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Abstract

This paper presents a new, simple, and elegant technique to obtain enhanced statistical
parametric maps (SPMs) from noisy functional magnetic resonance imaging (fMRI) data.
This technique is based on the robust anisotropic diffusion (RAD), a technique normally used
as an edge-preserving filter. A direct application of the RAD to the fMRI data does not work,
because in this case RAD would perform an edge-preserving filtering of the fMRI structural
information, instead of enhancing its functional information. The RAD can be applied direct-
ly to SPM but, in this case, only a small improvement of the SPM quality can be achieved,
because the originating fMRI is not taken into account. To overcome these difficulties, we pro-
pose to estimate the SPM from the noisy fMRI, compute the diffusion coefficients in the SPM
space, and then perform the diffusion in the structural information-removed fMRI data using
the coeflicients previously computed. These steps are iterated until convergence. We have test-
ed the new technique in both simulated and real fMRI images, yielding surprisingly sharp and
noiseless SPMs with increased statistical significance. We also describe how to automatically
estimate an appropriate scale parameter.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The goal of functional neuroimaging is to map activities of a living brain in space
and time. The gold standard for measuring brain cell activities involves direct and
invasive electrical recording of membrane potential of individual neurons. However,
such measurements are limited to certain experimental conditions. For studies on hu-
man subjects, non-invasive methods, such as positron emission tomography (PET)
or functional magnetic resonance imaging (fMRI), have to be applied.

In the early 80s PET dominated the field of functional neuroanatomy, but in the
past 10 years fMRI has developed into an alternative and powerful technique. Local
increases in neural activity cause both a relative deoxygenation of blood and an in-
crease in perfusion, that quickly reverses the deoxygenation, leading to an increase in
oxygenation that endures for several seconds. fMRI is sensitive to the oxygenation of
blood and has a spatio-temporal scale of about 1-3 mm and one or more seconds.
The lower limits on the effective resolution of fMRI are physiological and imposed
by the spatio-temporal organization of evoked hemodynamic responses (2-5 mm
and 5-8 s).

Low signal-to-noise ratio in fMRI 4-D images compels us to use sophisticated im-
age-processing techniques to detect activated brain areas. First, the data must pass
through spatial transformations to correct subject’s head-movement during fMRI
acquisition. If the experiment involves different subjects, the data must also be nor-
malized, that is, the images must “warp” such that they all conform to some stan-
dard brain.

After spatial transformations, statistical analyses are carried out. Many statistical
procedures have been proposed to analyze blood oxygen level dependent fMRI data.
Works [1,2] present a comparative study of these procedures. One of the most pop-
ular statistical procedures is the general linear model (GLM) [3]. In this model, the
user specifies manually a design matrix and makes use of multiple linear regressions
to estimate the parameters, i.e., to determine how well the time-series of each voxel
fit the specified design matrix. These parameters are then used to compute the statis-
tical significance of an effect. These statistics, spatially disposed, form a statistical
parametric map (SPM). Course notes [4] is a good reference on fMRI processing.

Even with all these image-processing apparatuses, a noisy fMRI will yield a noisy
SPM. To attenuate noise, classic linear or edge-preserving nonlinear image filters can
be applied to either fMRI or SPM. Linear low-pass filters are routinely applied to
fMRI data to attenuate noise. However, if fMRI is strongly low-pass-filtered, the
resulting SPM will present blurred edges. Edge-preserving filters can be applied to
SPM to filter noise [5], but they fail to substantially improve the quality of SPM be-
cause they do not take into account the originating fMRI data. If edge-preserving
filters could be applied to fMRI, perhaps they would substantially improve the
SPM. Unfortunately, if an edge-preserving filter is directly applied to 4-D fMRI,
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it would enhance the fMRI structural information and erase the functional informa-
tion, because the grayscale of an fMRI voxel depends primarily on the brain struc-
ture and only secondarily and faintly on the functional information. Thus, the goal
of this paper is to find an edge-preserving filter applicable to fMRI to enhance the
functional information.

In the literature, there are many works to attenuate noise and cluster activated re-
gions in fMRI volumes [6-11]. In particular, Solé et al. [12] have recently proposed a
technique named anisotropic averaging. This technique is inspired by the anisotropic
diffusion [13]. Anisotropic averaging computes an initial set of clearly activated vox-
els. This set is then used to construct a complex similarity measure to compute the
averaging coefficients.

In this paper, we present a new, simple, and elegant technique to obtain enhanced
SPMs from noisy fMRI data that we called Robust Anisotropic Diffusion to com-
pute enhanced Statistical Parametric Map (RADSPM). Instead of defining a highly
complex similarity measure based on a set of clearly activated voxels, we use the gra-
dient magnitudes estimated in the SPM space as the arguments of an edge-stopping
function to compute the diffusion coefficients. The diffusion is then performed in the
mean-corrected fMRI data (that is, the fMRI without the structural information),
using the coefficients previously computed. A new SPM is then calculated and new
diffusion coefficients are estimated. These steps are iterated a pre-defined number
of times or until convergence.

The RADSPM, applied to both simulated and real fMRI data, has produced
surprisingly sharp and noiseless SPMs. Our technique has substantially increased
statistical significances of activated regions, which makes it possible to decide
with more confidence if some brain region is activated or not. However, the
use of the RADSPM seems not to be limited only to the binary activated/non-ac-
tivated decisions, because the noiseless activation levels of SPMs produced by the
RADSPM seems to bear more conclusive information than conventional noisy
SPMs. The software used in this paper is publicly available for the research com-
munity [14].

2. Robust anisotropic diffusion

Scale-space is a theory used to process an image in multiple resolutions. Witkin
[15] introduced a clean formalism for the linear scale-space. A coarse-scale image is
obtained by low-pass filtering the fine scale image. Let /(x,y): R* — R" be an image
in the continuous domain. The scale-space of this 2-D image is a 3-D image
I(x,y,1): R* x R" — R" that satisfies the following partial differential equation:

Ol (x,y,1)
ot
using the original image I(x, y, 0) = I(x, y) as the initial condition. Variable ¢ is an

artificial time parameter that specifies the image scale. This linear scale-space has
many nice mathematical properties. However, it blurs out image edges. To keep

= div(VI), (1)
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edges sharp, while filtering noise and small details, Perona and Malik [13] defined the
nonlinear anisotropic scale-space by modifying the partial differential Eq. (1) as
follows:

ol (x,y,1)
ot

where ||V1|| is the gradient magnitude and g is an “edge-stopping” function. They
suggested using one of the two edge-stopping functions below (all edge-stopping
functions g;(x) presented in this paper have been dilated and scaled so that
g:(0) =1 and their “influence functions” xg;(x) have local maximums at x = 1):

= div[g(||V1|)) V1], (2)
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where o is a positive constant. Perona and Malik discretized spatio-temporally their
anisotropic diffusion Eq. (2) as:

I(s,t+ 1) =I(s,1) +—Zg VI, (0)]) VL, (1), (4)

PEN

where I(s, t) is a discretely sampled image, s denotes the pixel position in a discrete 2-
D or 3-D grid,  now denotes discrete iteration steps (¢ > 0), the constant A € R"
determines the rate of diffusion (usually A = 1), and 5, represents the set of spatial
neighbors of voxel s. For 2-D images, usually four neighboring voxels are consid-
ered: “north,” “south,” “west,” and “east.” For 3-D images, six voxels are usually
considered: the above-mentioned four plus “up” and “down” voxels. Perona and
Malik approximated the image gradient magnitude in a particular direction at iter-
ation ¢ as:

Vi, (1) = 1(p,t) = I(s,1), peEn,. (5)

The right choice of g can greatly affect the extent to which discontinuities are pre-
served. Black et al. [16] formulated the anisotropic diffusion as the problem of estimat-
ing a piecewise smooth image from noisy data and solved it using the robust statistics.
Using robust estimation theory, they succeeded to define a better edge-stopping func-
tion (Tukey’s biweight), and this is the edge-stopping function adopted in this paper:

2
[1 _ uwuz} V1)
2 9

552 5 SO
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0, otherwise.

The resulting filtering process is called robust anisotropic diffusion (RAD). Using
Tukey’s function, the diffusion process converges faster and yields sharper edges than
using Perona and Malik’s. There have been some further developments in the aniso-
tropic diffusion to better preserve edges (for example [17]), however, their aptness to
filter fMRI remains subject of future research.

The scale of an image filtered by the anisotropic diffusion depends on the maxi-
mum number of iteration ¢, and on the edge-stopping function scale parameter
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o. The appropriate selection of both parameters 7,,,x and ¢ are still subjects of ongo-
ing researches and no definitive solution seems to be available [18,19]. Using Perona—
Malik’s edge-stopping functions g; or g, the filtered image converges to an image
with constant graylevel when ¢,,,x — 0o. On the other hand, the image filtered by
RAD (using g3) usually converges after a sufficient number of iteration steps, and
consequently the scale of the filtered image depends practically only on o, provided
that the diffusion is iterated a suitable number of times. Some papers [19,16] present
many different ways to choose an appropriate scale ¢. In this paper, we will use the
“robust scale” ag,, suggested in [16]

0. = 1.4826 MAD(VI) = 1.4826 median,[|||VI|| — median,(||VI]])|]. (7)

The robust scale (as well as the scales chosen by any other automatic scale parameter
setting techniques) must be considered only as an “initial guess™ of the truly optimal
scale. The optimal scale must be determined experimentally, starting from the robust
scale, for a specific application. Our experiences (applying the RAD to 1-D signals,
2-D still images and fMRIs) have shown empirically that the optimal scale is usually
two or three times larger than the robust scale.

3. General linear model

The general linear model (GLM) is a unified theoretical approach to perform clas-
sical statistical analysis of fMRI data [3]. Such models as one sample ¢ test, two-sam-
ple ¢ test, paired ¢ test, Analysis of Variance (ANOVA), Analysis of Co-variance
(ANCOVA), correlation [20], linear regression, multiple regression, and F test are
particular cases of the GLM, depending on the adequate choice of predictor param-
eters. In this paper, we do not need all the generality of the GLM because we test the
RADSPM only in single-subject block-design experiments. The GLM can be re-
duced in this case to a linear regression analysis and we describe in this section only
this simplified case. However, the proposed technique can be extended straightfor-
wardly to other cases. The GLM model can be stated as:

Y, Xu - - Xy B &1
Ys — . . . . Bl —+ & . (8)
Yy Xvi © - Xnm B én

This equation is usually written in matrix notation as
Y=Xp+e. 9)

In general, all variables involved in Eq. (9) are matrices. However, to simplify the
exposition, we will suppose that Y is the column vector of an fMRI time-series of
a fixed spatial position acquired at ¢, ..., ty. X is the matrix of explanatory vari-
ables of the experiment, the stimulus or basis functions, called design matrix. This
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matrix is defined after careful model specification according to the particular fMRI
experiment and convolved with the hemodynamic response function to take into ac-
count the delay of the blood oxygenation effect. ¢ is the column vector of residual
errors, which are considered identically distributed normal variables, independent
or serially auto correlated. The amplitudes f; of the basis functions are the parame-
ters that we need to estimate.

The parameters f5; can be estimated by the least squares procedure. The following
equation performs the least squares estimation of the parameters and also the max-
imum likelihood estimates

p=x"x)"'x"y. (10)
The parameter B can be transformed into the Student’s 7 statistic by computing
s

(Te)(XTX) ™! '

(11)

"B is a linear combination of the estimated parameters and r = N — p the degrees of
freedom, where N is the number of volumes and p is the rank of the design matrix X.
A statistical parametric map (SPM) is a 3-D image constructed by spatially disposing
some particular kind of distribution values. Specifically, in this paper, we use Stu-
dent’s 7 statistical parametric map SPM{¢} obtained by spatially disposing .

The obtained statistic 7 is used to perform a hypothesis test for each voxel in the 3-
D image. Assuming that the null hypothesis H, indicates no correlation between the
time-series Y and the design matrix X (Ho:c’f =0 and H,:c’ >0 for the one-tail
test), we would like to know how likely is our measure 7. The SPM allows us to per-
form a voxel by voxel comparison between the obtained value T and the value 7, cor-
responding to the selected significance level o (the acceptable false positive rate),
accepting or rejecting the null hypothesis if T <z, or t > 1,, respectively. The follow-
ing simple numerical example clarifies these ideas:

507 10 17 e
51 0 1 &
60 11 &
62 11 e
st = o 1|71 (12)
52 0 1 &6
62 11 &
163] L1 o1l Lesl

The first vector Y is the time-series of a voxel. Let us suppose that values were taken
every 5s. The second vector X is the design matrix indicating that we would like to
detect a periodic activation that repeats every 20 s and lasts for 10 s. Estimating the

parameter  with Eq. (10), we obtain Z?T = [10.75 51]. Applying Eq. (11), with



H.Y. Kim et al. | Computer Vision and Image Understanding 99 (2005) 435-452 441

c¢T =[1 0], we obtain the Student’s  distribution with r = N — p = 6 degrees of free-
dom t = 14.33. This means that the voxel can be considered as activated, that is, cor-
related with the design matrix. The null hypothesis will be rejected at o= 0.01
significance level 7, = 3.14 for a one-tail ¢ test.

4. Anisotropic averaging

The anisotropic diffusion is widely used in image processing to suppress noise and
marginal edges in 2-D or 3-D grayscale images, while preserving important edges
sharp. It can be applied directly to structural MRI [21], because a structural MRI
can be regarded as a simple 3-D grayscale image. However, this technique cannot
be applied directly to 4-D fMRI to obtain an enhanced SPM, because the direct
application would perform an edge-preserving filtering of the fMRI structural infor-
mation. The grayscale of an fMRI voxel depends primarily on the brain structure
and only secondarily and faintly on the functional information. An edge-preserving
filtering would enhance the structural information and regard the functional infor-
mation as noise. The anisotropic diffusion can be applied directly to SPM [5], but
it cannot improve substantially the quality of SPM because, in this case, the originat-
ing fMRI is not taken into account. Convolving fMRI data with a smoothing kernel
generally increases the signal-to-noise ratio. However, this procedure also blurs the
edges between activated and non-activated regions. Thus, it is desirable to perform
only intra-region smoothing in fMRI data, avoiding inter-region smoothing.

Solé et al. [12] proposed this idea and called it anisotropic averaging, a technique
motivated in part by the anisotropic diffusion. It consists in making a selective neigh-
borhood averaging of the signal. Let / be an fMRI image and let I(s, n) denote the
voxel value at spatial voxel position s and volume (i.e., scan, observation) n. The
anisotropic averaging will gradually modify /. Let us denote the fMRI image at iter-
ation t > 0 as I(s, n, t), with I(s, n, 0) = I(s, n). Then, the selective neighborhood
averaging consists in:

LS ws ), (13)

1 t+1)=—=————
(S,I/l7 + ) Epg,,sw(syp) P

for all voxels s, all volumes # and ¢ > 0. As before, 5, represents the set of spatial
neighbors of voxel s.

Let I(s) denote the time-series signal at voxel s. A similarity measure ¥ determines
the averaging weights w(s, p) using the time-series of the signal being averaged I(s)
and its neighbor I(p)

w(s,p) = ¥((s),1(p))- (14)

This similarity measure allows us to distinguish activated voxels from non-ac-
tivated ones. It allows us to perform a selective averaging, combining only signals
of the same class. Solé et al. propose to compute the initial set Q of clearly acti-

vated voxels by thresholding the correlation coefficients. Then, the Fourier spectra
of voxels in Q are computed to define the similarity measure function ¥. The
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Fourier spectrum of time-series of each voxel s is also computed to evaluate the
similarity between s and the voxels in Q. The whole procedure is highly complex
and the readers are referred to [12] for further details. After each step of the
neighborhood averaging (13), a new set Q of clearly activated voxels is computed.

5. The proposed method

We propose a different approach, directly related to the RAD, that we named
RADSPM. Our method is simple, elegant, and has yielded surprisingly enhanced
SPMs when applied to both simulated and real fMRI data. The RADSPM has
also increased substantially the statistical significance of activated regions, which
makes it possible to decide with more confidence if a certain brain region is acti-
vated or not.

Let be given an fMRI 7’ (that contains both structural and activation information)
and let 7' (s, n) be the voxel value of I at spatial voxel position s and volume #n. First
of all, the brain structural information is removed from 7, yielding the mean-correct-
ed fMRI 7

I(s,n) = I'(s,n) — average,(I'(s,n)), for all s and n. (15)

This pre-processing is important, because structural and functional regions of the
brain do not necessarily match. Only the activation information should be diffused
between intra-region voxels, avoiding inter-region and structural information diffu-
sions. If the structural information is diffused together with the activation informa-
tion, a blurred SPM will result. Note that the activation information is not affected at
all by the mean-correction.

Let us denote the fMRI data at iteration ¢ > 0 of the diffusion process as I(s, n, ?),
where I(s, n, 0) is the initial mean-corrected and normalized fMRI. The RADSPM
algorithm is described below:

1. Let t < 0.

2. Using the fMRI I(s, n, t) and the design matrix X, estimate the Student’s ¢ statistic
7 for every voxel s, obtaining the SPM T (Eqgs. (10) and (11)). Let us denote the
value of the SPM T at voxel s and iteration ¢ as 7'(s, t).

3. Compute the diffusion coefficients. The diffusion coefficient between a voxel s and
its neighboring voxel p at instant 7 is

g(IVT,,(1)]), where VT,,(t) = T(p,1) — T(s,1). (16)

4. Use these coefficients to perform the diffusion in I(s, n, t), yielding the diffused
fMRI I(s, n, t + 1) at iteration ¢ + 1

I(s,n,t + 1) — I(s,n,t) —|—|}V Zg(\VTA“ﬁp(t)DVIS,p(n, 1), (17)

St pen;

where VI ,(n, t)=I(p, n, t) — I(s, n, t).
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5. Let t < t + 1 and repeat steps 2-6 until the average of diffused values (the second
term of Eq. (17)) is below some predefined threshold. It is also possible to specify
the desired number of iteration steps #,.x, instead of defining the minimal average
diffused value.

In our preliminary paper [22], we suggested computing the diffusion coefficients in
the space of estimated parameters f§ (instead of computing them in the SPM space).
Indeed, computing diffusion coefficients in the space of parameters yields a better-
quality SPM for simulated fMRIs, where the noise and the activation are completely
unrelated. However, for real fMRI data, experimental results have shown that it is
better to compute the diffusion coefficients in the SPM space.

The processing time is the weak point for the practical use of the RADSPM.
As we describe in next section, tens of RADSPM iteration steps are necessary to
obtain a high-quality SPM. As it is necessary to compute a new SPM in each rep-
etition, the proposed method is many tens of times slower than the conventional
method. Consequently, the improvement of our algorithm’s performance is sub-
ject of future research, even though we consider that, as computers become faster
and faster, the processing time may not be a critical aspect in not a distant
future.

6. Experimental results
6.1. Simulated fMRI

In the first experience, we generated a simple artificial 4-D fMRI with 3 x 10 x 10
voxels per volume and 84 volumes, where blocks of 6 non-activated volumes alter-
nated with blocks of 6 activated ones, starting with rest. Voxel values were 16,000
added to Gaussian noise with zero mean and standard deviation 4000. Activated vol-
umes had an activated 3 X 6 X 6 region in the center, with two non-activated 3 X 2 x 2
subregions. Activated voxels had their values increased by 5000. The signal-to-noise
ratio between the mean-corrected noiseless phantom 7 and the mean-corrected noisy
phantom I, computed according to the formula below, was found to be —9.5dB:

SNR = —10 log, | 2=n2s(8:) _j(SZ’”))z dB. (18)
>on2o U (s,n))

This simple phantom may not simulate perfectly all the noise effects present in a real
fMRI. However, it can be used for testing purposes of the proposed algorithm.
First column of Fig. 1 depicts the original SPM obtained by the classic algorithm.
The robust scale of this SPM is g. = 1.092. Second column depicts the SPM gener-
ated by the RADSPM, using an adequate scale parameter (¢ = 3 = 2.747¢g,, t = 90).
Third column depicts the SPM generated by the RADSPM, using too large a scale
parameter (¢ = 5 = 4.579¢., t = 90). Statistics with 0 < 7 < 20 were linearly mapped
into the grayscale ranging from 0 to 255 (voxels with 7 < 0 are depicted as black and
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Slice 1

Slice 2

Slice 3

Fig. 1. SPMs obtained from the simulated fMRI. First column: the SPM obtained by the conventional
algorithm, with the robust scale 6. = 1.092. Second column: the SPM generated by the RADSPM using an
adequate parameter (¢ =3 = 2.7470,, t = 90). Third column: the SPM generated by the RADSPM using
too large a parameter (o =5 =4.5790,, t =90). Statistics with 0 < v < 20 were linearly mapped into
grayscale from 0 to 255 (voxels with < 0 are depicted as black and © > 20 are depicted as white).

7 = 20 are depicted as white). Note that the filtered SPM is almost completely noise-
less, and the edges are perfectly preserved, provided that an adequate scale param-
eter is chosen.

Table 1 shows the maximum, the average and the minimum values of activated
and non-activated regions of SPMs obtained using different parameters ¢ (the num-
ber of iteration steps was fixed at z = 90). Consider, for example, ¢ = 3. The smallest
value 7 of activated voxels has increased from the original 3.37 to 16.73. Meanwhile,

Table 1
Information about the SPMs obtained from the simulated fMRI using different scale parameters ¢ (with
t =90 fixed)

Original 1.0 2.0 3.0 4.0 5.0 6.0

Activated

Maximum 8.49 25.46 31.32 43.93 49.24 49.16 44.31

Average 5.67 15.30 22.73 33.74 44.01 46.05 43.95

Minimum 3.37 3.71 5.52 16.73 39.72 42.68 43.60
Non-activated

Maximum 2.57 4.41 1.29 2.17 4.25 46.96 44.17

Average 0.00 -0.73 —0.37 0.17 1.46 3.44 8.54

Minimum -2.92 —4.41 —1.50 —0.99 0.34 1.93 3.67

The column “original” refers to the SPM obtained by the traditional method. Other columns refer to the
SPMs obtained by the RADSPM.
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Table 2
Information about the SPMs obtained from the simulated fMRI using different number of iteration steps ¢
(with ¢ = 3 fixed)

Original 1 4 40 90 160 320

Activated

Maximum 8.49 15.29 30.05 40.92 43.93 47.53 48.77

Average 5.67 11.91 20.66 31.53 33.74 35.56 39.89

Minimum 3.37 8.16 14.48 16.73 16.73 16.73 16.73
Non-activated

Maximum 2.57 5.59 6.32 2.17 2.17 2.17 2.17

Average 0.00 0.15 0.16 0.14 0.17 0.20 0.22

Minimum -2.92 -3.18 -3.20 —1.44 -0.99 —0.54 -0.14

After sufficient steps (say, ¢ = 40), the output practically remains constant.

the largest = of non-activated voxels has decreased a little. This means that one can
decide whether a voxel is activated or not with much more confidence using the SPM
generated by our method. The average value of activated voxels has increased from
5.67 to 33.74, while the average value of non-activated voxels has remained almost
constant, meaning again that our method has improved the quality of the SPM.
The quality begins to deteriorate at ¢ = 4 and gets utterly worse at ¢ = 5: the highest
7 of non-activated voxels has increased to 4.25 and 46.96, respectively, indicating
that the edges between activated and non-activated regions began to melt. As the
best quality was obtained at ¢ = 3 = 2.747¢,, it scems that the optimal scale is situ-
ated somewhere between 20, and 30..

Table 2 shows that, after sufficient iteration steps (say, ¢ = 40), the output of the
RADSPM practically does not change with more steps. We tested this fact using
scale parameter ¢ = 3.

6.2. Real fMRI #1

Fig. 2 depicts the SPMs computed from a real fMRI and overlaid on the structur-
al MRI. The SPMs were generated using the conventional and RADSPM
techniques.

Whole-brain Blood Oxygenation Level Dependent/Echo-Planar Imaging (BOLD/
EPI) fMRI data were acquired on a 1.5 T Philips Eclipse system. Each acquisition
consisted of 25 contiguous slices (64 x 64 x 25, 4 mm x 4 mm X 5 mm voxels). Acqui-
sition took 180 s, with the scan-to-scan repeat time (TR) set to 3 s and echo time
(TE) set to 35 ms. Sixty acquisitions were made, in blocks of 6, giving 10 acquisitions
(30 s) per block. The condition for successive blocks alternated between rest and
visual stimulation, starting with rest. Visual stimulation was given with flickering
red LED light with a frequency of 2 Hz. First five acquisition data were discarded
due to T1-effects induced instability. The volumes were realigned (i.e., motion-cor-
rected) and normalized using SPM99 program [23]. Sinc interpolation was used in
both realignment and normalization. The resulting fMRI data had 79 x 95 x 68 vox-
els per volume and 55 volumes. Although this is a single-subject study, we performed
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Slice
20

Slice
35

Slice
50

Fig. 2. SPMs computed from the real visual-stimulation fMRI #1 and overlaid on the structural MRI.
Voxels with 6 < 7 < 20 were mapped into color scale called “hot.”” Left column: the SPM generated by the
conventional technique, with the robust scale g, =0.629. Right column: the SPM generated by the
RADSPM using adequate parameters (¢ = 1.5 = 2.39¢q,, t = 90).

the normalization to overlay the functional SPMs over the structural MRI. We also
obtained a spin echo T1-weighted image to be used as the structural image. It was
acquired in 256 x 256 matrix with 26 slices. Each slice has a 5 mm thickness and
0.78 mm x 0.78 mm in-plane resolution. After the normalization, the resolution of
the structural MRI was 157 x 189 x 136 voxels.

The design matrix was constructed according to the acquisition conditions and
convolved with the hemodynamic response function. Then, the SPMs were generated
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Slice

A

Slice
90

Fig 2. (continued)

using the conventional and RADSPM techniques. To certify that our program had
no implementation errors, the conventional SPM generated by our program was
compared with the SPM generated by SPM99 program [23] and found to be virtually
identical. Then, the SPMs were overlaid on the structural MRI. We used the pro-
gram MRIcro [24] to overlay the functional SPMs over the structural MRI and gen-
erate slice images. We adopted a positive activation range with the initial value T = 6
and the final value t = 20 (that is, voxels with 6 < t < 20 were mapped into color
scale called “hot”). Left column of Fig. 2 depicts some slices of the conventional
SPM overlaid on the structural MRI. The robust scale of this SPM was ¢. = 0.
629. Right column of Fig. 2 depicts the SPM generated by the RADSPM using ade-
quate parameters (¢ = 1.5 =2.39q,, t = 90).

In a real fMRI, we do not know the ideal SPM, neither which voxels are actually
activated. Consequently, it is difficult to state that an SPM is better than another.
However, visually, it seems that the proposed technique has improved substantially
the quality of the SPM. We cannot obtain the same kind of information that we pre-
sented for the simulated fMRI in Tables 1 and 2. However, analogous information
could be obtained. Table 3 presents the maximum, the average, and the minimum
values of clearly activated voxels: the 3% highest-valued voxels. It also presents
the maximum, the average, and the minimum absolute values of clearly non-activat-
ed voxels: the 30% voxels with the lowest absolute values (we use absolute values to
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Table 3

Information about clearly activated region (the 3% highest-valued voxels) and clearly non-activated region
(the 30% voxels with the lowest absolute values) of SPMs obtained from the real fMRI #1 using different
scale parameters ¢ (with ¢ = 90 fixed)

Original 0.3 0.7 1.1 1.5 1.7 1.9

Highest 3%

Maximum 15.22 16.08 21.06 21.79 21.85 23.23 22.78

Average 5.72 7.25 10.14 11.78 12.38 12.37 12.15

Minimum 3.82 5.38 7.79 8.77 9.66 9.43 8.71
Absolute value of the lowest 30%

Maximum 0.52 1.13 1.52 0.98 0.69 0.68 0.69

Average 0.26 0.57 0.78 0.50 0.35 0.34 0.35

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Column “original” refers to the SPM generated by the conventional method and other columns refer to
the SPMs generated by the RADSPM.

not mix negatively activated and non-activated voxels). This information is present-
ed for the original SPM and the SPMs generated by the RADSPM, using different
parameters o (the number of iteration steps was fixed at = 90). Consider, for exam-
ple, o = 1.5. The smallest 7 value of clearly activated voxels has increased from the
original 3.82 to 9.66. Meanwhile, the largest t of clearly non-activated voxel has re-
mained nearly constant (0.52-0.69). The average value of clearly activated voxels has
increased from 5.72 to 12.38, while the average value of clearly non-activated voxels
remained almost constant (0.26-0.35). This seems to indicate that the RADSPM de-
tects the clearly activated voxels with more statistical confidence, without damaging
the detection of the clearly non-activated voxels. The lowest and the average values
of clearly activated voxels are maximal at ¢ = 1.5 = 2.39¢,, indicating that the opti-
mal scale parameter may be situated somewhere between 20, and 30,.

Table 4 shows that, after sufficient iteration steps (say, ¢ = 90), more steps prac-
tically do not modify the output of the RADSPM. The scale parameter was fixed
at o = 1.5.

Table 4
Information about the SPMs generated from the real fMRI #1 using different number of iteration steps ¢
(with ¢ = 1.5 fixed)

Original 1 4 30 90 130 170

Highest 3%

Maximum 15.22 16.05 16.89 21.78 21.85 23.70 22.47

Average 5.72 6.32 7.49 10.68 12.38 12.77 12.98

Minimum 3.82 4.28 5.18 7.79 9.66 10.02 10.25
Absolute value of the lowest 30%

Maximum 0.52 0.56 0.64 0.75 0.69 0.68 0.67

Average 0.26 0.28 0.31 0.37 0.35 0.34 0.34

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00

After sufficient steps (say, £ = 90), the output practically remains constant.
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6.3. Real fMRI #2

Fig. 3 depicts the SPMs computed from another real fMRI, acquired, and pro-
cessed similarly but independently from the real fMRI #1. Once more, performing
a visual inspection, it seems that the proposed technique has substantially improved
the quality of the SPM. The robust scale of the original SPM is g, = 0. 433. We used
scale parameter o = 1.1 =2.54¢, to obtain an adequately filtered SPM.

Slice 40

Slice 50

Slice 60

Fig. 3. SPMs computed from the real visual-stimulation fMRI #2 and overlaid on the structural MRI.
Voxels with 6 < t < 20 were mapped into color scale called “hot.”” Left column: the SPM generated by the
conventional technique, with the robust scale o.=0.433. Right column: the SPM generated by the
RADSPM using adequate parameters (o = 1.1 = 2.544,, t = 90).



450 H.Y. Kim et al. | Computer Vision and Image Understanding 99 (2005) 435452

Slice 70

Slice 80

Fig 3. (continued)

Table 5 presents the maximum, the average, and the minimum values of clearly
activated and clearly non-activated regions. The lowest value of the clearly activated
region is maximal at ¢ = 0.7 = 1.620, and the average value of the same region is
maximal at ¢ = 1.5 = 3.460,, indicating once again that the optimal scale parameter
may be situated somewhere between 20, and 3o..

Table 5
Information about the SPMs obtained from the real fMRI #2 using different scale parameters ¢ (with
t =90 fixed)

Original 0.3 0.7 1.1 1.5 1.7 1.9

Highest 3%

Maximum 16.21 16.21 16.48 18.85 18.06 16.42 15.72

Average 4.51 5.80 7.78 8.72 9.05 8.96 8.77

Minimum 2.65 3.95 4.86 4.85 4.22 3.86 3.81
Absolute value of the lowest 30%

Maximum 0.48 1.00 1.14 1.02 1.12 1.12 1.14

Average 0.24 0.52 0.58 0.54 0.58 0.58 0.59

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Column “original” refers to the SPM generated by the conventional method and other columns refer to
the SPMs generated by the RADSPM.
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Table 6
Information about the SPMs generated from the real fMRI #2 using different number of iteration steps ¢
(with ¢ = 1.1 fixed)

Original 1 4 30 90 130 170

Highest 3%

Maximum 16.21 16.21 16.17 16.42 18.85 18.74 18.37

Average 4.51 4.88 5.61 7.73 8.72 9.01 9.16

Minimum 2.65 2.88 3.34 4.40 4.85 5.01 5.01
Absolute value of the lowest 30%

Maximum 0.48 0.52 0.59 0.74 1.02 1.23 1.39

Average 0.24 0.25 0.29 0.36 0.54 0.66 0.79

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00

After sufficient steps (say, £ = 90), the output practically remains constant.

Table 6 shows that, after sufficient iteration steps (say, ¢ = 90), the output of the
RADSPM virtually does not change with more steps. The scale parameter was fixed
at g =1.1.

7. Conclusion

In this paper, we have presented a new, simple, and elegant technique named
RADSPM to obtain enhanced SPMs from noisy fMRI. It is directly inspired by
the robust anisotropic diffusion. Experimental results have shown that the RAD-
SPM generates surprisingly sharp and noiseless SPMs. The proposed technique
has also increased the statistical significances of the activated regions, what makes
it possible to decide with more confidence if some regions of the brain are activated
or not. The RADSPM is sensitive to the scale parameter selection. We concluded
experimentally that the optimal scale parameter seems to be situated somewhere be-
tween 20, and 30., where o, is the robust scale of the conventional SPM. We also
concluded that the choice of the number of iteration steps ¢ is not critical, provided
that enough steps are executed.
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