
 

 

 

  

Abstract — Low Noise Electrocardiogram (ECG) has 
been widely used for heart disease diagnosis. The anisotropic 
median-diffusion is the filter obtained by intercalating a 
median filtering in each diffusion step. We propose to use 
anisotropic median-diffusion to filter noisy ECG signals. We 
describe how to estimate appropriate parameters of the pro-
posed filter. We validate our method using ECG signals 
from the MIT-BIH databases (many of them with premature 
ventricular contraction) and compare our method with other 
filtering methods. Experiments show that the proposed tech-
nique can effectively remove the noise without changing the 
instants and amplitudes of events, as well as preserving the 
morphologies of ECG signals in sections of the QRS com-
plex. 

I. INTRODUCTION 
lectrocardiogram (ECG) is used to provide clinical 
information about heart diseases. In practice, the reli-
ability of a diagnosis depends on the quality of the 

available ECG signal. An ECG acquired in a clinical en-
vironment may be corrupted by electromagnetic interfer-
ences from nearby instruments, noise from the analog-
digital conversor of the ECG acquiring device, and from 
the muscular movements of the patient [1]. Consequently, 
ECG signals may be filtered to attenuate the distortions 
introduced by these noise sources. Linear filters are not 
appropriate for this task, because they usually modify the 
instants and amplitudes of events and change the shape of 
the ECG signal.  

Consequently, some nonlinear filters have been pro-
posed to filter ECG signals, as the Nonlinear Noise Re-
duction algorithm (NNR) [2] and Independent Compo-
nent Analysis (ICA) [3]. The basic idea of NNR is to de-
termine the underlying dynamic system to attenuate the 
noise. This may be achieved using local linear model. The 
ICA is a statistical technique for decomposing a dataset 
into independent subparts. NNR is better than ICA for 
recovering the morphology of ECG signals, and less 
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prone to modify the shape of ECG signals than ICA. 
However, ICA is better for recovering specific points of 
the ECG signals, like the R peak, that is used to obtain 
RR intervals. Wiener filter is also used to filter ECG sig-
nals, but the results are usually inferior to those obtained 
using NNR or ICA. 

Some nonlinear filters can preserve the shapes, edges 
and amplitudes of the signal at the same time as filtering 
out the noise [4, 5]. Anisotropic diffusion is one of them. 
Anisotropic diffusion was originally developed within the 
scale space theory. Scale space is a theory that deals with 
the multi-resolution problem formulated by Witkin [6]. It 
uses Gaussian filters to obtain signals/images in coarse 
scales. Perona and Malik [7] proposed to substitute the 
Gaussian filter by the nonlinear anisotropic diffusion to 
generate coarse scale signals/images. Anisotropic diffu-
sion has been successfully used in restoration, segmenta-
tion and edge detection of images/signals. Black et al. 
modified the anisotropic diffusion using robust statistics, 
obtaining the robust anisotropic diffusion [8]. Anisotropic 
diffusion is appropriate for filtering noises whose ampli-
tude is lower than the “edges” of the signal, but it is not 
appropriate for filtering impulsive (salt and pepper) noise. 

The median filter is another edge-preserving nonlinear 
filter. The idea is to examine a sample of the input and 
decide if it is representative of the signal/image. This is 
performed using a sliding window and computing the 
median of the values inside the window. Median filter is 
particularly useful to reduce impulsive noise.  

To get the advantages of both anisotropic diffusion 
and median filter, some papers like [9], have suggested to 
intercalate median and anisotropic diffusion, to obtain a 
median-diffusion able to filter both Gaussian and impul-
sive noises.  

In this paper, we analyze the possibility of filtering 
ECG signals using the anisotropic median-diffusion. We 
show that the median-diffusion can effectively remove the 
noise. We also show how to estimate appropriate parame-
ters. 

It is important to test the ECG filters in signals with 
abnormalities, because these abnormalities are important 
for the heart diseases diagnosis. In the present paper, we 
use ECG signals with premature ventricular contraction 
[10] from the MIT-BIH database [11]. 

II. ANISOTROPIC MEDIAN-DIFFUSION 
 

Perona and Malik [7] defined the discrete anisotropic 
diffusion as follows: 
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where: 
• t

sI  is the value of the signal at iteration t and point s. 
• λ∈[0,1] is a scalar constant that controls the diffusion 

rate.  
• ηs is the set of neighbors of the point s. 
• |ηs| is the number of neighbors of s, usually two for 

signals and four for images. 
Perona and Malik approximated the derivative/gradient 

psI ,∇  ( sp η∈ ) as: 

spps III −=∇ ,  (2)
The behavior of the anisotropic diffusion depends 

heavily on the choice of the “edge-stopping function” g. 
We list below three possible edge-stopping functions g1, 
g2 and g3. The first two were proposed by Perona-Malik 
and the third (based on robust statistics and named 
“Tukey’s biweight”) by Black et al. [8]: 
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The three functions were normalized so that their “in-
fluence functions” 3,2,1),()( ==ψ ixxgx ii  have their 
local maxima at x=1. This is the point that separates noise 
from the useful information (also called “edges” or “out-
liers”). Note that the edge-stopping functions have a scale 
parameter σ. Black et al. suggested using the “robust 
scale” σe to automatically estimate an appropriate scale: 
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where “MAD” denotes the median absolute deviation. For 
a discrete signal/image, the robust scale is computed us-
ing the derivative/gradient magnitude approximation in-
troduced before. However, robust scale must be consid-
ered only as an “initial guess” of the really optimal scale, 
because the threshold between “noise” and “useful 
information” depends on the application and is not 
possible to compute it automatically. 

Anisotropic diffusion is not appropriate for filtering 
impulsive noise. So, some papers [9] have suggested in-
tercalating median and anisotropic diffusion, to obtain the 
advantages of both median and diffusion filters. To better 
preserve the edges, it is also possible to not apply the me-
dian filter at the edges. That is, if the local deriva-
tive/gradient is greater than the scale parameter σ, the 
median filter is not applied. 

III. EXPERIMENTS 
There are many questions to be answered to determine 

the best anisotropic diffusion for filtering ECG signals. 
The first is to establish which edge-stopping function is 
the best. The second is to find the appropriate scale σ and 
the appropriate number of iterations tmax. The third is to 
decide whether the simple anisotropic diffusion (a), the 
median-diffusion (b) or the median-diffusion where the 
median is not applied at the edges (c) is the best strategy. 

To compare different filters, we generated an artificial 
ECG signal. Using an artificial signal, it is possible to 
compare the original, noisy and filtered signals to deter-
mine the noise reduction factor. A real ECG signal cannot 
be used for this task, because any real ECG signal con-
tains noise. We generated an artificial ECG using the 
Physionet Databank ECG WaveGen [12], with 60 bpm, 
1800 mVpp, 360 sps (figure 1). Then, we added 25% 
RMS Gaussian noise.  
 
 

 
Fig.1. The artificial ECG with 1800 samples, 60 bpm, amplitude 1800 
mVpp, sampling frequency 360 sps, 6 seconds of duration. 
 
 
We use the noise reduction factor as the performance met-
ric:  
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where s is the original noiseless signal, x is the noisy sig-
nal and x̂  is the filtered signal.  

A. Artificial ECG with Perona-Malik’s function g1 
We filtered the noisy ECG signal with the anisotropic 

diffusion using the robust scale σe and the edge-stopping 
functions g1, g2 and g3. The results are depicted in figure 
2. It is clear that the function g1 yields the largest noise 
reduction factor. We tested some other scale parameters, 
obtaining similar results. 

Then, we found out that the largest noise reduction 
factor is obtained using the scale parameter about 

eσ×=σ 7.1 . We tested the simple anisotropic diffusion 
(a), the median-diffusion (b) and the median-diffusion 
where the median is not applied at the edges (c) and the 
results were very similar. However, the method (c) 
yielded a slightly larger noise reduction factor. We always 
use median filters with window’s size 3. Table I summa-
rizes some of our tests. 

The main problem of this method is to estimate the 
appropriate number of iterations. 



 

 

 

 Figure 2 shows that this choice is essential, because 
the result deteriorates quickly before and after the optimal 
number of iterations. In the literature, there are some pa-
pers that try to automatically determine the diffusion stop-
ping instant [13, 14], but their aptness for filtering ECG is 
still to be tested. 

 
 
 

 
Fig.2. Noise reduction factors using the robust scale σe and the edge-
stopping functions g1, g2 and g3 versus number of iterations in artificial 
ECG. 
 
 

TABLE I 
NOISE REDUCTION FACTOR / THE BEST NUMBER OF ITERATIONS OBTAINED APPLYING 
THE MEDIAN-DIFFUSION, STRATEGY (C), WITH PERONA-MALIK’S g1 IN ARTIFICIAL 
ECG. 

Gaussian noise  eσ×8.0  eσ  eσ×7.1  
10% RMS 1.665 / 4 1.691 / 4 1.729 / 3 
25% RMS 2.158 / 8 2.234 / 8 2.295 / 7 
50% RMS 2.785 / 16 2.805 / 14 2.772 / 12 

 
 

B. Artificial ECG with Tukey’s function g3 
The diffusion stopping criteria is not essential if we 

use Tukey’s edge-stopping function g3 instead of Perona-
Malik’s g1. Using Tukey’s function, in theory, the diffu-
sion process converges after some number of iterations 
[9]. If this statement is true, why did not converge the 
diffusion using g3 in figure 2? Because a too large pa-
rameter σ was used. After some tests, we found out that 
the best scale that makes the diffusion process converge 
and yields high noise reduction factor is about 

eσ×=σ 5.0  (Table II). We also discovered that, using g3, 
the median-diffusion yields a significantly higher noise 
reduction factor than the simple anisotropic diffusion 
(figure 3). In this case, the largest noise reduction factor 
was obtained using the strategy (b). We always use me-
dian filters with window’s size 3. 

 
 

TABLE II 
NOISE REDUCTION FACTOR / THE BEST NUMBER OF ITERATIONS OBTAINED APPLYING 
THE MEDIAN-DIFFUSION (B) WITH g3 IN ARTIFICIAL ECG.  

Gaussian noise  eσ×3.0  eσ×4.0  eσ×5.0  

10% RMS 1.708 / 100 1.627 / 16 1.696 / 40 
25% RMS 1.827 / 100 1.834 / 100 1.875 / 40 
50% RMS 1.885 / 100 2.081 / 100 2.032 / 100 

 
 
Figure 3 shows that the diffusion process actually stops 
after about 40 iterations. Consequently, there is no need 
to estimate precisely the appropriate number of iterations 
tmax. However, the observed noise reduction factors are 
smaller than those obtained using function g1. 
 
 

 
Fig.3. Upper graphic (M*): robust median-diffusion. Lower graphic 
(NM.-): robust anisotropic diffusion without median filter. In both cases, 
we have used Tukey’s edge-stopping function g3 and scale parameter 

eσ×=σ 5.0  in artificial ECG. 

 

C. Real ECG 
We used MIT-BIH database ECG samples with pre-

mature ventricular contraction to better characterize the 
experiments [2, 11]. We added Gaussian noise in these 
signals to observe the performances of the filters. Note 
that the noise reduction factor computed using real ECGs 
may not be accurate, because real ECGs always contain 
some quantity of noise. Figure 4 shows median-diffusion 
filtering process of the signal ECG_MIT-100 with prema-
ture ventricular contraction contaminated with 25% RMS 
Gaussian noise, using Perona-Malik’s function g1, 

eσ×=σ 7.1 , and 7 iterations. 
Figure 5 shows the same signal, filtered by median-

diffusion using Tukey’s function g3, eσ×=σ 5.0  and 60 
iterations. 

NNR nonlinear filter presents the noise reduction fac-
tor 1.99 when filtering an ECG from the MIT database 
contaminated with 25% RMS Gaussian noise [2]. The 
Wiener filter has the noise reduction factor 1.33 in the 
same conditions.  



 

 

 

Meanwhile, the median-diffusion using Perona-
Malik’s g1 has the noise reduction factor 2.003 when fil-
tering ECG_MIT-100 signal contaminated with 25% 
RMS Gaussian noise. It presents the average noise reduc-
tion factor 2.0261 when applied to many ECGs with pre-
mature ventricular contractions (MIT-BIH signals 100, 
102, 105, 114, 124, 205, and 220). The median-diffusion 
using the Tukey’s edge-stopping function g3 presents 
noise reduction factor 1.839 when filtering the 
ECG_MIT-100 signal contaminated by 25% noise and 
average noise reduction factor 1.789 when applied to the 
same set of ECGs with premature ventricular contrac-
tions. These results demonstrate that the proposed tech-
niques are appropriate for filtering ECG signals.  

 
 

 
Fig.4. Top to bottom: The original ECG_MIT-100 signal. Signal con-
taminated with 25% RMS Gaussian noise. Signal filtered with median-
diffusion using g1, eσ×=σ 7.1 , and 7 iterations. The residual error 
(original signal – filtered signal). 
 
 

 
Fig.5. Top: Signal ECG_MIT-100 with 25% of noise (figure 4) filtered 
with median-diffusion using Tukey’s g3, eσ×=σ 5.0 , 60 iterations. 
Bottom: The residual error (original signal – filtered signal). 

 
 

IV. CONCLUSIONS 
In this paper, we have proposed to use anisotropic 

median-diffusion to filter noisy ECG signals. We tested 
three different edge-stopping functions, concluding that 

Perona-Malik’s function g1 yields the largest noise reduc-
tion factor. However, in this case, it is difficult to estimate 
the appropriate number of iterations. Using Tukey’s edge-
stopping function g3, the yielded noise reduction factor is 
smaller. However, there is no need to estimate precisely 
the number of iterations, because in this case the diffusion 
stops after some number of iterations. The appropriate 
scale parameter was derived from the robust scale (that 
derives from the median absolute deviation). Experimen-
tal results shows that the anisotropic median-diffusion can 
effectively remove the noise from ECG signals without 
changing the details and amplitudes of the events, while 
preserving the morphologies of the signal in the QRS 
complex. In next future, we pretend to analyze the influ-
ence of the size of the median filter’s window and if the 
proposed technique is suitable for analyzing real ECG’s. 
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