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Abstract. In this paper, we consider the grayscale template-matching problem, 
invariant to rotation, scale, translation, brightness and contrast, without 
previous operations that discard grayscale information, like detection of edges, 
detection of interest points or segmentation/binarization of the images. The 
obvious “brute force” solution performs a series of conventional template 
matchings between the image to analyze and the template query shape rotated 
by every angle, translated to every position and scaled by every factor (within 
some specified range of scale factors). Clearly, this takes too long and thus is 
not practical. We propose a technique that substantially accelerates this 
searching, while obtaining the same result as the original brute force algorithm. 
In some experiments, our algorithm was 400 times faster than the brute force 
algorithm. Our algorithm consists of three cascaded filters. These filters 
successively exclude pixels that have no chance of matching the template from 
further processing. 

Keywords: Template matching, RST-invariance, segmentation-free shape 
recognition. 

1. Introduction 

In this paper, we consider the problem of finding a query template grayscale image Q 
in another grayscale image to analyze A, invariant to rotation, scale, translation, 
brightness and contrast (RSTBC), without previous “simplification” of A and Q that 
discards grayscale information, like detection of edges, detection of interest points 
and segmentation/binarization. These image-simplifying operations throw away the 
rich grayscale information, are noise-sensitive and prone to errors, decreasing the 
robustness of the matching. Moreover, these simplifications cannot be used to find 
smooth grayscale templates. 

The “brute force” solution to this problem performs a series of conventional (BC-
invariant) template matchings between the image to analyze A and the query template 
Q. Image Q must be rotated by every angle, translated to every position and scaled by 
every factor (within some specified range of scale factors) and a conventional BC-
invariant template matching is executed for each instance of the transformed Q. 
Possibly, the brute force algorithm yields the most precise solution to this problem. 
However, it takes too long and thus is not practical. Our technique, named Ciratefi, 



substantially accelerates this searching, while obtaining exactly the same result as the 
original brute force algorithm (disregarding incidental numerical imprecision). In 
some experiments, our algorithm was 400 times faster than the brute force algorithm 
and obtained exactly the same results. 

Fast grayscale RSTBC-invariant template matching is a useful basic operation for 
many image processing and computer vision tasks, such as visual control [1], image 
registration [2], and computation of visual motion [3]. Consequently, it has been the 
object of an intense and thorough study. However, surprisingly, we could not find any 
technique similar to Ciratefi in the literature.  

Some approaches that achieve RST-invariance using detection of interest points 
and edges include: generalized Hough transform [4]; geometric hashing [5, 6]; graph 
matching [7]; and curvature scale space [8], adopted by MPEG-7 as standard shape 
descriptor. These operations and Ciratefi seems to occupy different hierarchies in 
image processing and computer vision. Indeed, low-level Ciratefi can be used to 
detect interest points, to be used later by high-level techniques such as geometric 
hashing and graph matching. 

Techniques that achieve RST-invariance using previous segmentation/binarization 
are described, for example, in [9, 10]. They are in fact algorithms designed to search 
for binary templates in binary images. So, given a grayscale image to analyze A, they 
first convert it into a binary image using some thresholding algorithm. Then, they 
separate each connected component from the background and compute some RST-
invariant features for each component. These features are compared with the 
template’s features. The most commonly used rotation-invariant features include Hu’s 
seven moments [11] and Zernike moments [12]. In recent years, many other rotation-
invariant features have been developed [13, 14, 15, 16]. All these features are not 
truly RST-invariant, but only rotation-invariant. These features become scale-
invariant by isolating each component and normalizing its area to one. Unfortunately, 
in many practical grayscale cases, the template Q and the analyzed image A cannot be 
converted into binary images and thus the above techniques cannot be applied. On the 
contrary, Ciratefi technique does not need to isolate individual shapes and can be used 
directly in grayscale (and also binary) template matchings.  

Ullah and Kaneko [17] and Tsai and Tsai [18] present two different segmentation-
free RTBC-invariant template-matching techniques. However, their techniques are 
not scale-invariant. Hence, the key problem seems to be: “How to obtain the scale-
invariance without isolating the shapes or components?” Or, in other words: “How 
can we estimate the scale of a shape without determining first its boundaries?”  

Our Ciratefi algorithm consists of three cascaded filters. Each filter successively 
excludes pixels that have no chance of matching the template from further processing, 
while keeping the “candidate pixels” that can match the template to further refined 
classifications. The first filter, called Cifi (circular sampling filter), uses the 
projections of images A and Q on circles to divide the pixels of A in two categories: 
those that have no chance of matching the template Q (to be discarded) and those that 
have some chance (called first grade candidate pixels). This filter is responsible for 
determining the scale without isolating the shapes. It determines a “probable scale 
factor” for each first grade candidate pixel. The second filter, called Rafi (radial 
sampling filter), uses the projections of images A and Q on radial lines and the 
“probable scale factors” computed by Cifi to upgrade some of the first grade 



candidate pixels to second grade. It also assigns a “probable rotation angle” to each 
second grade candidate pixel. The pixels that are not upgraded are discarded. The 
third filter, called Tefi (template matching filter), is a conventional BC-invariant 
template matching. The second grade candidate pixels are usually few in number and 
Cifi and Rafi have already computed their probable scales and rotation angles. Thus, 
the template matching can quickly categorize all the second grade candidate pixels in 
true and false matchings. 

There are some other papers that use circular or radial projections, like [19, 20]. 
However, their objectives (fingerprint and Chinese character recognition) are 
completely different from ours, and they intend to obtain neither scale-invariance nor 
segmentation-free recognition.  

Ciratefi is not robust to occlusions (neither is the brute force algorithm). However, 
in the presence of occlusions, it appears that the template can be divided into smaller 
sub-templates and the results of the sub-matchings can be combined to detect the 
original template. Finally, Ciratefi (as well as the brute force algorithm) can easily be 
made parallel. 

2. The brute force algorithm 

In this section, we describe the “brute force” algorithm. This algorithm makes use of 
the BC-invariant template matching. 

2.1. BC-invariant template matching 

Template matching uses some difference measuring function to evaluate how well the 
template Q matches a given position of image A. Usually, sum of absolute 
differences, sum of squared differences, cross-correlation and correlation coefficient 
are used as difference measuring functions. We have adopted the correlation 
coefficient, because it always ranges from -1 to +1 and is BC-invariant. However, let 
us make the following reasoning to explicit the brightness/contrast-invariance. 

Let x be the columnwise vector obtained by copying the grayscales of Q’s pixels 
and let y be the vector obtained by copying the grayscales of the pixels of A’s region 
to be correlated with Q. Then, the brightness/contrast correction can be written as a 
least squares problem: 

ε1xy +γ+β=  (1) 

where 1 is a vector of 1’s, ε is the vector of residual errors, β is the contrast correction 
factor and γ is the brightness correction factor. The problem consists on finding β and 
γ that minimizes . This problem has a computationally fast solution. Let 2ε xxx −=~  
be the mean-corrected vector, where x  is the mean of x. Similar definitions are 
applicable to y. Then: 
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We assume that the correlation is zero if a large brightness or contrast correction is 
required, because in this case the template and the image are likely quite different. 
The correlation is assumed to be zero if β≤β t  or β≤βt/1 , where 0 < tβ ≤ 1 is a 
chosen contrast correction threshold. For example, tβ = 0.5 means that regions of A 
with contrast less than half or more than twice the Q’s contrast will be considered as 
not correlated with Q. This also avoids divisions by zero in regions of A with almost 
constant grayscale (where the values of y~  are almost zero). The correlation is also 

assumed to be zero if γ>γ t , where 0 < tγ ≤ 1 is a chosen brightness correction 
threshold (we assume that the grayscales of the images are real numbers within the 
interval [0, 1]). We define Corr as the correlation that takes into account the contrast 
and brightness corrections:  
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Depending on the application, we can use either the absolute value |Corr| (to allow 
matching negative instances of the template) or the value of Corr with signal 
(negative instances will not match the template). 

2.2. RSTBC-invariant template matching 

To obtain RSTBC-invariant template matching, we said above that the query shape Q 
must be rotated by every angle and scaled by every factor. In practice, it is not 
possible to rotate and scale Q by every angle and scale, but only by some discrete set 
of angles and scales. Figure 1 depicts some of the “frog” template rotated in m=36 
different angles (α0=0, α1=10, ..., α35=350) and scaled by n=6 different factors 
(s0=0.6, s1=0.7, ..., s5=1.1). To avoid that a small misalignment may cause a large 
mismatching, a low-pass filter (for example, the Gaussian filter) smoothes both 
images A and Q. This low-pass filtering lessens the errors introduced by using 
discrete scales and angles.  

Then, each pixel p of A is tested for matching against all the transformed templates 
(6×36=216 templates, in our case). If the largest absolute value of the 
contrast/brightness-aware correlation Corr at pixel p is above some threshold tf, the 
template is considered to be found at p. Figure 2 depicts the detection of the frog 
shape, using tf=0.9, tβ = 0.1 and tγ = 1. Besides detecting the shape, the brute force 
algorithm also returns the precise scale factor and rotation angle for each matching. 



The only problem is that this process takes 9173s, or two and half hours using a 
3GHz-Pentium4 (image A has 465×338 pixels and image Q has 52×51 pixels). Our 
Ciratefi algorithm does the same task in only 22s.  
 

  
 

Fig. 1. Some of the rotated and scaled templates. 

 

 
Fig. 2. Frog shapes detected by the brute force algorithm. Each matching is marked with a red 
“x”. 

3. Circular sampling filter 

Circular sampling filter (Cifi) uses the projections of the images A and Q on a set of 
rings (figure 3a) to detect the first grade candidate pixels and their probable scales. As 
we show experimentally in subsection 7.2, the correct choice of number of circles l is 
not essential to our algorithm, because Rafi and Tefi will further filter the first grade 
candidate pixels. Figure 3b depicts the output of Cifi filtering, where the first grade 
candidate pixels are depicted in magenta.  

Given an image B, let us define the circular sampling  as the average 
grayscale of the pixels of B situated at distance r from the pixel (x, y): 
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In practice, a sum must replace the integral and a computer graphics algorithm for 
drawing circles, as [21], can be used to find efficiently all the pixels that belong to a 
specific circle. Given the template image Q and the set of n scales (in our example, 
s0=0.6, s1=0.7, ..., s5=1.1) the image Q is resized to each scale si, obtaining the resized 
templates Q0, Q1, ..., Qn-1. Then, each resized template Qi is circularly sampled at a set 
of l predefined circle radii (in our example, l=13, and r0=0, r1=2, ..., r12=24 pixels), 
yielding a 2-D matrix of multi-scale rotation-invariant features CQ with n rows 
(scales) and l columns (radii):  
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where (x0, y0) is the central pixel of Q.  

 

 
(a) (b) 

Fig. 3. Circular sampling filter Cifi. (a) Circles where the image is sampled. (b) The output of 
Cifi with the first grade candidate pixels in magenta. 

Given the image to analyze A, we build a 3-D image CA[x,y,k]: 
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Cifi uses matrices CQ and CA and the contrast and brightness thresholds tβ and tγ to 
detect the circular sampling correlation CisCorr at the best matching scale for each 
pixel (x,y): 
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A pixel (x,y) is classified as a first grade candidate pixel if  for 
some threshold t

1, ),(CisCorr tyxQA ≥

1 (in the example, t1=0.95). As we show in subsection 7.1, the 
adequate choice of t1 is not critical, provided that it is low enough to not discard the 
real matching pixels. The probable scale CisPS of a first grade candidate pixel (x,y) is 
the best matching scale: 
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In our example, the computation of the 3-D image  took 2.5s and the 
computation of  for all pixels of A took 4.5s. The remaining Cifi 
operations are almost instantaneous. 
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4. Radial sampling filter 

The second filter is called radial sampling filter (Rafi) and uses the projections of 
images A and Q on a set of radial lines to upgrade some of the first grade candidate 
pixels to second grade. The pixels that are not upgraded are discarded. It also assigns 
a “probable rotation angle” to each second grade candidate pixel. Figure 4a marks in 
blue the radial lines and figure 4b marks with a red “x” each second grade candidate 
pixel. The set of inclinations of the radial lines must be equal to the m chosen rotation 
angles (in our example, α0=0, α1=10, ..., α35=350). As we show in subsection 7.2, the 
choice of m is not critical, provided that it is not too small.  

 

 

 
(a) (b) 

Fig. 4. Radial sampling filter Rafi. (a) The radial lines where the image is sampled. (b) The 
output of Rafi, where each second grade candidate pixel is marked with a red “x”. 

Given an image B, let us define the radial sampling  as the average 
grayscale of the pixels of B located on the radial line with one vertex at (x,y), length λ 
and inclination α: 
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In practice, the integral must be replaced by a sum and a line drawing algorithm (as 
[22]) can be used to find efficiently all the pixels that belong to a line.  

Given the template Q and the set of m angle inclinations (α0, α1, ..., αm-1), Q is 
radially sampled using λ=rl-1 (the largest sampling circle radius), yielding a vector RQ 
with m features:  
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where (x0, y0) is the central pixel of Q. 
For each first grade candidate pixel (x, y), A is radially sampled at its probable 

scale . The largest radius r),(CisPS , yxi QA= l-1 resized to the probable scale si 

becomes . Thus: 1−=λ li rs
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At each first grade candidate pixel (x,y), Rafi uses the vectors RA[x,y], RQ and contrast 
and brightness thresholds tβ and tγ to detect the radial sampling correlation RasCorr at 
the best matching angle: 
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where “cshiftj” means circular shifting j positions of the argument vector. A first 
grade pixel (x,y) is upgraded to second grade if: 
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for some threshold t2 (in the example, t2=0.9). As we show in subsection 7.2, the 
adequate choice of t2 is not critical, provided that it is low enough to not discard the 
real matching pixels. The probable rotation angle RasAng at a second grade candidate 
pixel (x,y) is the best matching angle: 
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In the example, the computation of  in all pixels (x,y) of A took 
13s. The remaining Rafi operations are almost instantaneous. 
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5. Template matching filter 

The third filter is called Tefi and it is simply the BC-invariant template matching, 
applied only at the second grade candidate pixels, using the probable scale and angle 
determined respectively by Cifi and Rafi. Figure 5 depicts its output (that is also the 
final output of the Ciratefi algorithm). 

Similarly to the RSTBC-invariant template matching, Tefi first resizes and rotates 
the template Q to all m angles and n scales. Let (x,y) be a second grade candidate 
pixel, with its probable scale  and probable angle 

. Then, Tefi computes the contrast/brightness-aware correlation 

Corr between the template image Q at scale s

),(CisPS , yxi QA=

),(RasAng , yxj QA=

i and angle αj, and the image A at pixel 
(x,y). If the absolute value of the correlation is above some threshold t3, the template 
is considered to be found at pixel (x,y).  

Adopting the same threshold used in the brute-force algorithm (that is t3=tf), the 
output is usually equal or very similar to the output of the brute-force algorithm. For 
even more robustness, it is possible to test the matchings at a set of scales around i 
(for example, i-1, i, i+1) and at a set of angles around j (for example, j-1, j, j+1, where 
the addition and subtraction must be computed modulus m). In our example, Tefi took 
1s to be computed. 
 



 
Fig. 5. The final output of Ciratefi. Each matching pixel is marked with a red “x”. 

6. Complexity analysis 

The precise computational complexity of Ciratefi depends on many unforeseeable 
factors, like the number of the first and second grade candidate pixels. However, we 
will make some assumptions and approximations to analyze its complexity. 

Let N be the number of pixels of the image to analyze A and M the number of 
pixels of the template image Q. To make our analysis, we will assume that the number 
of scales n, the number of angles m, and the number of sampling circles l are all 

)( MO . We will ignore all operations that does not depend on N, because usually N 
is much larger than M. 

The brute force algorithm makes n×m template matchings for each pixel of A. 
Considering that each template matching makes O(M) operations, this algorithm’s 
complexity is , or approximately . )(NnmMO )( 2NMO

Ciratefi has four operations that depend on N: 
• The generation of the 3-D image CA[x,y,k] takes O(NM), considering that 

almost all pixels of the domain of Q must be scanned for each pixel (x,y) of A. 
• The computation of CisCorr for all pixels of A takes O(Nnl), or approximately 

O(NM). 
• The computation of RA[x,y,j] and RasCorr for all first grade candidate pixels 

takes )( 1 MmNO  and O(N1m2), respectively, where N1 is the number of the 

first grade candidate pixels. )( 2
11 mNMmNO +  can be approximated by 

O(NM). 
• The computation of Tefi takes O(N2M), where N2 is the number of the second 

grade candidate pixels, and O(N2M)≤O(NM). 
Consequently, the complexity of Ciratefi is O(NM), while the complexity of the 

brute force algorithm is O(NM2). This makes a lot of difference! In our example, 
M≈2500, justifying why Ciratefi was 400 times faster than the brute force algorithm. 



7. Experimental results 

7.1. Experiments 

We made three experiments to evaluate Ciratefi, using a total of 145 images. In all 
images, shape instances appear in different rotations, scales, brightnesses and 
contrasts. We do not compare the accuracy of our algorithm with other techniques 
because, as we considered in section 1, seemingly there is no rotation and scale-
invariant grayscale template matching in the literature (except the brute-force 
algorithm). Choosing adequate parameters, Ciratefi and the brute-force algorithm 
yield exactly the same results, what makes foreseeable the behavior of our algorithm. 

In the first experiment, we took 70 pictures of 16 toy figures randomly scattered 
on the floor. Then, we searched in the 70 images (each one with 512×384 pixels) for 5 
templates: frog, dog, palm_tree, bear and letter_s (figure 6), extracted from one of the 
70 images. 10 instances of the searched templates appear in each image. Figure 7 
shows one final output where the matching positions are marked with “x”. All 700 
Ciratefi matchings were perfect, without any false positive or false negative. Note that 
there are faintly visible shapes (dog and bear). These shapes also were successfully 
detected, in spite of their low contrast, using tβ=0.1.  

 

     
Fig. 6. Template images (51×51 pixels). 

 

Fig. 7. Result of detection of the 5 templates. 

In the second experiment, we searched for the McDonald’s® symbol (figure 8a) in 
60 images taken from different places and objects. The smallest image has 96×94 
pixels, and the largest has 698×461 pixels. Figures 8b and 8c show two sample 
images matched against the template. Each matching is marked with a red “x”. This 
experiment presented only one false positive and two false negatives. The bright 
background of the symbol probably caused one of the false negatives, marked with a 



yellow circle in figure 8c. Note that we did not use the color information. Probably, 
this task would become much easier using the color information. 

 

 
(a) (b) 

 
(c) 

Fig. 8.  Detection of McDonald’s symbols. (a) Template. (b) Perfect matching. (c) False 
negative case encircled in yellow. 

Finally, in the third experiment we tested the detection of buildings with a specific 
shape in 15 remote sensing images with 515×412 pixels, provided by the Google 
Earth, using a grayscale template with 40×40 pixels (figure 9a). Figures 9b and 9c 
depict some examples of the experiment. In this experiment, the building appears 187 
times in the 15 analyzed images. We detected 18 false positives and 16 false negatives 
cases, caused mainly by shadows, different illumination angles, occlusions and 
blurred images. The results of the three experiments are summarized in Table 1. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 9. Detection of a building in remote sensing images. (a) Template image. (b) Perfect 
matching. (c) False negative case encircled in yellow. 

Table 1. Summary of the tests 

Experiment Instances of 
the shape 

Correct 
detections False positives False 

negatives 
Toys 700 700 0 0 

McDonald’s 116 114 1 2 
Buildings 187 171 18 16 



7.2. Parameters 

We tested the sensitivity of Ciratefi to different choices of parameters, such as 
number of circles (l), number of radial lines (m) and thresholds t1, t2, t3, tβ and tγ. We 
demonstrate below that the only really important parameter is t3. We searched for the 
frog template in one image of the toy experiment (figure 7). We used 10 scale factors 
(s0=0.4, s1=0.5,..., s9=1.3).  In each table, the fixed parameters appear in the first line.  

Table 2. Sensitivity to the number of circles l. 

m = 36,  t1 = 0.95,  t2 = 0.9,  t3 = 0.9,  tβ = 0.1,  tγ = 1 

Number of circles l False positives False negatives First grade candidate 
pixels  

05 0 0 83,310 
10 0 0 69,389 
15 0 0 50,519 
20 0 0 74,970 
25 0 0 77,375 

 
Table 2 shows that the number of circles l does not have a strong influence on the 

final result, because no error was detected even varying its value. However, the 
suitable choice of l is important to minimize the number of the first grade candidate 
pixels and accelerate the processing. 

Table 3. Sensitivity to the number of radial lines m. 

l = 13,  t1 = 0.95,  t2 = 0.9,  t3 = 0.9,  tβ = 0.1,  tγ = 1 
Number of radial 

lines m False positives False negatives Second grade 
candidate pixels 

08 0 2 433 
15 0 2 42 
20 0 0 30 
30 0 0 35 
40 0 0 41 

 
Table 3 shows that too small number of radial lines m can produce false negatives 

by eliminating the true matching pixels. In this experiment, no error was detected for 
m≥20. However, the algorithm becomes slower using large m. 

Table 4. Sensitivity to the thresholds  t1, t2 and  t3. 

l = 13,  m = 36,  tβ = 0.1,  tγ = 1 
Thresholds  

 t1, t2 , t3

False  
Positives 

False  
negatives 

Thresholds  
 t1, t2 , t3

False  
positives 

False  
negatives 

0.50,  0.50,  0.50 8376 0 0.95,  0.75,  0.75 104 0 
0.50,  0.50,  0.75 286 0 0.95,  0.75,  0.95 0 0 
0.50,  0.50,  0.95 0 0 0.95,  0.95,  0.95 0 0 
0.75,  0.75,  0.50 1325 0 0.95,  0.95,  0.98 0 2 
0.75,  0.75,  0.75 104 0 0.95,  0.98,  0.95 0 2 
0.75,  0.95,  0.95 0 0 0.98,  0.95,  0.95 0 2 



 
Table 4 shows that a incorrect choice of t3 may produce false negatives or false 

positives. However, the choices of t1 and t2 are not critical to the detection of the 
shape, as long as their values are not too high to discard the true matchings. Indeed, 
the detection was errorless for t3=0.95, for any t1≤0.95 and t2≤0.95.  However, small 
values of t1 and t2 make the algorithm slower. 

Table 5. Sensitivity to the thresholds tβ and  tγ . 

l = 13,  m = 36,  t1 = 0.95,  t2 = 0.9,  t3 = 0.9 
Thresholds  

tβ , tγ . 
False  

positives 
False  

negatives 
Thresholds  

tβ , tγ . 
False  

positives 
False  

negatives 
0.10 , 0.10 0 1 0.50 , 0.50 0 1 
0.10 , 0.50 0 0 0.50 , 1.00 0 1 
0.10 , 1.00 0 0 0.75 , 0.10 0 1 
0.25 , 0.10 0 1 0.75 , 0.50 0 1 
0.25 , 0.50 0 0 0.75 , 1.00 0 1 
0.25 , 1.00 0 0 1.00 , 0.10 0 2 
0.50 , 0.10 0 1 1.00 , 1.00 0 2 

 
As expected, table 5 shows that too large tβ or too small tγ yields false negatives. 

However, there are large ranges of values that do not produce errors (0.1≤tβ≤0.25 and 
0.5≤tγ≤1.0). 

8. Conclusions and future works 

In this paper, we have presented a new grayscale template matching algorithm, 
invariant to rotation, scale, translation, brightness and contrast, named Ciratefi. 
Differently from many other techniques, Ciratefi does not discard the rich grayscale 
information through operations like detection of edges, detection of interest points or 
segmentation/binarization of the images. The proposed algorithm was about 400 times 
faster the brute force algorithm in the experiments, while yielding practically the same 
output. Complexity analysis has shown that Ciratefi is indeed superior to the brute 
force algorithm. Experimental results demonstrate the efficiency and the robustness of 
the proposed technique. A straightforward generalization of this technique is to use 
the color information, together with the luminance. Another possible generalization is 
to use other features besides the mean grayscales on circles and radial lines, such as 
standard deviations, and maximum or minimum values. 
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