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ABSTRACT  
 
In this paper, we propose a RST-invariant (Rotation, Scale, Trans-
lation) segmentation-free shape recognition method. Most of the 
existing shape recognition techniques require segmentation before 
extracting shape features and recognizing it. Unfortunately, seg-
mentation is usually prone to error and segmentation errors pro-
duce recognition errors. The proposed technique is based on circu-
lar and radial sampling spaces, two 3D spaces built by projecting 
the analyzed image on circles and radial lines. First, we demon-
strate the robustness of the technique in one-scale RT-invariant 
shape recognition for noisy binary images. We also show that the 
technique can categorize similar shapes into classes. Then, we 
make the technique to become invariant to scale. Finally, we dem-
onstrate how the technique can recognize shapes in noisy grayscale 
images with inconstant background. We demonstrate that, under 
certain assumptions, the technique is 100% accurate. 

 

1. INTRODUCTION 
 
This paper considers RST-invariant (Rotation, Scale, Translation), 
segmentation-free shape recognition in both binary and grayscale 
images. This problem occurs naturally in computer vision applica-
tions: the vision algorithm must search a noisy image with incon-
stant background for a query shape that can be darker or lighter 
than the background, and that can be in any location, any angle 
and within some range of scales. The “brute force” solution of this 
problem would be to perform a series of correlations (or template 
matchings) between the analyzed image and the query shape ro-
tated by every possible angle, scaled by every possible factor 
(within the scale range) and translated to every possible position. 
Clearly, this takes too long to be practical. We propose a technique 
to substantially accelerate this searching, without compromising 
the accuracy.  

To escape from the brute force algorithm, a typical shape rec-
ognition algorithm first separates the shape from the background, 
then extracts some RST-invariant features and compares them with 
the features of the sample shapes. In the literature, there are many 
papers on RST-invariant shape descriptors. One of the most impor-
tant is a set of moments introduced in 1962 by Hu [1]. In recent 
years, many other techniques that use invariant moments have 
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been developed [2, 3]. There are other approaches for the shape 
recognition, for example the curvature scale space proposed by 
Mokhtarian [4] was adopted by MPEG-7 as standard shape de-
scriptor. Other approaches use circular or radial masks [5, 6]. 
These techniques are not segmentation-free. Segmentation is usu-
ally prone to error, and segmentation error causes recognition er-
ror. A segmentation-free RT-invariant system was proposed in [7], 
but it is not S-invariant and can distinguish only simple shapes. A 
segmentation-free character recognition technique was proposed in 
[8], but it is not RS-invariant.  

This paper proposes a solution to this problem. It is based on 
Circular Sampling Space (CiSS) and Radial Sampling Space 
(RaSS), two 3D spaces built by projecting the analyzed image on 
circles or radial lines. We show that, under some assumptions, the 
proposed technique can be as accurate as the brute force algorithm. 
 

2. CIRCULAR AND RADIAL SAMPLING SPACES 
 
In this paper, a shape is a binary image defined inside a circle. 
That is, a query shape Q is a function }1,0{: →DQ , where the 
domain D is a circle (figure 1). A shape may be disconnected (fig-
ure 1a) or present holes (figure 1c). The aim of this paper is to 
search an analyzed image A (binary or grayscale) for a query shape 
Q. The shape can appear anywhere inside A and it can be rotated 
and possibly also scaled. As the shape recognition will search only 
for the shape inside the domain circle, the center of the domain and 
its radius may be modified to specify which subpart of the pattern 
is to be searched for (figures 1a and 1b). 

Given a 2D image →2:A  to be analyzed, its circular 

sampling space (CiSS) is a function →× +2:AC  defined: 
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Intuitively, ),,( ryxCA  is the average grayscale of the pixels of 
image A situated at distance r from pixel ),( yx . A computer 
graphics algorithm for drawing circles, as [9], can be used to find 
efficiently all the pixels that belong to a specific circle. 
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(d) 

Fig. 1: Examples of shapes. Figure (d) depicts CiSS in green and 
RaSS in blue. 



Similarly, given a 2D image A, its radial sampling space 
(RaSS) with length l is a function →× +2:l

AR  defined:  

∫ α+α+=α
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Intuitively, ),,( αyxRl
A  is the average grayscale of the pixels of A 

located on the radial line with one vertex at pixel ),( yx , length l 
and inclination angle α. A line drawing algorithm, as [10], can be 
used to find efficiently all the pixels that belong to a line. Figure 
1d illustrates CiSS and RaSS concepts. 
 

3. ONE-SCALE CISS BINARY IMAGE ANALYSIS 
 
In the following, we describe the RT-invariant recognition of a 
shape Q in a binary image A at a fixed scale using CiSS. First, 
CiSS ),,( ryxCA  is computed for all pixels ),( yx  of A, and for 
some predefined set of radii rA={r0, r1, ..., rK-1}. In this case, 

),,( ryxCA  is a 3D image where, for each pixel ),( yx , there is an 
associated vector with K features. Then, a central pixel ),( yx  of 
shape Q is chosen (usually the center of mass) and the CiSS 

),,( ryxCQ  is computed only at ),( yx , for a set of radii rQ. In 

general, AQ rr ⊆ . However, to simplify the explanation, let us 

assume AQ rr = . ),,( ryxCQ  is a feature vector with K RT-
invariant features. We use the mean absolute difference of vectors 

),,( ryxCQ  and ),,( ryxCA  to recognize the query shape. An 

instance of shape Q is considered to occur at pixel ),( yxA  if the 
CiSS difference 
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is below some threshold ε.  
Figure 2 illustrates this process. Figure 2a is the analyzed im-

age A. It contains 18 instances of 7 different shapes rotated by 
random angles. Some shapes are touching each other and noise and 
lines were inserted to demonstrate the robustness of the technique. 
The CiSS of this image was computed for radii r = 0, 1, ..., 47 
pixels. The CiSS of the 7 query shapes (at their central pixels) 
were also computed. For each one of the 7 query shapes, the pixels 
where the CiSS difference is below ε=5% were detected. These 
pixels are painted using 7 different colors in figure 2b (they were 
dilated to improve visibility). The threshold was chosen to elimi-
nate false negatives. However, the processed image contains many 
false positive errors. There may exist two different shapes with 
exactly equal CiSS, causing false positives. However, different 
instances of a same shape always produce the same CiSS (even 
using few circles) and in noiseless situation it is always possible to 
obtain zero false negative rate. 
 

4. ONE-SCALE RASS BINARY IMAGE ANALYSIS 
 
We describe here RT-invariant shape recognition in a fixed scale 
using RaSS. RaSS is not R-invariant per se, and needs some more 
processing than CiSS to achieve RT-invariant recognition. First, 
we must choose an appropriate length l (usually the radius of the 
domain circle D) and a set of predefined angles {α0, α1, ..., αM-1}. 
Given the two images A and Q as before, RaSS ),,( αyxRl

A  
 

 
(a) Analyzed image with 400×1000 pixels. 

 
(b) RT-invariant shape recognition using CiSS. 

 
(c) RT-invariant shape recognition using RaSS. 

 
(d) Shape recognition using CiSS+RaSS 

Fig. 2: One-scale shape recognition in binary image. 
 
is computed for all pixels ),( yx  and RaSS ),,( αyxRl

Q  is com-

puted only at its central pixel ),( yx . Then, the RaSS difference at 
pixel ),( yx  is defined 
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where “cshift j” means circular shifting j positions of the argument 
vector. This difference function performs a circular matching, 
making RaSS features to become RT-invariant. 

Figure 2 illustrates this process. The RaSS of A (figure 2a) and 
of the seven query images were computed, for 46 uniformly spaced 
angles and length l=47 pixels. For each one of the 7 query shapes, 
the pixels where the RaSS difference is below ε=8% were de-
tected. Figure 2c depicts in 7 different colors these pixels (dilated 
to improve visibility). The recognition contains no errors.  

 
5. ONE-SCALE CISS+RASS BINARY IMAGE ANALYSIS 

 
Experimental tests (like the one depicted in figures 2a-2c) show 
that RaSS provides a better shape discrimination capability than 
CiSS. However, RaSS shape recognition is more time-consuming 
than CiSS, because the RaSS features are not naturally invariant to 
rotation. In order to accelerate the processing, while keeping the 
RaSS shape discrimination capability, we suggest to compute first 
the “candidate pixels” where the query shapes can occur using 



CiSS (the colored pixels in figure 2b). In noiseless case, the detec-
tion of candidate pixels by CiSS can produce false positives, but 
no false negatives. Then, the RaSS differences ),(, yxRD QA  are 
computed only at the candidate pixels, eliminating (or reducing) 
false positives. The result of this recognition process, named 
CiSS+RaSS, is depicted in figure 2d. The recognition contains no 
errors. If images A and Q are noiseless, the CiSS+RaSS shape 
recognition will not produce any false negatives, provided that an 
enough number of radial lines are used. Indeed, none of our tests 
contained errors. However, theoretically it is possible that there 
still remain false positives. In this case, we suggest further filtering 
the candidate pixels using template matchings. This task is unde-
manding because RaSS detects the probable shape inclination an-
gle of each candidate pixel. The resulting process can be as accu-
rate as the brute force algorithm at a fixed scale. 

 
6. CATEGORIZING SIMILAR SHAPES INTO CLASSES 

 
The CiSS+RaSS technique was also applied to categorize similar 
shapes into classes (figure 3), instead of detecting exactly equal 
shapes. The analyzed image contained 62 shapes randomly rotated 
and randomly chosen from the 7 classes of shapes: fish, quadru-
ped, dude, fighter, hand, ray and tool. Each class contained 3 dif-
ferent shapes. For example, the quadruped class included cat, cow 
and dog; the fighter class included F16, harrier and skyhawk. The 
threshold of CiSS was loosened to 7% to allow detecting similar 
shapes. For each class, a specific RaSS threshold level was empiri-
cally defined. The resulting image contained almost no errors: only 
3 rays were incorrectly classified as both rays and fighters (two of 
them are visible in figure 3, painted in yellow and cyan). Similar 
results were obtained repeating this experience with different seeds 
of the pseudo-random generator. We cannot expect that the pro-
posed technique outperform more sophisticated (but segmentation-
dependent) shape classification techniques. The advantage of the 
proposed technique is that it does not depend on the segmentation. 

 

 
Fig. 3: Categorizing shapes into classes using CiSS+RaSS. 
 

7. MULTI-SCALE BINARY IMAGE ANALYSIS 
 

The CiSS+RaSS technique is not intrinsically invariant to scale. 
However, it is possible to obtain RST-invariant shape recognition 
with some more processing. The underlying idea is to use the fast 
CiSS technique to detect the candidate pixels. Associated with 
each candidate pixel, the probable shape scale is computed. Then, 
the slow but accurate RaSS technique is used to filter out false 
positives. If still remain false positives, template matchings can 
perform an even more accurate shape recognition. 

First, it is necessary to delimit a range for shape scales of A. 
For example, let us assume that the scales of the shapes in A can 
range from 50% to 100% of the size of the query shape Q. Then, Q 
is resampled to various scales inside the specified range, say 50%, 

55%, 60%, ..., 100%, yielding the resampled images Q0, Q1, ..., QS-

1. In these resamplings, the circular domain D must be resized 
together with the query shape. The CiSS ),,( ryxC

sQ  of the scaled 

query image Qs is computed for each scale 0≤s<S, yielding S fea-
ture vectors. The number of features Ks in each vector depends on 
the scale s. The CiSS ),,( ryxCA  of A is computed as in the one-
scale shape recognition. Then, the multi-scale CiSS difference 

QAMCD ,  is computed for all pixels ),( yx  of A: 
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The probable CiSS scale at pixel ),( yx  is defined: 
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Pixels ),( yx  where the MCD is below a threshold level ε are cho-
sen as the candidate pixels with the respective probable scales. 

Figure 4a depicts the result of the searching image A for the 
dog shape’s candidate pixels (dilated to improve visibility). The 
shades of color represent the probable scales (red=100% and yel-
low=50%). Unfortunately, there are many false positives that must 
be filtered out by the RaSS technique. 

We do not use truly multi-scale RaSS (which would be pro-
hibitively expensive computationally), but apply the RaSS shape 
recognition only at the probable scale determined by CiSS. To 
 

 
(a) Dog shape’s candidate pixels detected using the multi-scale 
CiSS recognition. The shades of color represent the probable 
scales (red=100% and yellow=50%). 

 
(b) Multi-scale CiSS+RaSS recognition of the dog shape. The 
shades of color represent the probable inclination of the shape. 

 
(c) Multi-scale CiSS+RaSS shape recognition repeated for other 
shapes. The recognition contains no errors. 

Fig 4: RST-invariant shape recognition using CiSS+RaSS. 



apply the RaSS technique at a scale s, the RaSS ),,( αyxRl
Q  of Q 

is computed exactly as in the one-scale case. The RaSS of A at 
scale s is slightly different from the one-scale definition: 

∫ α+α+=α ss ll
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where ls is the length of the radial lines at scale s. For example, if 
s=70%, ls=0.7×l. Then, the RaSS difference at scale s is defined: 
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The RaSS technique filtered the candidate pixels of figure 4a, 
yielding figure 4b. The color hues represent the probable shape 
angles. Figure 4c depicts this technique repeated for other query 
shapes. The recognition was perfect. As in the one-scale case, this 
process may produce false positives but it will not produce false 
negatives, provided that enough numbers of scales and radial lines 
are used. All our multi-scale CiSS+RaSS tests were error-free. 
However, theoretically it is possible that there still remain false 
positives. In this case, it is possible to further filter the candidate 
pixels using template matchings. This task is undemanding be-
cause CiSS and RaSS determine respectively the probable shape 
scale and inclination. The resulting technique is as accurate as the 
brute force algorithm. 

We obtained the following processing times to search the ana-
lyzed image A with 800×2000 pixels for shapes with 128×128 
pixels, using a 3GHz Pentium-4 computer: 47s to compute CiSS of 
A with 24 circles (executed once for all query shapes), 12s to com-
pute a multi-scale CiSS difference (once for each query shape) and 
1s to compute the RaSS difference with 46 radial lines at the can-
didate pixels (once for each query shape). 
 

8. GRAYSCALE IMAGE ANALYSIS 
 
In many practical computer vision problems, the analyzed image A 
is grayscale: the background color changes throughout the image 
due to inconstant illumination and diverse environments; the 
shapes are darker or brighter than the background; and the image is 
noisy. This situation is emulated in figure 5. Let us assume that the 
grayscale of pixels of A ranges from 0 to 1, and Q is binary (the 
color is 0 or 1). The CiSS+RaSS shape recognition technique can 
also be applied to this problem, replacing the mean absolute differ-
ence (used to compute CiSS and RaSS differences for binary im-
ages) by another difference measure aqD  based on the correlation 
coefficient. The definition of correlation coefficient between two 
vectors a and q is ( ) ( )qaqaraq

~~~~= , where aaa −=~  and a  is 
the mean of a. Correlation coefficient ranges from -1 to +1, and 
vectors a and q must be computed using CiSS or RaSS. A differ-
ence measure between the two vectors, independent of the local 
background color and local contrast, can be evaluated by 

aqaq rD −=1 . This equation cannot be applied to regions of A 

with almost constant grayscale, because a~  will be almost zero. 
To avoid divisions by zero, we solve first the linear least squares 
optimization problem: qa ~~ β= , whose solution is 2~~~ˆ qqa=β , 

where β̂  is the coefficient that minimizes the error 2)~~ˆ( aq −β . β̂  
can be regarded as a measure of contrast between the local back-
ground and the shape. Then, we evaluate the difference aqD  only 

if the absolute contrast β̂  is above some threshold. Figure 5 de-

picts this technique applied to one-scale shape recognition. The 
result contains no errors. 
 

 
Fig. 5: Grayscale CiSS+RaSS one-scale shape recognition. 

 
9. CONCLUSION 

 
In this paper, a segmentation-free RST-invariant shape recognition 
algorithm was presented. It was applied to analyze both binary and 
grayscale images. We demonstrated that, under some assumptions, 
the proposed technique could be as accurate as the brute-force 
solution. We showed experimentally that the technique is robust to 
noise and can categorize similar shapes into classes. 

 
REFERENCES 

 
[1] M.K. Hu, “Visual Pattern Recognition by Moment Invariants,” 
IRE Trans. Inform. Theory, vol. 1, no. 8, pp. 179-187, Feb. 1962. 
[2] J.H. Li, Q. Pan, P.L. Cui, H.C. Zhang and Y.M. Cheng, “Image 
Recognition Based on Invariant Moment in the Projection Space,” 
Proc. Int. Conf. Machine Learning and Cybernetics, Shangai, 
vol.6, pp. 3606-3610, Aug. 2004. 
[3] J. Flusser, and T. Suk, “Rotation Moment Invariants for Rec-
ognition of Symmetric Objects,” IEEE T. Image Processing, vol. 
15, no. 12, pp. 3784-3790, Dec. 2006. 
[4] F. Mokhtarian, and A.K. Mackworth, “A Theory of Multi-
scale, Curvature Based Shape Representation for Planar Curves,” 
IEEE T. Pattern Analysis Machine Intell., vol. 14 no. 8, pp. 789-
805, Aug 1992.  
[5] D.H. Chang, and J.P. Hornak, “Fingerprint Recognition 
Through Circular Sampling,” The Journal of Imaging Science and 
Technology, vol. 44, no. 6, pp. 560-564, Dec. 2000. 
[6] Y. Tao, Y. Y. Tang, “The Feature Extraction of Chinese Char-
acter Based on Contour Information,” in Proc. Int. Conf. Docu-
ment Analysis Recognition (ICDAR), pp. 637-640, Sep. 1999. 
[7] Y.N. Hsu, H.H. Arsenault, and G. April, “Rotation-Invariant 
Digital Pattern Recognition Using Circular Harmonic Expansion,” 
Applied Optics, vol. 21, no. 22, pp. 4012-4015, Nov. 1982. 
[8] H.Y. Kim, “Segmentation-Free Printed Character Recognition 
by Relaxed Nearest Neighbor Learning of Windowed Operator,” in 
Proc. Brazilian Symp. Comp. Graph. Image Processing (Sibgrapi), 
pp. 195-204, Out. 1999. 
[9] J.E. Bresenham, “A Linear Algorithm for Incremental Digital 
Display of Circular Arcs,” Comm. ACM, vol. 20,  no. 2,  pp. 100-
106, Feb. 1977. 
[10] J.E. Bresenham, “Algorithm for Computer Control of a Digi-
tal Plotter,” IBM Systems Journal, vol. 4 , no. 1, pp. 25-30, 1965. 


