
New Public-Key Authentication Watermarking for
JBIG2 Resistant to Parity Attacks

Sergio Vicente Denser Pamboukian1 and Hae Yong Kim2

1 Universidade Presbiteriana Mackenzie, São Paulo, Brazil,
sergiop@mackenzie.com.br, http://meusite.mackenzie.com.br/sergio

2 Escola Politécnica, Universidade de São Paulo, Brazil,
hae@lps.usp.br, http://www.lps.usp.br/~hae

Abstract. An authentication watermark is a hidden data inserted into an image
that allows detecting any alteration made in the image. AWTs (Authentication
Watermarking Techniques) normally make use of secret- or public-key crypto-
graphic cipher to compute the authentication signature of the image, and inserts
it into the image itself. Many previous public-key AWTs for uncompressed bi-
nary images can be attacked by an image adulterating technique named “parity
attack.” JBIG2 is an international standard for compressing bi-level images
(both lossy and lossless). The creation of secure AWTs for compressed binary
images is an important practical problem. However, it seems that no AWT for
JBIG2 resistant to parity attacks has ever been proposed. This paper proposes a
new data-hiding method to embed information in the text region of JBIG2 files.
Then, we use this technique to design a new AWT for JBIG2-encoded images
resistant to parity attacks. Both the secret- and public-key versions of the pro-
posed AWT are completely immune against parity attacks. Moreover, water-
marked images are visually pleasant, without visible salt and pepper noise. Im-
age authenticity verification can be performed in either JBIG2 file itself or in
the binary image obtained by decoding the JBIG2 file.

1 Introduction

Steganography (also known as data/information hiding) is the study of techniques
used to hide secret information inside another kind of information, without loss of
quality of the host information. For example, a sequence of bits can be embedded
inside an image by modifying some of its pixels, without perceptible degradation in
image quality. The steganography is not concerned about the usefulness of the hidden
information or the facility of removing it. A digital watermark makes use of data
hiding techniques to insert, into a digital data, a signal that can be extracted later to
make an assertion about the host data. Digital watermarks are usually classified as
either “robust” or “fragile,” depending on the difficulty of removal.

Robust watermarks cannot be easily removed and are designed to resist common
image-manipulation procedures (rotation, scaling, cropping, lossy compression, print-
ing/scanning, etc.) This kind of watermark is normally used for copyright verification
and fingerprinting.

2 Sergio Vicente Denser Pamboukian and Hae Yong Kim

raphy.

On the other hand, fragile watermarks (or authentication watermarks) are easily
corrupted by any image processing procedure. However, watermarks for checking
image integrity and authenticity can be fragile because if the watermark is removed,
the watermark detection algorithm will correctly report the corruption of the image.

Only recently, some secure authentication-watermarking techniques (AWTs) for
uncompressed binary images have been proposed [1, 2, 3]. We mean by “secure
AWT” a scheme that has two properties: (1) it must detect any image alteration (both
accidental and malicious); (2) its security must not lie on the secrecy of the algorithm
but only on the secrecy of the key. Hence, a secure AWT usually relies upon
cryptog

Many previous AWTs for uncompressed binary images can be assaulted by an im-
age adulterating technique named “parity attack” [2, 3]. For secret-key AWTs, some
general methods for preventing parity attacks have been identified [3]. However, for
public-key AWTs, no general parity attack preventing method has been discovered.
Only very recently, one of the authors of this paper has proposed a particular AWT
for uncompressed binary images completely immune against parity attacks, named
AWTC (Authentication Watermarking by Template ranking with symmetrical Central
pixels) [4].

JBIG2 is an international standard for compressing bi-level images (both lossy and
lossless) [5, 6]. In this standard, the image is decomposed in several regions (text,
halftone and line-art) and each region is compressed using the most appropriate
method. The creation and implementation of secure AWTs for compressed binary
images (such as JBIG2) seems to be an important practical problem. Scanned docu-
ments are largely binary images, which may be protected against fraudulent altera-
tions. Besides, binary document images must be stored in a compressed format in
order to save storage space.

Queiroz and we have very recently proposed an AWT for JBIG2-encoded images
(possibly lossy-compressed), named AWTRJ (Authentication Watermarking by Tem-
plate Ranking for JBIG2) [7]. Unfortunately, AWTRJ (especially its public-key ver-
sion) can be assaulted by parity attacks. To the best of our knowledge, no AWT for
JBIG2 resistant to parity attacks has ever been proposed.

This paper proposes a new data-hiding method, inspired by AWTC and AWTRJ, to
embed information in the text region of JBIG2 files (both lossy and lossless). The
embedded data can be extracted from either JBIG2 file itself or the binary image
obtained by decoding the JBIG2 file. Then, we use the proposed data-hiding tech-
nique to design a new AWT for JBIG2-encoded images resistant to parity attacks.
This AWT can be used to protect any JBIG2 file (both lossy and lossless) that has a
text region large enough to bear the authentication signature. Both secret-key and
public-key versions of this AWT are completely immune against parity attacks.

We did not apply any perceptual distortion measure to quantify the quality of wa-
termarked images, because this analysis is beyond the scope of this paper. However,
the suggested template ranking can be adapted to minimize the distortion according to
a specific perceptual model.

New Authentication Watermarking for JBIG2 3

2 JBIG2 Format

The Joint Bi-level Image Experts Group (JBIG), a “collaborative team” established in
1988, prepared JBIG2 standard. This standard defines a compression method for bi-
level images (usually black and white) and was explicitly prepared for lossy, lossless,
and lossy-to-lossless image compression [5, 6]. A JBIG2-encoded image is composed
by several regions (text, halftone and line-art). Each region is encoded using the most
appropriate method. A JBIG2 text region has two kinds of segments:

• Symbol dictionary segment – contains bitmaps of the characters present in the text

region.
• Text region segment – describes locations of characters within the text region,

with references to the symbol dictionary.

There are many researches on symbol dictionary design [8, 9]. Many instances of a

character can refer to the same symbol in the dictionary, what increases the compres-
sion rate. In lossy compression, similar instances of a symbol can refer to the same
symbol in the dictionary. This happens, for example, in scanned documents where
several instances of the same character may differ slightly. If these similar characters
refer to a unique symbol in the dictionary, the image quality decreases but the com-
pression rate increases.

3 Previous Techniques

3.1 Data Hiding in Uncompressed Binary Images

There are three basic ways of embedding a sequence of bits in uncompressed bi-
nary/halftone images:

• Pixel-wise: Change the values of (usually pseudo-randomly chosen) individual

pixels [10, 11]. This approach is well suited for dispersed-dot halftone images.
However, visible salt and pepper noise will appear when applied to other types of
binary images. It can be applied to the binary image or directly to the halftone
screen in its design step [12].

• Component-wise: Change the characteristics of pixel groups (for example, the
position or the area of connected components) [13]. Unfortunately, the success of
this approach depends on the type of the host image.

• Block-wise: Divide the host image into blocks and modify some characteristics of
each block. Some works [14, 15] suggest alternating between two different weight
matrices to halftone an image such that the matrix used in each block can be de-
termined in the future by analyzing the statistical properties. Other works suggest
modifying slightly the content of the block so that it hides the desired sequence of
bits [16, 17].

4 Sergio Vicente Denser Pamboukian and Hae Yong Kim

3.2 Authentication Watermarking for Uncompressed Binary Images

Authentication watermarking techniques (AWTs) make use of data-hiding techniques
and cryptography theory to check the image integrity and authenticity. In a typical
cryptography-based AWT, an authentication signature (AS) is computed from the
whole image and inserted into the image itself. An AS contains information about the
host image content that may be checked to verify its integrity. In cryptography, an AS
is called message authentication code (MAC) using a secret-key cipher or digital
signature (DS) using a public/private-key cipher.

The chosen AS must be long enough to assure the security. Too small an AS does
not withstand birthday attacks. Usually, a MAC with 128-bits is considered computa-
tionally secure. The best-known DS, RSA, is considered computationally secure with
1024 bits. A newer scheme, DSA, is considered computationally secure with 320 bits.
A brand new scheme, BLS, is computationally secure with only 160 bits [18]. The
reader is referred to introductory books on Cryptography for more details (for exam-
ple, [19]).

In a secret-key AWT, the same secret-key is used in both watermark insertion and
verification. In a public-key AWT, only the owner of the private-key can insert the
valid watermark, and anyone can verify the image authenticity and integrity using the
corresponding public-key. However, inserting the AS into the image alters the image
itself, hence modifying its AS and invalidating the watermark. Typically, the image
has to be somehow divided into at least two parts: a portion to maintain the image
integrity and another portion to carry the AS. However, dividing the image in two
parts makes possible the occurrence of a “parity attack.”

3.3 Parity Attack

Many data hiding schemes for binary images can be transformed into AWTs by sim-
ply dividing the host image Z in two regions: the first region Z1 where the AS is to be
stored, and the second region Z2 from where the AS is to be computed. This idea was
used to design AWST (Authentication Watermarking by Self Toggling) for dispersed-
dot halftone images [1] and AWTR (Authentication Watermarking by Template
Ranking) for generic binary images [2, 3].

However, some caution must be taken when transforming a data-hiding scheme
into an AWT, because although the region Z2 is well protected (with the security as-
sured by the cryptography theory), the region Z1 is not. For example, let us take the
component-wise data-hiding scheme that inserts one bit per connected component,
forcing it to have an even or odd number of pixels. A connected component can be
forced to have the desired parity by toggling one of its boundary pixels. This scheme
can be transformed into an AWT by dividing the host image in regions Z1 and Z2,
computing the AS of Z2 and inserting it in Z1. Yet, a malicious hacker can arbitrarily
alter the region Z1 without being noticed by the AWT, as long as all the parities of its
connected components remain unaltered. For example, a character “a” in Z1 region
can be changed into an “e” (or any other character that contains only one connected
component) as long as its parity remains unchanged. We refer to this as a “parity
attack.”

New Authentication Watermarking for JBIG2 5

3.4 AWTC

Very recently, a new AWT for uncompressed binary images, called AWTC (Authen-
tication Watermarking by Template ranking with symmetrical Central pixel), was
proposed [4]. This technique is completely immune against parity attacks, and conse-
quently both its secret- and public-key versions are secure. This technique can detect
any image alteration, even a single pixel flipping. An image watermarked by AWTC
does not present visible salt-and-pepper noise. We will use the ideas used to design
AWTC to create an AWT for JBIG2-encoded images immune against parity attacks.

Fig. 1. A 3×3 template ranking with symmetrical central pixels in increasing visual impact
order. Hatched pixels match either black or white pixels (note that all templates have hatched
central pixels). The score of a given pattern is that of the matching template with the lowest
impact. Mirrors, rotations and reverses of each pattern have the same score.

AWTC keeps the visual scores of flippable pixels unaltered after embedding the
data. It is possible because the template ranking used assigns the same visual impact
score to the patterns that differ only by the colors of their central pixels. Figure 1
depicts a 3×3 template ranking with symmetrical central pixels. Note that all patterns
have hatched central pixels. To simplify the explanation, let us assume that 3×3 pat-
terns are used, although larger patterns may be used:

1. Divide the uncompressed binary image Z to be watermarked in a sequence v of

non-overlapping 3×3 pieces of image Z. The simplest of such sequence is the divi-
sion of Z into regular 3×3 pieces (incomplete pieces at image borders are dis-
carded), scanned in raster sequence (figure 2). Only the central pixels of the pieces
of v can have their colors changed by the watermark insertion.

2. Sort the sequence v in increasing order using the visual scores as the primary-key
and non-repeating pseudo-random numbers as the secondary-key. The secondary-
key prevents from embedding the data only in the upper part of the image.

3. Clear the central pixels of the first n pieces of the sorted v, where n is the length of
the AS. Compute the AS of the now-cleared image Z.

4. Embed n bits of the AS by flipping (if necessary) the central pixels of the first n
pieces of the sorted v.

To extract the AS, the sequence v of non-overlapping 3×3 pieces is constructed

again and sorted as in the insertion step. The result is exactly the same sequence v
used in the insertion. Then, the values of the n first central pixels are the hidden data.

Why do parity attacks not apply to AWTC? Because the number of data-bearing Z1
pixels is exactly equal to the length of the adopted AS. All image pixels (except the n
pixels that will bear the n bits of the AS) are taken into account to compute the AS.
Consequently, any alteration of Z2 region can be detected because it changes the AS

6 Sergio Vicente Denser Pamboukian and Hae Yong Kim

of the watermarked image, and any alteration of Z1 region can also be detected be-
cause it changes the stored AS.

Fig. 2. A 9×12 image divided into regular 3×3 pieces and scanned in raster order.

3.5 AWTRJ

To the best of our knowledge, Queiroz and we have proposed the only AWT for
JBIG2-encoded binary images (possibly lossy-compressed) [7]. This technique is
named AWTRJ (Authentication Watermarking by Template Ranking for JBIG2).
Only the secret-key AWTRJ has been proposed, because the public-key version can
be assaulted by parity attacks. The goal of this paper is to obtain another AWT for
JBIG2 immune to parity attacks and consequently secure in both secret- and public-
key versions.

AWTRJ embeds the MAC in the text region of a JBIG2-encoded image, more
precisely in the symbol dictionary segment. AWTRJ can authenticate any JBIG2
binary image with a text region large enough to bear the MAC. Image authenticity
verification can be performed in either JBIG2 file itself or in the binary image ob-
tained by decoding the JBIG2 file. AWTRJ consists of:

1. Selects pseudo-randomly, using the secret-key as the seed, an appropriate number

of symbols of the text region to bear the data.
2. Remove the selected symbols from the image and compute the MAC of the result-

ing image (that includes not only the text region but also halftone and line-art re-
gions) using the secret-key.

3. As each dictionary symbol can be referred by several instances in the text region,
an alteration of a symbol will have its effect multiplied. To avoid this problem, du-
plicate the symbols that will bear data in the symbol dictionary segment and mod-
ify the text region segment so that only one instance of the symbol (the one se-
lected pseudo-randomly) refers to the data-bearing symbol (DBS). All others in-
stances continue referring to the original symbol.

4. Shuffle pseudo-randomly the set of all pixels of all DBSs of the symbol dictionary.
5. Divide the set of shuffled pixels of DBSs into small blocks (e.g., each block with

64 pixels).
6. Analyze the neighborhood (usually 3×3) of each shuffled pixel to rate its visual

significance.

New Authentication Watermarking for JBIG2 7

7. Insert one bit of the MAC in each block by forcing it to have even or odd number
of black pixels. Only pixels that do not disconnect symbols can be flipped (figure
3).

Fig. 3. Set of 3×3 templates that do not disconnect symbols.

In the watermark verification, the same pseudo-random number generator detects
the marked symbols. The MAC S is extracted from these symbols. After that, the
marked symbols are removed from the watermarked image and the check MAC C is
computed using the secret-key. If the extracted MAC S is equal to the check MAC C,
the authentication is verified. Otherwise, the image was modified.

The secret-key AWTRJ is protected against parity attacks because it uses the se-
cret-key as the seed of the pseudo-random selection in step 1, and uses the secret-key
as the seed of the pseudo-random shuffling in step 4. Unfortunately, the same ideas
cannot be applied to the public-key version, because anyone must be able to extract
completely the hidden bits without knowing the private-key.

4 The Proposed Technique

We propose a new AWT for JBIG2-encoded images resistant to “parity attacks,”
called AWTCJ (Authentication Watermarking by Template ranking with symmetrical
Central pixels for JBIG2). AWTCJ is inspired by both AWTC and AWTRJ. For the
sake of clarity, we first describe the data-hiding technique DHTCJ (Data Hiding by
Template ranking with symmetrical Central pixels for JBIG2), which will be trans-
formed into AWTCJ using the idea described in subsections 3.2 and 3.3.

4.1 DHTCJ

DHTCJ data insertion algorithm is:

1. Let be given a JBIG2-encoded image Z’ and n bits of data to be inserted into Z’.
Decode the text region of Z’, obtaining the uncompressed binary image Z.

2. Divide Z in a sequence v of non-overlapping pieces of image and sort v as in
AWTC.

3. Identify in the text region segment the symbols that contain the n first central pixels
of the sorted sequence v and its references to the Data Bearing Symbols (DBSs) in
the symbol dictionary segment. Note that the number of DBSs can be smaller than
n, because each symbol can bear more than one bit of AS.

4. Verify how many times each DBS is referenced in the text region segment. If
there’s only one reference, the data will be stored in the original symbol. If there’s
more than one reference, the symbol must be duplicated and inserted at the end of

8 Sergio Vicente Denser Pamboukian and Hae Yong Kim

symbol dictionary segment. The reference to the symbol in the text region segment
should also be modified. The data will be inserted in the duplicated symbol, instead
of the original.

5. Insert n bits of data in the DBSs by flipping, if necessary, the n first central pixels
of the sorted sequence v.

6. Verify the possibility of connection or disconnection of the DBSs. If a black pixel
was transformed to white, a disconnection can occur separating the symbol in two
parts (figure 4(b)). If a white pixel was transformed to black, two symbols can be-
come united (figure 4(c)). In these cases, the DBS(s) must be eliminated from sym-
bol dictionary segment and the new symbol(s) must be inserted. Also the refer-
ence(s) in the text region segment must be modified.

(a) Original (b) Disconnection (c) Connection

Fig. 4. A symbol may become disconnected or two symbols may become connected by the
watermark insertion.

In order to simplify the implementation, we suggest using a new template ranking
(figure 5) instead of the template ranking designed for AWTC (figure 1). The new set
does not contain templates that can cause the connection or disconnection of symbols.
Using the new template ranking, the last step of the DHTCJ insertion algorithm (that
is too hard to implement) can be ignored.

Every possible 3×3 pattern has a matching template in the old template ranking
(figure 1). On the contrary, there are many 3×3 patterns that do not have a matching
template in the new template ranking (figure 5). This means that there may exist some
small images that can hide a certain number of bits using the old template ranking
(although probably some high visual impact pixels have to flipped), but that cannot
hide the same number of bits using the new template ranking.

New Authentication Watermarking for JBIG2 9

Fig. 5. Set of 3×3 template designed to be used with AWTCJ in increasing visual impact order.
Only the templates that cannot cause symbol connection or disconnection are listed. Hatched
pixels match either black or white pixels (note that all templates have hatched central pixels).
The score of a given pattern is that of the matching template with the lowest impact. Mirrors,
rotations and reverses of each pattern have the same score.

DHTCJ data extraction algorithm is straightforward:

1. Let be given a JBIG2-encoded image Z’ with n bits of data to inserted by DHTCJ.
Decode the text region of Z’, obtaining the uncompressed binary image Z.

2. Divide the binary image Z in a sequence v of non-overlapping pieces of image and
sort v as in the insertion.

3. Extract the hidden data from the n first central pixels of the sorted sequence v.

4.2 AWTCJ

DHTCJ can be easily transformed in a secure AWT resistant to “parity attacks”
named AWTCJ (Authentication Watermarking by Template ranking with symmetri-
cal Central pixels for JBIG2). AWTCJ insertion algorithm is:

1. Let be given a JBIG2-encoded image Z’. Decode the text region of Z’, obtaining

the uncompressed binary image Z.
2. Divide Z in a sequence v of non-overlapping pieces of image and sort v as in

DHTCJ.
3. Clear the first n central pixels of the sorted sequence v, where n is the size of the

adopted AS.
4. Using a cryptographically secure hashing function, compute the integrity-index H

of the now-cleared image Z. Besides the image Z, all other regions of Z’ to be pro-
tected (halftone and line-art) must be taken into account to compute H.

5. Encrypt the integrity-index H with the secret- or private-key, obtaining the AS S.
6. Insert n bits of S in the DBSs as explained in DHTCJ, obtaining the watermarked

image.

AWTCJ verification algorithm is:

1. Let be given an AWTCJ-watermarked JBIG2-encoded image Z’. Decode the text
region of Z’, obtaining the uncompressed binary image Z.

2. Divide Z in a sequence v of non-overlapping pieces of image and sort v as in the
insertion.

3. Extract the AS S from the n first central pixels of the sorted sequence v.
4. Decrypt S with the secret- or public-key, obtaining the extracted integrity-index H.
5. Clear the first n central pixels of the sorted sequence v.

10 Sergio Vicente Denser Pamboukian and Hae Yong Kim

6. Compute the check integrity-index C of the now-cleared image Z, using the same

hashing function used in insertion. Besides the image Z, all other protected regions
of Z’ must be taken into account to compute C.

7. If the extracted integrity-index H and the check integrity-index C are the same, the
watermark is verified. Otherwise, the image was modified.

Parity attacks do not be apply to AWTCJ because the number of data-bearing pix-

els is exactly equal to the length of the adopted AS. All image pixels (except the pix-
els that will bear the bits of the AS) are used to compute the AS. In this way, any
alteration of pixels used to compute the AS can be detected because it changes the
AS, and any alteration of data-bearing pixels can also be detected because it changes
the stored AS.

5 Experimental Results

AWTCJ was applied in several scanned and software-generated binary images at
different resolutions. The resulting watermarked images have pleasant visual quality,
even when a small image is watermarked.

The image depicted in figure 6 has 626×240 pixels, 93 symbols instances and was
scanned at 300×300 dpi. It was watermarked by AWTCJ using a 128-bits long MAC,
which was stored in 61 DBSs.

The image depicted in figure 7 has 194×74 pixels, only 56 symbol instances and
was scanned at 81×81 dpi. It was watermarked with a 128-bits long MAC, which was
stored in 42 DBSs.

6 Conclusions

This paper has proposed a new data-hiding technique, named DHTCJ, to embed data
into the text region of JBIG2-encoded images. The data can be inserted in lossy or
lossless JBIG2 files and can be extracted from either the JBIG2 file itself or from the
decoded binary image. Then, we have used DHTCJ to create a new cryptographically
secure authentication watermarking technique for JBIG2 files, resistant to “parity
attacks,” named AWTCJ. In this method, the authentication signature of the whole
image is inserted into the text region of the JBIG2 file. AWTCJ can detect any altera-
tion made in the image, even a single pixel flipping. The watermarked images present
excellent visual quality, even for small images, because only low-visibility pixels are
flipped in the watermark insertion.

New Authentication Watermarking for JBIG2 11

(a) Part of original image.

(b) Watermarked image.

(c) Watermarked image – flipped pixels are printed in color.

(d) Flipped pixels.

Fig. 6. An image scanned at 300 dpi, with 626×240 pixels, 93 symbols instances and water-
marked using AWTCJ with 128-bits long MAC.

12 Sergio Vicente Denser Pamboukian and Hae Yong Kim

(a) Part of original image.

(b) Watermarked image.

(c) Watermarked image – flipped pixels are printed in color.

(d) Flipped pixels.

Fig. 7. An image scanned at 81×81 dpi, with only 194×74 pixels, 56 symbol instances and
watermarked using AWTCJ with 128-bits long MAC.

New Authentication Watermarking for JBIG2 13

7 Acknowledgements

The authors would like to thank FAPESP and CNPq for the partial financial supports
of this work under grants 2003/13752-9 and 305065/2003-3, respectively.

8 References

[1] H. Y. Kim, and A. Afif, “Secure Authentication Watermarking for Halftone and Binary
Images,” Int. J. Imaging Systems and Technology, vol. 14, no. 4, pp. 147-152, 2004.

[2] H. Y. Kim and R. L. Queiroz, “A Public-Key Authentication Watermarking for Binary
Images”, in Proc. IEEE Int. Conf. on Image Processing, (Singapore), pp. 3459-3462,
2004.

[3] H. Y. Kim and R. L. de Queiroz, “Alteration-Locating Authentication Watermarking for
Binary Images,” Int. Workshop on Digital Watermarking 2004, (Seoul), Lecture Notes in
Computer Science 3304, pp. 125-136, 2004.

[4] H. Y. Kim, “A New Public-Key Authentication Watermarking for Binary Document
Images Resistant to Parity Attacks”, submmitted to IEEE Int. Conf. on Image Processing,
(Italy), 2005.

[5] P. G. Howard, F. Kossentini, B. Martins, S. Forchhammer, and W.J. Rucklidge, “The
Emerging JBIG2 Standard,” IEEE Trans. Circ. Syst. Video Tech., vol. 8, no. 7, pp. 838-
848, 1998.

[6] JBIG - Final Committee Draft for ISO/IEC International Standard 14492, available at
site: http://www.jpeg.org/jbig/jbigpt2.html, 1999.

[7] S. V. D. Pamboukian, H. Y. Kim and R. L. de Queiroz, “Watermarking JBIG2 text region
for Image Authentication”, submmitted to IEEE Int. Conf. on Image Processing, (Italy),
2005.

[8] Yan Ye, D. Schilling, P. Cosman and Hyung Hwa Ko, “Symbol Dictionary Design for
the JBIG2 Standard”, in Proc. Data Compression Conference, pp. 33-42, 2000.

[9] Yan Ye and P. Cosman, “Dictionary Design for Text Image Compression with JBIG2”,
IEEE Trans. Image Processing, vol. 10, no. 6, pp. 818-828, June 2001.

[10] I. G. Chun and S. Ha, “A Robust Printed Image Watermarking Based on Iterative Half-
toning Method,” 2nd Int. Workshop on Digital Watermarking, Lecture Notes in Computer
Science 2939, pp. 200-211, 2003.

[11] M. S. Fu and O. C. Au, “Data Hiding Watermarking for Halftone Images,” IEEE Trans.
Image Processing, vol. 11, no. 4, pp. 477-484, 2002.

[12] K. T. Knox and S. Wang, “Digital Watermarks Using Stochastic Screens, Color Imaging:
Device-Independent Color, Color Hard Copy, and Graphic Arts II,” SPIE Proc., vol.
3018, pp.316-322, Feb. 1997.

[13] N. F. Maxemchuk and S. Low, “Marking Text Documents,” Int. Conf. Image Processing,
vol. 3, pp. 13-17, 1997.

[14] Z. Baharav and D. Shaked, “Watermarking of Dither Halftone Images,” Hewlett-Packard
Labs. Tech. Rep. HPL-98-32, 1998.

[15] S. C. Pei and J. M. Guo, “Hybrid Pixel-Based Data Hiding and Block-Based Watermark-
ing for Error-Diffused Halftone Images,” IEEE Trans. on Circuits and Systems for Video
Technology, vol. 13, no. 8, pp. 867-884, 2003.

14 Sergio Vicente Denser Pamboukian and Hae Yong Kim

[16] Y.-C. Tseng, Y.-Y. Chen and H.-K. Pan, “A Secure Data Hiding Scheme for Binary

Images,” IEEE Trans. on Communications, vol. 50, no. 8, Aug. 2002, pp. 1227-1231.
[17] M. Wu, and B. Liu, “Data Hiding in Binary Image for Authentication and Annotation,”

IEEE Trans. on Multimedia, vol. 6, no. 4, pp. 528-538, 2004.
[18] D. Boneh, B. Lynn and H. Shacham, “Short signatures from the Weil pairing,” Advances

in Cryptology - Asiacrypt’2001, Lecture Notes in Computer Science 2248, pp. 514-532,
2002.

[19] B. Schneier, Applied Cryptography, John Wiley & Sons, 1996.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

