
Fast hashing onto pairing-friendly elliptic

curves over ternary fields

Paulo S. L. M. Barreto and Hae Y. Kim

Escola Politécnica, Universidade de São Paulo.

pbarreto@larc.usp.br, hae@lps.usp.br

Abstract

We propose a fast cryptographic hash algorithm that

maps arbitrary messages onto points of pairing-friendly

elliptic curves defined over F3m , a core operation in many

pairing-based cryptosystems. Our scheme runs in time

O(m2), while the best previous algorithm for this task runs

in time O(m3). Experimental data confirms the speedup

by a factor O(m), or approximately a hundred times for

practical m values. We then describe how to modify BLS

compact signatures to use the new hash algorithm and

show that the resulting scheme is secure in the random

oracle model.

1 Introduction

The discovery of groups where the Decision Diffie-

Hellman (DDH) problem is easy while the Computational

Diffie-Hellman (CDH) problem is hard [13] has given

rise to the Boneh-Lynn-Shacham (BLS) [5] digital sign-

ing scheme, where the signature size is essentially the

same as the underlying finite field. Although other sig-

nature algorithms are known that produce smaller signa-

tures [7, 21], the BLS schemes is much faster in practice

– in fact, careful implementation may make it faster even

than other pairing-based schemes like Boneh-Boyen sig-

natures [3].

When instantiated on supersingular elliptic curves over

F3m , the BLS scheme depends on the existence of a hash

function that maps arbitrary messages directly onto curve

points in such a way that the discrete logarithm of the hash

value remains unknown. The original description of the

BLS algorithm suggests an iterated probabilistic construc-

tion hash construction whose running time is cubic in the

extension degree of the underlying finite field, i.e. O(m3),
which derives from the need to compute the square roots

in the finite field.

We propose a different, but conceptually simple ap-

proach that entirely avoids the square root evaluations and

takes O(m2) steps. The computational complexity derives

from the squaring of a field element and from solving a

system of linear equations over F3m with coefficients in F3.

Compared to the original BLS hash, our scheme needs

a slightly higher number of coin tosses to produce a hash

value, namely, about 3 instead of 2 hash oracle queries,

1



but this is completely offset by the increased efficiency of

each query. The signature size is also increased by 2 bits

(more precisely, by an element from F3).

In a sense, our results shed some light on the practi-

cality of working with the seldom used F3m fields, where

operations can be surprisingly efficient if properly imple-

mented.

This document is organized as follows. Section 2 dis-

cusses the Decision Diffie-Hellman problem. Section 3

describes BLS signatures, and section 4 the associated

hashing algorithm. We present our improved hash scheme

in section 5, analyze its security properties in section 6,

and show how to use it in a signature scheme in section 7.

In section 8 we provide experimental results, and in sec-

tion 9 we consider possible extensions of our methods. We

conclude in section 10.

2 The Decision Diffie-Hellman prob-

lem

Consider the tuple (P,aP,bP,cP) where P is a point of

order r of an elliptic curve E/Fpm . The Decision Diffie-

Hellman (DDH) problem on the subgroup 〈P〉 consists of

deciding whether ab≡ c (mod r).
We begin by defining the embedding degree of an ellip-

tic curve group (or a subgroup thereof).

Definition 1. Let p be a prime, let m be a positive expo-

nent, let q≡ pm, and let E be an elliptic curve over Fq. Let

P ∈ E be a point of order r with r2 - #E. We say that the

subgroup 〈P〉 has embedding degree k, k > 0, if r | qk−1
and r - qk−1 for all 0 < i < k.

Given P ∈ E of order r, let Q be another curve point

of the same order but linearly independent from P, and

let E[r] be the subgroup of E/Fqk generated by P and

Q, where k is the embedding degree of 〈P〉. The Weil

pairing [13, 18, 20, 24] is a mapping e : E[r]×E[r]→ F∗qk

satisfying the following properties:

1. Bilinearity: for all P,Q ∈ E[r] and a,b ∈ Zr,

e(aP,bQ) = e(P,Q)ab.

2. Alternation: for all P,Q ∈ E[r], e(P,Q) = e(Q,P)−1;

in particular, e(P,P) = 1.

3. Non-degenerate: if e(P,Q) = 1 for all Q ∈ E[r], then

P = O.

An efficient algorithm to compute the Weil pairing on

supersingular elliptic curves is given in [4, appendices B

and C], based on work by Miller [20].

The Weil pairing allows one to determine whether the

tuple (P,aP,Q,bQ) is such that a≡ b (mod r), since this

is equivalent to e(P,bQ) = e(aP,Q). Suppose there is a

computable isomorphism φ : 〈P〉 → 〈Q〉; then the Weil

pairing solves the DDH defined by the tuple (P,aP,bP,cP)
by means of the relation:

ab≡ c (mod r) ⇔ e(P,φ(cP)) = e(aP,φ(bP)).

3 The BLS signature algorithm

Cryptosystems based on group arithmetic are all suscep-

tible, at least to some extent, to generic group attacks, of

which the most powerful known is Pollard’s rho attack [22].

Two very powerful dedicated attacks are known against

elliptic curve cryptosystems: the Weil descent attack and

the Menezes-Okamoto-Vanstone (MOV for short) attack.

Weil descent attacks [8, 9, 10] map the elliptic curve

group to a subgroup of a hyperelliptic curve of higher

genus, where the discrete logarithm problem can be

solved by subexponential algorithms. This attack is not

applicable if the extension degree of the finite field over

which the curve is defined is prime.



The MOV attack [18] maps the elliptic curve discrete

logarithm problem to an analogous problem in the multi-

plicative group of a finite field (an extension field of the un-

derlying field over which the curve is defined). Resistance

against the MOV attack can be quantified by the curve’s

embedding degree k: an elliptic curve cryptosystem re-

sists the MOV attack if the discrete logarithm in the exten-

sion field Fpmα is infeasible. In practice, the MOV attack is

only effective against certain supersingular curves whose

embedding degree is very small.

The BLS scheme uses supersingular elliptic curves over

F3m defined by E± : y2 = x3− x± 1. Only finite fields of

prime extension degree m are used to avoid Weil descent

attacks. Furthermore, only curves with embedding degree

k = 6 (the maximum achievable value for supersingular

curves) are allowed to prevent the MOV attack. Values of

m of practical interest include 97, 163, 193, 239, 317, 353,

421, and 519.

3.1 Key generation

Given one of the values m above, let E/F3m be the cor-

responding curve and let r be the largest prime factor of

the order of the curve. Let P ∈ E be a point of order r.

The private signing key is a statistically unique, uniformly

chosen element s ∈ Z∗r , and the corresponding public key

is the tuple (m,P,V ) where V is the curve point V = sP

(the public value r is implicit in the public key because the

value of m and the curve equation uniquely determine r).

3.2 Signing

To sign a message M ∈ {0,1}∗, map M to a point PM ∈
〈P〉. Set SM ← sPM . The signature σ is the abscissa of

SM . Notice that σ ∈ F3m .

3.3 Verification

The BLS scheme verifies signatures by solving the DDH

problem with the Weil pairing.

Let u, r± be elements of F3mα satisfying u2 + 1 = 0,

(r±)3 − r± ± 2 = 0, and let φ± : E± → E± such that

φ±(x,y) ≡ (−x + r±,uy) for any point P = (x,y) ∈ E± of

order r. Then Q = φ±(P) is a point of the same order r

linearly independent from P [24, p. 326].

Given a public key (m,P,V ), a message M, and a sig-

nature σ do:

1. Find a point S ∈ E/F3m of order r whose abscissa is

σ and whose ordinate is y for some y ∈ F3m . If no

such point exists, reject the signature.

2. Set u← e(P,φ(S)) and v← e(V,φ(h(M))), where e

is the Weil pairing on the curve E/F36m .

3. Accept the signature if, and only if, either u = v or

u−1 = v.

Note that both (σ,y) and (σ,−y) are points on E/F3m

with abscissa σ. Either one of these two points can be

the point SM used to generate the signature in the signing

algorithm. Indeed, since (σ,−y) = −(σ,y) on the curve,

we have that e(P,φ(−S)) = e(P,φ(S))−1. Therefore, u = v

tests that (P,V,h(M),S) is a Diffie-Hellman tuple, while

u−1 = v tests that (P,V,h(M),−S) is a Diffie-Hellman tu-

ple. The fact that the signature consists exclusively of the

abscissa of S causes a slight degradation in the ability of

detecting forgery, since S and −S are indistinguishable to

the verifying algorithm.

4 Hashing onto curves

To complete the above specification one needs a hash

function to map messages onto 〈P〉. In what follows we as-

sume for simplicity that 〈P〉 spans the whole elliptic curve



group; the case of a proper subgroup is easy to derive,

and is explained in detail in [5, section 3.3].

One can view the field F3m as a vector space of dimen-

sion m over F3, in which case an element u∈ F3m is repre-

sented in a basis by a tuple (u0,u1, . . . ,um−1), ui ∈ F3 for

i = 0,1, . . . ,m− 1. Besides standard polynomial bases,

we also consider normal bases defined as follows.

Definition 2. A normal basis is a linearly independent set

{θ3i | 0 6 i < m} where θ is a root in F3m of an irreducible

polynomial of degree m.

For convenience, define τ(u)≡ u0, i.e. the independent

term in standard polynomial basis, or the coefficient of θ

in normal basis. We also define ũ≡ (u1, . . . ,um−1).
The original Map2Group function maps a message M to

a curve point (x,y) using a more conventional hash func-

tion h : Z×{0,1}∗ as follows. Let the elliptic curve equa-

tion be y2 = x3− x + b over F3m , where b = ±1. Fix a

small parameter I = dlg lg(1/δ)e, where δ is some desired

bound on the probability of failure. Then compute function

Map2Group as follows:

Algorithm 1 Map2Grouph(M)
1: Set i = 0.
2: Hash the pair (i,M) to a pair h(i,M) = (x, t) where

x ∈ F3m and t ∈ {0,1}.
3: Compute u = x3− x+b.
4: Solve the quadratic equation y2 = u in F3m .
5: If no solution is found, increment i and try again from

step 2.
6: Otherwise, use t to choose between the solutions y0

and y1, and return (x,yt).

Choosing between the roots in the last step above

merely consists of ensuring that τ(y0) < τ(y1).
If an upper bound is imposed on the counter i, then it

is possible that an unhashable message exists. The fail-

ure probability can be made arbitrarily small by picking an

appropriately large I. Furthermore, it is necessary to com-

pute a square root in a finite field of characteristic 3 to

solve the quadratic equation. Actually, the quadratic equa-

tion solving at step 4 must be also executed during verifi-

cation (in step 1).

It is not really necessary to hash (i,M) onto a pair

(x, t); mapping to x alone would work as fine. Indeed,

t is only needed to distinguish between two curve points

PM = (x,y) and −PM = (x,−y), which lead to the same

signature since both SM = sPM and−SM = s(−PM) share

the same abscissa. Therefore, the actual value of t is irrel-

evant, and a fixed t would be equally suitable.

5 The new approach

Before we proceed it is convenient to provide some defini-

tions.

Let C : F3m → F3m be defined by C (x) = x3− x. The

kernel of C is F3 [16, chapter 2, section 1], hence the rank

of C is m−1 [11, section 3.1, theorem 2].

Definition 3. The (absolute) trace of an element a ∈ F3m

is given by

Tr(a) = a+a3 +a9 + · · ·+a3m−1
.

The trace will always be in F3 as one can easily check

by noticing from the above definition that C ◦Tr ≡ 0, i.e.

Tr(a)3 = Tr(a), for all a∈ F3m . The trace is also surjective

and linear over F3, so it can always be represented as a

matrix in a basis.

Obtaining a full curve point by first specifying the ab-

scissa and then computing a suitable ordinate is com-

monplace in elliptic curve cryptography. Such a tech-

nique is used in all algorithms adopted for existing stan-

dards [1, 12].

In fields of characteristic 3, cubing is a linear operation.

Therefore, it is more advantageous to hash the message



M to an ordinate instead of an abscissa. This property is

exploited by function Map3Group below. Fix a small pa-

rameter J = dlg lg(1/δ)− lg(lg(3)−1)e ≈ dlg lg(1/δ)e+
1 = I +1, where δ is the desired bound on the probability

of failure. Then compute function Map2Group as follows:

Algorithm 2 Map3Grouph(M)
1: Set i = 0.
2: Hash the pair (i,M) to a pair h(i,M) = (y, t) ∈ F3m ×

F3.
3: Compute u = y2−b.
4: Solve the cubic equation C (x) = u.
5: If no solution is found, increment i and try again from

step 2.
6: Otherwise, use t to choose between the solutions y0

to y2, and return (x,yt).

As before, choosing between the roots in the last step

above merely consists of ensuring that τ(y0) < τ(y1) <

τ(y2).
The equation in step 4 has a solution if, and only if,

Tr(u) = 0 [16, theorem 2.25]. This is the case for 1/3 of

the elements in F3m , since the trace function is linear and

surjective.

Here too the failure probability can be made arbitrarily

small by picking an appropriately large J, which is only one

unit larger than the corresponding value of I in the original

Map2Group. For each i, the probability (over the choice of

the random oracle h′) that h′(i,M) leads to a point on G∗

is that of finding a solution to the cubic equation in Step 4,

or 1/3 for uniformly distributed u values. Hence, the ex-

pected number of calls to h′ is approximately 3, and the

probability that a given message M will be found unhash-

able is (2/3)2J
6 δ.

The complexity derives from the squaring in step 3 and

the cubic equation solving in step 4. Squaring is obviously

no more complex than O(m2) (this may involve the use of

multiplication matrices for a normal basis [17, section 6.1]).

We now show how to efficiently solve the cubic equation

on F3m .

5.1 Solving the cubic equation in standard

polynomial basis

5.1.1 Trace computation

Since the trace is actually a linear form Tr : F3m → F3,

precompute its representation T (a usually sparse m-tuple

of F3 elements) in the given basis, and thereafter obtain

Tr(u) as the inner product Tu in O(m) time.

5.1.2 Solving C (x) = u

The cubic equation reduces to a system of linear equa-

tions with coefficients in F3, and can be solved in no

more than O(m2) steps. This is achieved by first checking

whether the system has solutions, i.e. whether Tr(u) = 0.

If so, since the rank of C is m−1 one obtains an invertible

(m−1)× (m−1) matrix A by leaving out the one row and

correspondingly one column of the matrix representation

of C on the given basis. A solution of the cubic equation

is then given by an arbitrary element x0 ∈ F3 and by the

solution of system Ax̃ = ũ, which is obtained as x̃ = A−1ũ

in O(m2) time.

5.2 Solving the cubic equation in normal

basis:

5.2.1 Trace computation

The trace can be computed very easily in a normal basis.

From the definition of trace, one sees that computing Tr(u)
amounts to summing up all coefficients of u in the normal

basis and multiplying the result by Tr(θ). Obviously, it is

most advantageous to choose θ so that Tr(θ) = 1.



5.2.2 Solving C (x) = u

Using a normal basis to represent field elements, it is not

difficult to see that the cubic equation can be efficiently

solved in O(m) time by the following algorithm (the proof

is straightforward and left as an exercise):

Algorithm 3 Solving C (x) = u
1: x0← root selector (an arbitrary element from F3)
2: for i← 1 to m−1 do
3: xi← xi−1−ui
4: end for
5: x is a solution if, and only if, xm−1 = x0 +u0.

A minor drawback of hashing onto an ordinate instead

of an abscissa is that the convergence is slower, since

the probability of finding a solution to the cubic equation

in step 4 is only 1/3 for uniformly distributed hash values

in step 2. This means that the expected number of hash

queries in step 2 is 3 instead of 2.

6 Proof of security

We now show that our hash proposal is secure in the

random oracle model [2] against existential forgery under

chosen-message attacks. Both the theorem below and its

proof closely follow [5, Lemma 4].

For simplicity, here again we only discuss hashing onto

the full elliptic curve group. Modifying the argument for

hashing onto a proper subgroup thereof is fairly simple.

Definition 4. A forger algorithm F (t,qH ,qS,ε)-breaks a

signature scheme if F runs in time at most t, makes at

most qH adaptive queries to a hash oracle and at most

qS adaptive queries to a signing oracle, and produces with

probability not smaller than ε a message M and a valid

signature σ for M under a given, randomly generated key

pair (s,V ).

Definition 5. A signature scheme is (t,qH ,qS,ε)-secure

against existential forgery on adaptive chosen-message

attacks if no forger (t,qH ,qS,ε)-breaks it.

Theorem 1. Suppose the BLS signature scheme is

(t,qH ,qS,ε)-secure in the group G when using a ran-

dom hash function h : {0,1}∗ → G∗. Then it is (t −
2JqH lgn,qH ,qS,ε)-secure when the hash function h is

computed with Map3Grouph′ where h′ is a random hash

function h′ : {0,1}∗→ F3m ×F3.

Proof. Suppose a forger algorithm F ′ (t,qH ,qS,ε)-breaks

the BLS algorithm on the bgroup G when the hash func-

tion h is computed using Map3Grouph′ . We construct an

algorithm F that (t + 2JqH ,qH ,qS,ε)-breaks the scheme

when h is a random oracle h : {0,1}∗→ G∗.

The forger F runs F ′ as a black box. F will use its

own hash oracle h : {0,1}∗ → G∗ to simulate for F ′ the

behavior of Map3Grouph′ . It uses an array si j of elements

of F3m ×F3. The array has qH rows and 2J columns. On

initialization, F fills si j with uniformly-selected elements of

F3m ×F3.

F then runs F ′, and keeps track of all the unique mes-

sages Mi for which F ′ requests an h′ hash. When F ′ asks

for an h′ hash of a message (w,Mi) whose Mi F had not

previously seen (and whose w is an arbitrary J-bit string),

F computes (xi,yi) = h(Mi) ∈ G∗ and scans the row si j,

0 6 j < 2J . For each (x,b) = si j, F solves the cubic equa-

tion in step 4 of Map3Group above, seeking points in G∗.

For the smallest j for which si j maps into G∗, F replaces

si j with a different point (xi,bi) where b ∈ F3 is set so that

(xi,bi) corresponds to (xi,yi) in step 6 of Map3Grouph′ .

This way Map3Grouph′(Mi) = h(Mi) as required.

Once this preliminary patching has been completed, F

is able to answer h′ hash queries by F ′ for pairs (w′,Mi)
by simply returning siw′ . The simulated h′ which F ′ sees

is statistically indistinguishable from that in the real attack.

Thus, if F ′ succeeds in breaking the signature scheme



using Map3Grouph′ , then F , in running F ′ while consult-

ing h, succeeds with the same likelihood, and suffers only

a running-time penalty from maintaining the bookkeeping

information.

In the case of hashing onto a proper subgroup, one can

show that the scheme is (t − 2JqH lgn,qH ,qS,ε)-secure,

where n is the subgroup order.

7 A modified signature scheme

As we pointed out in section 4, in the original BLS scheme

it is necessary to solve a quadratic equation not only at

signing time but during verification as well. To completely

avoid this, we propose the following modified scheme (key

generation is unchanged):

7.1 Signing

To sign a message M ∈ {0,1}∗, map M to a point PM ∈
〈P〉 using Map3Group. Set (xσ,yσ)← sPM . The signature

σ is the pair (tσ,yσ), where tσ ≡ τ(xσ).

7.2 Verification

Given a public key (m,P,V ), a message M, and a signa-

ture (tσ,yσ) do:

1. Find a point S = (xS,yS)∈E/F3m of order r satisfying

yS = yσ and τ(xS) = tσ. If no such point exists, reject

the signature.

2. Set u← e(P,φ(S)) and v← e(V,φ(h(M))), where e

is the Weil pairing on the curve E/F36m .

3. Accept the signature if, and only if, u = v.

This scheme has the drawback that the signature is

slightly larger (by an extra F3 element) than the original

Table 1: Running times of Map2Group and Map3Group in
µs.

m Map2Group Map3Group
79 755 9.3
97 1383 13.5

163 6425 41.0

scheme. Unfortunately this seems avoidable only at the

cost of an additional DDH step, which would deteriorate

the verification speed. On the other hand, attaching the

selector tσ to the signature increases the ability to detect

forgery by a factor of 2, as now only the exact point result-

ing from the signing process is accepted as valid.

8 Experimental results

We have implemented both the original and the modified

forms of Map3Group for the curve E− : y2 = x3−x−1 over

F379 and F3163 , and the curve E+ : y2 = x3− x + 1 over

F397 . In particular, E+ gives rise to signatures of about

160 bits in length and security roughly equivalent to 320-

bit DSA or ECDSA [1] signatures, and has very practical

interest.

The improved hash scheme runs noticeably faster (by

about two orders of magnitude) than the original algorithm,

as we see in table 8.

8.1 Techniques for software implementa-

tion

The algorithms were coded in the C++ language and run

on a 2 GHz Athlon processor. Only modest attempts were

made to optimize the coded algorithms, namely by apply-

ing some standard implementation techniques like inner

loop unrolling and function inlining.



Contrary to the situation of F2m and Fp, current proces-

sors in general lack native support for arithmetic in F3m .

Nevertheless, it is possible to exploit existing operations

to maximize parallelism within computer words. Our refer-

ence implementation represents F3m in polynomial basis

by packing eight coefficients per 32-bit word, each F3 co-

efficient occupying a nibble (4 bits). Although it is possible

to store 10 or even 11 coefficients per word (in the latter

case, if carry bits are taken care of separately), our choice

is more natural and leads to simpler formulas. This rep-

resentation is also suitable when computing inverses with

the almost inverse algorithm [23].

The square root extraction algorithm used by the origi-

nal BLS scheme is described in [6, section 1.5] and uses

the property that, if x = u2 for some u ∈ Zr where r ≡ 3
(mod 4), then u ∈ {u1,u2} where u1 = x(r+1)/4 and u2 =
r− u1. This property, which holds for r = 3m if m ≡ ±1
(mod 6), is exploited in a windowed exponentiation algo-

rithm [19, algorithm 14.82].

9 Extensions

Under certain circumstances, it may be undesirable to

transmit the full counter used by function Map3Group to-

gether with the signature. In theory, the counter might be

omitted from the signature data altogether, but this would

burden the verifier, which already has the heavier part of

the work, with the same effort the signer has to spend.

A straightforward tradeoff is to attach only a few counter

bits to the signature, say the least significant ones, and

recompute only the remaining bits upon verification. The

speed achievable with our proposed hash scheme reduce

the recalculation overhead and makes the penalty for the

verification algorithm negligible.

Still, the elliptic curve scalar multiplications necessary

to complete the signature are the bottleneck of the BLS

algorithm. Some techniques enables practical speedups

for these operations. Point halving [14] and the methods

proposed by Koblitz [15] for curves over fields of character-

istic 3 may be used for this purpose to great effect, though

the computational effort incurred is still O(m3).

Although the overall speedup our technique provides is

modest, to the best of our knowledge it is free of patents,

an important consideration in many scenarios.

10 Conclusions

We have proposed a fast cryptographic hash algorithm for

pairing-based cryptosystems. The main idea is to hash

messages onto curve ordinates and then to solve a cubic

equation over F3m to compute the corresponding abscissa,

which can be done in time O(m2). In comparison, the

naive approach hashes messages onto curve abscissas

and then solves a quadratic equation to compute a valid

ordinate, a process that takes time O(m3).

We also showed how to adapt the BLS compact signa-

ture algorithm to use the new hash method, and proved

the security of the adapted scheme in the random ora-

cle model. Similar modifications are applicable to other

pairing-based cryptosystems in a straightforward fashion,

substantially improving the overall efficiency of the result-

ing schemes.

Acknowledgements

We are grateful to Dan Boneh, Ben Lynn, Ricardo Ko-

matsu de Almeida, Frederik Vercauteren, and Mike Scott

for fruitful discussions regarding the contents of this paper.



References

[1] American National Standards Institute – ANSI. Pub-

lic Key Cryptography for the Financial Services In-

dustry: the Elliptic Curve Digital Signature Algorithm

(ECDSA) – ANSI X9.62, 1999. Also published in

FIPS 186-2.

[2] M. Bellare and P. Rogaway. Random oracles are

practical: A paradigm for designing efficient proto-

cols. In Proceedings, pages 62–73, Fairfax, USA,

1993. ACM Conference on Computer and Communi-

cations Security, ACM Press.

[3] D. Boneh and X. Boyen. Short signatures without

random oracles. In Advances in Cryptology – Eu-

rocrypt’2004, volume 3027 of Lecture Notes in Com-

puter Science, pages 56–73. Springer, 2004.

[4] D. Boneh and M. Franklin. Identity-based encryption

from the Weil pairing. In Advances in Cryptology –

Crypto’2001, volume 2139 of Lecture Notes in Com-

puter Science, pages 213–229. Springer, 2001.

[5] D. Boneh, B. Lynn, and H. Shacham. Short sig-

natures from the Weil pairing. In Advances in

Cryptology – Asiacrypt’2001, volume 2248 of Lec-

ture Notes in Computer Science, pages 514–532.

Springer, 2002.

[6] H. Cohen. A Course in Computational Algebraic

Number Theory. Springer, Berlin, Germany, 1993.

[7] N. Courtois, M. Finiasz, and N. Sendrier. How to

achieve a McEliece-based digital signature scheme.

In Advances in Cryptology – Asiacrypt’2001, volume

2248 of Lecture Notes in Computer Science, pages

157–174. Springer, 2002.

[8] S. Galbraith, F. Heß, and N. P. Smart. Extending the

GHS Weil descent attack. In Advances in Cryptology

– Eurocrypt’2002, volume 2332 of Lecture Notes in

Computer Science, pages 29–44. Springer, 2002.

[9] S. Galbraith and N. P. Smart. A cryptographic appli-

cation of Weil descent. In 7th IMA International Con-

ference on Codes and Cryptography, volume 1746 of

Lecture Notes in Computer Science, pages 191–200.

Springer, 1999.

[10] P. Gaudry, F. Heß, and N. P. Smart. Constructive and

destructive facets of Weil descent on elliptic curves.

Journal of Cryptology, 15:19–46, 2002.

[11] K. Hoffman and R. Kunze. Linear Algebra. Prentice

Hall, New Jersey, USA, 2nd edition, 1971.

[12] IEEE P1363 Working Group. Standard Specifications

for Public-Key Cryptography – IEEE Std 1363-2000,

2000.

[13] A. Joux and K. Nguyen. Separating decision Diffie-

Hellman from Diffie-Hellman in cryptographic groups.

Journal of Cryptology, 16(4):239–247, 2003.

[14] E. W. Knudsen. Elliptic scalar multiplication using

point halving. In Advances in Cryptology – Asi-

acrypt’99, volume 1716 of Lecture Notes in Computer

Science, pages 135–149. Springer, 1999.

[15] N. Koblitz. An elliptic curve implementation of the

finite field digital signature algorithm. In Advances

in Cryptology – Crypto’98, volume 1462 of Lec-

ture Notes in Computer Science, pages 327–337.

Springer, 1998.

[16] R. Lidl and H. Niederreiter. Finite Fields. Number 20

in Encyclopedia of Mathematics and its Applications.

Cambridge University Press, Cambridge, UK, 2nd

edition, 1997.



[17] A. J. Menezes. Elliptic Curve Public Key Cryptosys-

tems. Kluwer Academic Publishers, Boston, USA,

1993.

[18] A. J. Menezes, T. Okamoto, and S. A. Vanstone. Re-

ducing elliptic curve logarithms to logarithms in a fi-

nite field. IEEE Transactions on Information Theory,

39:1639–1646, 1993.

[19] A. J. Menezes, P. C. van Oorschot, and S. A. Van-

stone. Handbook of Applied Cryptography. CRC

Press, Boca Raton, USA, 1999.

[20] V. Miller. Short programs for functions on curves.

Unpublished manuscript, 1986. Available at http:

//crypto.stanford.edu/miller/miller.pdf.

[21] J. Patarin, N. Courtois, and L. Goubin. Quartz, 128-

bit long digital signatures. NESSIE submission, 2000.

Available at http://www.cryptonessie.org/.

[22] J. M. Pollard. Monte Carlo methods for index com-

putation (mod p). Mathematics of Computation,

32:918–924, 1978.

[23] R. Schroeppel, H. Orman, S. O’Malley, and

O. Spatscheck. Fast key exchange with elliptic curve

systems. In Advances in Cryptology – Crypto’95,

volume 963 of Lecture Notes in Computer Science,

pages 43–56. Springer, 1995.

[24] J. H. Silverman. The Arithmetic of Elliptic Curves.

Number 106 in Graduate Texts in Mathematics.

Springer, Berlin, Germany, 1986.


