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Abstract— Data hiding is a technique used to embed a sequence
of bits in a host image with small visual deterioration and the
means to extract it afterwards. Reversible data hiding allows,
in addition, recovering the original cover-image exactly. Several
reversible data hiding techniques have been developed but very
few of them are appropriate for binary images. This paper
proposes a reversible data hiding technique for binary images.
This technique uses the Golomb code to compress prediction
errors of low-visibility pixels, using its neighborhood as side
information, to obtain the space to store the hidden data. The
proposed technique is then used to reversibly authenticate binary
images, including texts, drawings and halftones. All binary
images we tested could be authenticated using the proposed
technique, except unrealistically small or random images.

Index Terms— Digital watermarking, reversible watermarking,
binary images, steganography, data hiding, image authentication.

I. INTRODUCTION

ADATA-HIDING scheme is a technique used to embed a
sequence of bits in a host image and the means to extract

it afterwards. Most data-hiding techniques modify and distort
the host signal in order to insert the additional information.
This distortion is usually small but irreversible. Reversible
data-hiding techniques insert information bits by modifying
the host signal, but enable the exact (lossless) restoration of the
original host signal after extracting the embedded information.

In various fields, such as law enforcement, military imagery,
medical imagery and astronomical research, a lossless recover
of the host image is essential. Sometimes, expressions like
distortion-free, invertible, reversible or erasable watermarking
are used as synonyms for lossless watermarking. Some authors
[1, 2] classify reversible data hiding techniques in two types:
• The first type [3, 4] makes use of additive spread spec-

trum techniques. In these techniques, a spread spectrum
signal corresponding to the data to be embedded is
superimposed (added) on the host signal. In the decoding,
the hidden data is detected and the added signal is
removed (subtracted) to restore the original host signal.
These techniques use modulus arithmetic to avoid over-
flow/underflow errors, which may cause salt-and-pepper
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artifacts. They usually offer very limited information
hiding capacity.

• In the second type [1, 2, 5, 6, 7], some portions of the
host signal are overwritten by the embedded data. Two
kinds of information must be embedded: the compressed
data of the portion to be overwritten (to allow recovering
the original signal) and the net payload data. During the
decoding, the hidden information is extracted, the payload
is recovered, and the compressed data is used to restore
the original signal. These techniques do not cause salt-
and-pepper artifacts, because the modified portions are
usually the least significant bits or the high frequency
wavelet coefficients that do not cause perceptible dis-
tortion. These techniques usually offer more data hiding
capacity than the first type.

Among the reversible data hiding techniques, seemingly
very few are adequate for binary images. We propose in
this paper a reversible data hiding technique of the second
type for binary images, called RDTC (Reversible Data hiding
by Template ranking with symmetrical Central pixel). Then,
we use RDTC to reversibly authenticate binary images and
documents. There are two main challenges for designing a
reversible data hiding of the second type for binary images:

• The first is developing a technique that must be able to
localize precisely the changeable pixels in both insertion
and extraction, in order to recover the original image.
Some techniques do not have this property. Consider,
for example, the data hiding where the cover image is
subdivided into blocks, and one bit is inserted in each
block by flipping (if necessary) the pixel with the lowest
visibility (the flipping operation consists in transforming
a white pixel in a black one or vice-versa). The blocks
with even (odd) number of black pixels has bit zero
(one) embedded. In this technique, the original image
cannot be recovered even if the original parities of black
pixels are known, because the precise flipped pixel inside
each block cannot be localized. One solution is to find a
suitable non-reversible data hiding technique that has this
property and convert it into a reversible version. Another
solution is to develop a totally new technique.

• The second is an efficient compression of the portion
to be overwritten by the hidden data. This portion is
typically small, has no structure and its samples are
almost uniformly distributed and uncorrelated from sam-
ple to sample. Direct compression of the data there-
fore results in rather small lossless embedding capacity.
However, if the remainder of the image is used as the
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side-information, significant compression gains can be
achieved. In continuous-tone reversible data hiding, the
choice of the compression algorithm seems not to be
critical, because there is enough space to store the infor-
mation (the least significant bits, for instance). Awrangjeb
[1] uses Arithmetic Coding, LZW and JBIG for loss-
less compression. Celik [2] uses an adapted version of
CALIC. In the reversible data hiding for binary images,
on the contrary, most compression algorithms based on
redundancy or dictionaries are not effective. RDTC uses
the Golomb code to compress prediction errors of low-
visibility pixels to obtain the space to store the hidden
data.

II. PWLC DATA HIDING TECHNIQUE

To the best of our knowledge, the only proposed reversible
data hiding technique for binary images is PWLC (Pair-Wise
Logical Computation) [8, 9]. It seems that sometimes PWLC
does not extract correctly the hidden data, and fails to recover
perfectly the original cover image.

PWLC uses neither the spread spectrum nor any compres-
sion techniques. It scans the host image in some order (for
example, in raster scanning order). Only sequences “000000”
or “111111” that are located near the image boundaries
are chosen to hide data. The sequence “000000” becomes
“001000” if bit 0 is inserted, and becomes “001100” if bit 1 is
inserted. Similarly, the sequence “111111” becomes “110111”
if bit 0 is inserted, and becomes “110011” if bit 1 is inserted.

However, the papers [8, 9] do not describe clearly how
to identify the modified pixels in the extraction process. The
image boundaries may change with the watermark insertion.
Moreover, let us suppose that a sequence “001000” (located
near to an image boundary) was found in the stego image.
The papers do not describe how to discriminate between an
unmarked “001000” sequence and an originally “000000”
sequence that became “001000” with the insertion of the
hidden bit 0.

III. DHTC TECHNIQUE

The technique proposed in this paper (RDTC) is based on
the non-reversible data hiding named DHTC (Data Hiding
by Template ranking with symmetrical Central pixels) [10].
DHTC flips only low-visibility pixels to insert the hidden data
and consequently images marked by DHTC have excellent
visual quality and do not present salt-and-pepper noise.

(a) Non-overlapped image pieces (b) Partially overlapped image
pieces

Fig. 1. Image divided in 3 × 3 pieces. Central pixels (candidates to bear
information) are hatched.

Fig. 2. A 3×3 template ranking with symmetrical central pixels in increasing
visual impact order. Hatched pixels match either black or white pixels (note
that all central pixels are hatched). The score of a given pattern is that of the
matching template with the lowest impact. Mirrors, rotations and reverses of
each pattern have the same score.

DHTC insertion algorithm is:
1) Divide the binary cover image Z in a sequence v of non-

overlapping “image pieces” (e.g., 3×3) as we can see in
figure 1a. Only the central pixels of the pieces of v can
have their colors changed by the watermark insertion. A
partial overlapping, that increases the storage capacity,
can also be used (figure 1b).

2) Sort the sequence v in increasing order using the vi-
sual impact score as the primary-key and non-repeating
pseudo-random numbers as the secondary-key. The pri-
mary key classifies the flippable central pixels according
to their “visibility.” Figure 2 enumerates all possible 3×3
templates, listed in increasing visibility of their central
pixels. To assure the feasibility of reconstruction of v
in the data extraction stage, two templates that differ
only by the colors of their central pixels must have
the same visibility score. This visibility ranking can be
modified or larger templates may be used in order to
minimize some specific perceptual distortion measure.
The secondary-key prevents from embedding the data
only in the upper part of the image.

3) The n first central pixels of the sorted v are the data
bearing pixels (DBPs). Embed n bits of the data by
flipping (if necessary) the DBPs.

To extract the hidden data, exactly the same sequence v
must be reconstructed and sorted. Then, the n first central
pixels are DBPs and their values are the hidden data.

In DHTC, the exact positions of n DBPs are known in
both the data insertion and extraction. This property makes
it possible to transform DHTC into a reversible data hiding.
To do it, the original values of DBPs may be compressed,
appended with the bits to be hidden (the net payload), and
stored in the DBPs.

IV. THE PROPOSED TECHNIQUES

This paper proposes a reversible data hiding technique
for binary images called RDTC (Reversible Data hiding by
Template ranking with symmetrical Central pixels) and a
reversible fragile authentication watermarking called RATC
(Reversible Authentication watermarking by Template ranking
with symmetrical Central pixels).

A. The Proposed Reversible Data Hiding

The proposed reversible data hiding technique for binary
images is based on DHTC technique previously described. In
RDTC, two kinds of information must be embedded in the host
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image: the compressed data to allow recovering the original
image and the net payload data to be hidden. That is, the n
DBPs’ original values are compressed in order to create space
to store the net payload data.

There are some difficulties to compress the DBPs’ original
values. Most compression algorithms based on redundancy and
dictionaries do not work, because usually the amount of bits
to be compressed is very small. Moreover, there is no way to
predict the next bit based on the previous ones, because these
bits correspond to the pixels dispersed throughout the whole
image.

The solution we found is to compress the prediction er-
rors of DBPs’ values (using its neighborhood as the side-
information) instead of their values directly. We tested two
prediction schemes:

1) A pixel can be either of the same color or of the different
color than the majority of its spatial neighboring pixels.
Let us assume that the first hypothesis is more probable
than the second. Let b be the number of black neighbor
pixels of a DBP (using 3 × 3 templates, a DBP has 8
neighbor pixels). The prediction is correct (represented
by 0) if the original DBP is black and b > 4, or if it
is white and b ≤ 4. Otherwise, the prediction is wrong
(represented by 1). If this prediction is reasonable, the
predicted value and the true value should be the same
with probability higher than 50%. As we store zero
when the prediction is correct and one when it is wrong,
subsequences of zeros will be longer (in most cases) than
subsequences of ones.

2) We also tested a more elaborate prediction scheme.
We constructed a table with 256 elements (all possible
configurations of 8 neighbor pixels) and, using typical
binary images, determined the most probable central
pixels’ colors, based on the 8 neighbors’ configurations.

Surprisingly, the two prediction schemes yielded almost the
same results. The sequence of prediction errors consists of
usually long segments of zeros separated by usually short
segments of ones, because a zero occurs with high probability
p and a one occurs with low probability 1 − p. The Golomb
code (to be explained in next section) is a good compression
algorithm for this kind of sequence. As the DBPs’ neighbor-
hoods are not modified during the insertion, the prediction can
be reconstructed in the extraction. The vector of prediction
errors (0s and 1s), together with the neighborhoods of DBPs,
allows recovering the original DBPs’ values.

RDTC insertion algorithm is:

1) Divide the cover image Z in a sequence v of partially
overlapping pieces.

2) Sort the sequence v in increasing order using the visual
scores as the primary-key, the number of black pixels
around the central pixels as the secondary-key and non-
repeating pseudo-random numbers as the tertiary-key.

3) Estimate the smallest length n of DBPs capable of
storing the header (size h), the compressed prediction
errors vector (size w) and the given net payload data
(size p), i.e., that satisfies n ≥ h+w+p. Try iteratively
different values of n, until obtaining the smallest n that

satisfies the inequality above.
4) Insert the header (the values of n, w, p and the Golomb

code parameter m), the compressed prediction errors
vector and the payload by flipping the central pixels of
the first n pieces of the sorted v.

To extract the payload and recover the original image, the
sequence v of 3× 3 image pieces is reconstructed and sorted.
Then, the data is extracted from the n first central pixels of v.
The compressed prediction errors vector is uncompressed and
used to restore the original image.

We have embedded the data at the beginning of v, because
this part has the least visible pixels. However, in order to obtain
a higher embedding capacity (sacrificing the visual quality),
we can scan the vector v searching for a segment that allows
a better compression. The pixels at the beginning of v are
the least visible ones but they cannot be predicted accurately,
because usually they have similar number of black and white
pixels in their neighborhoods (since they are boundary pixels).
As we move forward in the vector, we find pixels that can
be predicted more accurately, but with more visibility. In this
case, the initial index of the embedded data in v must be stored
in the beginning of v. Here, there is a trade-off between the
visual quality of the stego image and the embedding capacity.
Table 1 shows the number n of needed DBPs to hide 165 bits
of payload (128 bits of net payload and 37 bits of header)
at the beginning of v (the best quality) and in a segment
that allows the best compression. In the latter case, the values
of 176 pixels could be compressed to only w = 11 bits. In
each image, n pixels were compressed, yielding w compressed
pixels and n− w free bits. Table 1 also shows the maximum
amount σ of bits that can be reversibly inserted in each image.
Note that in some cases, up to 20% of pixel images can be used
to store information reversibly (300 dpi scanned text example
in Table 1).

B. The Golomb Code

As we said in last sub-section, the sequence of prediction
errors consists of long segments of zeros separated by short
segments of ones. An efficient method to compress this type of
information is the Golomb code [11, 12]. Some other methods
based on the Golomb code (as LOCO-I, FELICS and JPEG-
LS) also seem to be efficient, however we did not test them.

The Golomb code is used to encode sequences of zeros
and ones, where a zero occurs with probability p and a one
occurs with probability 1 − p. This sequence is regarded as
a nonnegative integer n. The Golomb code depends on the
choice of an integer parameter m ≥ 2 and it becomes the best
prefix code when

m =
⌈
− log2 (1 + p)

log2 p

⌉
To compute the code of a nonnegative integer n, three

quantities q, r and c are computed:

q =
⌊ n
m

⌋
, r = n− qm, and c = dlog2me

Then, the code is constructed in two parts: the first is the
value of q, coded in unary, and the second is the binary value
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TABLE I
REVERSIBLE INSERTION OF 165 BITS OF PAYLOAD IN DIFFERENT LETTER-SIZED IMAGES.

Best quality Best Compression
Image description Size n w n− w n w n− w σ

Computer-generated text 1275× 1650 336 146 190 176 11 165 401,600
150 dpi scanned text 1275× 1650 432 265 167 176 11 165 214,032
300 dpi scanned text 2384× 3194 496 325 171 176 11 165 1,543,680

TABLE II
REVERSIBLE INSERTION OF 165 BITS OF PAYLOAD IN IMAGES OF DIFFERENT KINDS AND SIZES.

Image description Size n w n− w
Error diffusion halftone 512× 512 400 233 167

Ordered dithering halftone 512× 512 208 41 167
Computer-generated text 1275× 1650 336 146 190

150 dpi scanned text 1275× 1650 368 203 165
300 dpi scanned text 2384× 3194 528 355 173
300 dpi scanned text 1092× 1664 560 385 175
300 dpi scanned text 1094× 414 464 288 176
400 dpi scanned text 3179× 4259 464 290 174

Small computer-generated text 91× 58 368 200 168
Tiny computer-generated text 64× 56 368 193 175

10% random black pixels 300× 300 400 227 173
20% random black pixels 300× 300 880 711 169
30% random black pixels 300× 300 3824 3654 170
40% random black pixels 300× 300 Insertion was not possible

of r coded in a special way. The first 2c−m values of r are
coded as unsigned integers in c− 1 bits each and the rest are
coded in c bits each. The case where m is a power of 2 is
special because it requires no (c − 1)-bit codes (called Rice
codes). To decode a Golomb code, the values of q and r are
used to reconstruct n (n = r + qm). The readers are referred
to [11, 12] to further details.

(a) Part of the original cover image (b) Part of the authenticated image

(c) Modified pixels (d) Modified pixels in color

Fig. 3. Typical visual quality of a reversibly authenticated document. A
letter-sized magazine page was scanned at 300 dpi, yielding an image with
2384× 3194 pixels (a). It was reversibly authenticated with 128 hidden bits
(b).

Fig. 5. Part of a 300 × 300 image with 40% random black pixels. It was
not possible to reversibly hide 128 bits in this image.

C. Reversible Authentication Watermarking

A reversible fragile authentication watermarking can be
easily created using RDTC. Let us call it RATC (Reversible
Authentication watermarking by Template ranking with sym-
metrical Central pixels). RATC can detect any image al-
teration. It can work with secret-key or public/private-key
ciphers.

The public/private-key version of RATC insertion algorithm
is:

1) Given a binary image Z to be authenticated, compute the
integrity index of Z using a one-way hashing function
H = H(Z). Cryptograph the integrity index H using
the private-key, obtaining the digital signature S.

2) Insert S into Z using RDTC, obtaining the watermarked
stego image Z ′.

RATC verification algorithm is:
1) Given a stego image Z ′, extract the authentication signa-

ture S and decrypted it using the public-key, obtaining
the extracted integrity index E.

2) Extract the prediction errors vector, uncompress it and
restore the original cover image Z. Recalculate the
hashing function, obtaining the check integrity index
C = H(Z).

3) If the extracted integrity index E and the check integrity-
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index C are the same, the image is authentic. Otherwise,
the image was modified.

This technique can detect any image alteration, even a single
pixel flipping, because all image pixels are used to compute
the integrity index. Any alteration of data bearing pixels are
detected because it changes the stored digital signature S used
to compute the extracted integrity index E. And any alteration
of pixels that do not bear data is also detected because it
changes the check integrity index C. Indeed, the probability
of an alteration passing undetected is only 2−n, where n is
the number of bits of the hashing function.

V. EXPERIMENTAL RESULTS

We have tested RATC to authenticate binary images of
different kinds and sizes (scanned texts, computer-generated
texts, halftones, drawings, random noises, etc.) reversibly
embedding 128 bits. 128 bits are enough to store a message
authentication code, used in secret-key image authentication.
Table 1 shows the maximum amount of bits σ that can be
reversibly inserted in typical letter-sized document images.
Table 2 shows that, in average, only 406 low-visibility pixels
were compressed to get space enough to store 128 bits of
payload data and 37 bits of header (excluding random noise
images).

The marked stego-images have excellent visual quality,
because only low-visibility pixels are modified. In a typical
document authentication application, a letter-sized page is
scanned at 300 dpi and authenticated. Figure 3 depicts the
visual quality of an authenticated image in this situation. Note
that only boundary low-visibility pixels were modified. Figure
4 depicts different kinds of small cover images, each one with
300× 300 pixels, authenticated using RATC with 128 hidden
bits, to show the visual quality of the authenticated images in
unfavorable situations. In all cases, the recovered images are
identical to the originals.

Only two kinds of images could not be authenticated,
because it was not possible to embed 128 hidden bits: (1) very
small images, like icons with 50× 50 pixels, because there is
not enough space to store 128 hidden bits and (2) random noise
images with similar amounts of black and white pixels (figure
5), because the prediction is very difficult. On the other hand,
theses kinds of image are very unusual and can be ignored for
all practical purposes.

The executable RATC program is available at
www.lps.usp.br/˜hae/software/ratc.

VI. CONCLUSIONS

We have presented a reversible data hiding for binary
images and used it to reversibly authenticate binary images.
In this technique, prediction errors of low-visibility pixels are
compressed using the Golomb code to create space to store the
hidden data. We have applied the proposed technique to several
kinds of binary images and, in average, only 406 pixels were
compressed to get space to store 128 bits of net payload data.
Resulting watermarked images have pleasant visual aspect.
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(a) Computer-generated document. (b) Authenticated with n = 464, w =
283 and n− w = 181.

(c) A document scanned at 300 dpi. (d) Authenticated with n = 432, w =
250 and n− w = 182.

(e) Halftone image for laserjet printers. (f) Authenticated with n = 432, w =
254 and n− w = 178.

(g) Mickey mouse. (h) Authenticated with n = 432, w =
256 and n− w = 176.

Fig. 4. Different kinds of small 300× 300 cover images (left column) and the corresponding reversibly authenticated images with 128 hidden bits and 37
header bits (right column). In each image, n pixels were compressed, yielding w compressed pixels and n−w free bits where the authentication codes were
inserted. In average, n/2 pixels are flipped.


