjLkjL iii ≤≤−= 1),,(),(),(~
 (4) 

where ),( kjG  and ),( kjLi  are the mean grayscale 
levels of the edge image G (at frame t) and of the logo 
image Li.  

 

 
Fig. 7: Convolution of the two images of figure 6. The 
matching is at the brightest point. 

 

The cross-correlation R between two real-valued im-
ages F~  and iL~  is defined [8, 9]: 

∑∑ ++=
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i nkmjLkjFnmR ),(~),(~),( . (5) 

The cross-correlation can be normalized, by dividing 
it by the length of vectors F~  and iL~ , and yielding the 
correlation coefficient: 
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The correlation coefficient ),( nmγ  ranges from -1 to 
1. Empirically, we estimated the threshold level 0.73 that 
did not produce any false alarms and found all logos in 
our video streams. 

A more statistically sound decision can be made by 
performing a hypothesis test.  To test the hypothesis, the 
cross-correlation is converted into a Student’s t-statistics 
τ. Then, the hypothesis “the logo iL~  is located in edge 

image G~  at pixel (m, n)” can be statistically tested. The 
underlying supposition is that the pixel values in G~  are 
generated independently at random (this supposition is 
not completely true).  

Let us denote the pixel values of image G~  scanned in 
some predefined order (like raster order) as one-
dimensional vector Y. Similarly, let us denote the pixel 
values of image iL~  translated to position (m, n) and 
scanned in the same order as one-dimensional vector X. 
Then, the objective is to estimate parameter β that mini-
mizes error ε in the following equation: 
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This equation is usually written in matrix notation as: 

ε+β= XY . (8) 

ε is the vector of residual errors, which are considered 
independent identically distributed normal variables. The 
parameters β that minimizes the mean square value of 
error ε can be estimated by the least squares procedure: 

2X
XY

=β . (9) 

The parameter β can be transformed into the Student’s 
t statistic τ by computing: 
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For large n, the Student’s t statistic can be approxi-
mated by the normal statistic. The obtained statistic τ is 
used to perform the hypothesis test. Assuming that the 
null hypothesis 0H  indicates no correlation between Y 

(the edge image G~ ) and X (the logo image iL~  translated 
to position (m, n)), we would like to know how likely is 
our measure τ. The hypothesis test allows us to perform 
a comparison between the obtained value τ and the value 
τα corresponding to the selected significance level α  
(the acceptable false positive rate), accepting or rejecting 



the null hypothesis if ατ<τ  or ατ≥τ , respectively. 

The following simple numerical example clarifies 
these ideas: 
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The first vector Y is the pixel values of the edge image 
G~  of the video stream. The second vector X is pixel 
values of the edge image iL~  of the logo shifted to posi-
tion (m, n). Estimating the parameter β, we obtain 10.75, 
and estimating the Student’s t distribution with 7 degrees 
of freedom we get 4818.15=τ . This means that the 
logo image was probably found at position (m, n) of the 
video stream. The null hypothesis will be rejected at 

01.0=α  significance level 14.3=τα  for a one-tail t 
test. Experimentally, τ assumes values as high as 60 
whenever there is a logo matching.  

 

IV. Implementation Details and Experimental Results 

 

A. Implementation in C++ 

 

Using the image-processing library called ProEikon 
[10], we have implemented the proposed algorithm. This 
implementation does not work in real-time. It was used 
only to test quickly the ideas developed in the previous 
sections.  

We have used a TV Card named Play TV Pro Ultra by 
PC View [11] to capture videos from broadcast stations 
and store them as AVI files.  

Ten logos were created from the video files captured 

from 10 broadcast stations. Five logos were opaque 
(CNN, SporTV, AXN, Record and Universal), four were 
semi-transparent (Record, Globo, Gazeta and Cultura) 
and one partially animated (Discovery).  

After creating the dataset with the ten logos, 10 new 
videos from these 10 broadcast stations and other 5 vid-
eos that did not contain any of the 10 logos were cap-
tured. All logos were correctly detected, and all absences 
of logos were also correctly detected. However, it took 
different times to detect the logos. Opaque logos were 
detected in average after 1 second. Semi-transparent 
logos were detected in average after 5 seconds, depend-
ing on the variation of the background (the more varia-
tion, the less time takes to detect the logo). 

 

B. Implementation in Embedded System (DSP) 

 

We have implemented a complete embedded system 
environment using DSP (digital signal processor) in C 
and assembly language. We have used the development 
kit Blackfin, model EZ-KIT LITE BF533, from Analog 
Devices [12]. This development board contains all the 
hardware necessary for this application: volatile flash 
memory to store the dataset, non-volatile fast memory to 
compute data, a DSP processor with clock up to 
600MHz, a decoder of PAL-M video (Brazilian color 
TV broadcast standard) and some serial ports to commu-
nicate with a PC computer. Figure 8 and 9 depicts our 
system implemented in a Blackfin board. 

 

 
Fig. 8: Our system implemented in Blackfin DSP board. 



 

 
Fig. 9: The broadcasting station identified in the PC 
monitor. 

 

Our system downloads logos from a PC computer, 
makes acquisition of the video stream in real time, 
makes video and image processing as described in pre-
vious sections, and sends to PC the identity of the de-
tected logo through an asynchronous serial port. 

The video’s decoder receives a PAL-M signal, and 
generates a video stream in ITU-656 format [13] in real-
time with 8 bits word. In this application we are inter-
ested just in Y signals (luminance) that represents gray-
scales. 

The logo searching is made sequential and exhaus-
tively, logo-by-logo, in the sub-regions specified in the 
dataset. This process is called “logo detection.” When 
there is a correlation coefficient larger than a specified 
threshold, the DSP inform it to the PC through a serial 
port. When a broadcast station is identified, another 
process called “logo tracking” begins. It consists in con-
firming this logo until it changes or disappears.  

Figures 8 and 9 depict the entire application in our 
laboratory. The environment consists of a television, the 
development board and a PC that displays in its monitor 
the identity of the logo found in the video stream. 

We have used the same dataset as the implementation 
in C++. The same ten logos were used: five opaque lo-
gos, four semi-transparent ones, and one partially ani-
mated.  

After creating the dataset with the 10 logos, we have 
monitored 15 broadcast stations for more than 24 hours: 
10 stations that corresponds to the 10 logos, and 5 sta-
tions that do not correspond to the stored logos. All lo-
gos were correctly detected without false alarms. How-
ever, it took different times to detect the logos. Opaque 
logos were detected in average after 1 second. Semi-
transparent logos were detected in average after 5 sec-
onds, and the time delay depends on the variation of the 
background (the more variation, the less the time delay). 

 

V. Conclusion 

 

In this paper, we have presented a real-time portable 
logo detection system. The proposed algorithm is based 
on edge-based template matching, and requires only 
small amount of memory and low processing power. It 
was implemented on a DSP board. All three kinds of 
logos (opaque, semi-transparent and partially animated) 
could be detected. We have tested our system for more 
than 24 hours and all logos were correctly detected. 
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