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Abstract. Template matching is a technique widely used for finding patterns in digital images. A good template matching 

should be able to detect template instances that have undergone geometric transformations. In this paper, we proposed a 

grayscale template matching algorithm named Ciratefi, invariant to rotation, scale, translation, brightness and contrast and its 

extension to color images. We introduce CSSIM (color structural similarity) for comparing the similarity of two color image 

patches and use it in our algorithm. We also describe a scheme to determine automatically the appropriate parameters of our 

algorithm and use pyramidal structure to improve the scale invariance. We conducted several experiments to compare 

grayscale and color Ciratefis with SIFT, C-color-SIFT and EasyMatch algorithms in many different situations. The results 

attest that grayscale and color Ciratefis are more accurate than the compared algorithms and that color-Ciratefi outperforms 

grayscale Ciratefi most of the time. However, Ciratefi is slower than the other algorithms. 
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1. Introduction 

Template matching is a classical problem in com-

puter vision. It consists in detecting a given query 

template Q in a digital image A. This task becomes 

more complex with the invariance to rotation (R), 

scale (S) and translation (T), and robustness to 

brightness (B) and contrast (C) changes. We define 

that two images x and y are equivalent under bright-

ness/contrast variation if there are a brightness cor-

rection factor α and a contrast correction factor β>0 

such that 1xy α+β= , where 1 is the matrix of 1’s. 

Some approaches achieve RST-invariance using 

detection of interest points and edges, including: ge-

neralized Hough transform [4]; geometric hashing 

[20]; graph matching [21]; and curvature scale space 

[28]. 

Ullah and Kaneko [37] present a RTBC-invariant 

grayscale template matching based on orientation 

gradient histograms. This algorithm was improved by 

Marimon e Ebrahimi [25] by using integral histo-

grams. Choi and Kim [9] present another interesting 

algorithm for RTBC-invariant template matching. 

Cyganek [11] present a simple and fast technique for 

detecting circular road signs. Raftopoulos et al. [30] 

present a biologically inspired shape classifier that 

may shed light in the mechanism of biological tem-

plate matching. Sajjanhar et al. present an interesting 

rotation-invariant shape descriptor method using 

spherical harmonics [32]. 

The recently developed algorithms based on scale 

and rotation-invariant keypoints and local features, 

like SIFT (Scale Invariant Feature Transform) [24], 

GLOH (Gradient Location and Orientation Histo-

gram) [26] and SURF (Speeded Up Robust Features) 

[6] have been widely used for image matching tasks. 

SIFT is very popular and has been proven to be the 

one of the most efficient methods to extract invariant 

features from images. It extracts some scale-invariant 

keypoints and computes their associated features 

based on local gradient orientations. Then, it finds 

the correspondences between the keypoints of Q and 

A based on the distances of the features. SIFT (fol-

lowed by a Hough transform to identify clusters be-
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longing to a single object) can be used for object rec-

ognition or template matching. 

Fourier-Mellin transform is a popular technique 

for RST-invariant image registration, where image Q 

may appear rotated, scaled and translated in A [31, 

8]. However, this technique supposes implicitly that 

the non-intersecting areas of Q and A are small. So, it 

cannot be directly applied for template matching, 

where template Q and image A usually have large 

non-intersecting areas. If Fourier-Mellin is applied in 

this case, the correlation peaks become weak, making 

it difficult to detect the geometric transformation 

parameters. 

There are also some commercial RSTBC-invariant 

template matchings, such as Open eVision Easy-

Match
1
. However, as they are commercial software 

we do not know exactly which algorithm is imple-

mented inside. 

In this paper, we present a template-matching al-

gorithm, named Ciratefi (Circular, Radial and Tem-

plate-Matching Filter), invariant to rotation, scale, 

translation, brightness and contrast (RSTBC). The 

goal of Ciratefi is to find all occurrences of a query 

image Q in an image to be analyzed A, with respec-

tive orientation angle and scale. In some applications, 

the number of instances of Q in A may be known, 

and this information is very useful to the algorithm. 

Ciratefi algorithm consists of three cascaded filters 

that successively exclude pixels that have no chance 

of matching the template from further processing. 

Ciratefi does not require previous “simplification” of 

A and Q that discards grayscale information, like 

detection of edges, detection of interest points or 

segmentation/binarization. These image simplifying 

operations seems to be noise-sensitive and prone to 

errors. Experimental results show that the absence of 

“simplification” makes Ciratefi very robust to some 

common image distortions such as blurring and 

JPEG-compression. 

We also propose an extension of Ciratefi named 

color-Ciratefi that takes into account the color infor-

mation. Most existing template matching techniques 

were designed for gray-level images, not taking into 

account the power of color. The main problem of 

color template matching is the color constancy, that 

is, how to extract color information that remains con-

stant with the illumination change. Color is not an 

intrinsic property of objects. Instead, the apparent 

color of objects depends on the spectral composition 
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of the illuminant, the reflecting properties of their 

surfaces and the color of the environment. Changes 

in illumination can cause changes in object colors 

acquired by a camera, worsening the performance of 

pattern recognition algorithms that use color informa-

tion [27].  

Since color constancy is an open problem, it has 

been an object of intense study and in the last two 

decades many color-based methods, invariant color 

models and perceptual distance measures have been 

proposed [10, 5]. However, some studies have ques-

tioned the effectiveness and usefulness of the pro-

posed color invariants. For example, Funt et al. [13] 

investigated several methods used in color-based 

object recognition and concluded that all tested me-

thods are insufficient to deal with color constancy 

problem. Schaefer [34] investigated the usefulness of 

color invariants in image retrieval. He concluded that 

color invariants are not always useful for image re-

trieval. He also suggests that some prior knowledge 

of the application domain is necessary to improve the 

performance of invariants. 

Several proposed color-based matching algorithms 

use only global color histograms of images ignoring 

the spatial information [35, 12, 16]. These algorithms 

are more suitable for image retrieval applications or 

object recognition in a simple background.  

Tsai and Tsai [36] present a technique for match-

ing colored objects that is somehow similar to ours. 

The main drawback of this technique is the lack of 

invariance to scale changes. 

Geusebroek et al. [14] developed an important set 

of color invariant features based on Gaussian deriva-

tive to deal with illumination changes, shadow, high-

lights and noise. These set of invariants was embed-

ded in the SIFT, by Burghouts and Geusebroek [7], 

yielding powerful color invariant descriptors. Among 

them are W-color-SIFT, H-color-SIFT and C-color-

SIFT. Actually, many color invariants reported in the 

literature have been plugged in the SIFT, generating 

many other color-based SIFT descriptors such as 

CSIFT [1], HSV-SIFT, Hue-SIFT, OpponentSIFT, 

W-SIFT, rgSIFT, Transformed color SIFT [33] and 

SIFT-CCH [2]. 

Color-Ciratefi has the same structure of Ciratefi, 

but was designed to deal with color images. To 

achieve controlled robustness to illumination 

changes, we proposed a new similarity measure, 

named CSSIM, which is a weighted geometric mean 

between SSIM (structural similarity) [38] and the 

Euclidean distance of components a* and b* from 
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CIE L*a*b* color space, used as similarity of chro-

maticity. 

In order to attest the accuracy of Ciratefi and col-

or-Ciratefi, we conducted several experiments com-

paring their results with the results obtained by SIFT, 

C-color-SIFT and EasyMatch algorithms. We tested 

images with few textures, large illumination varia-

tion, blur, JPEG compression and viewpoint varia-

tions. The results show that Ciratefi and color-

Ciratefi are more accurate than the compared algo-

rithms and also that Color-Ciratefi outperforms 

grayscale Ciratefi in most situations.  

2. Original Ciratefi
2
 

The objective of grayscale Ciratefi algorithm is to 

find a query template image Q in a larger image to 

analyze A, invariant to rotation, scaling, and transla-

tion and with controlled robustness to brightness and 

contrast changes. Ciratefi consists of three cascaded 

filters: Cifi, Rafi and Tefi. Each filter successively 

excludes pixels that have no chance of matching the 

template. Moreover, Cifi and Rafi also compute re-

spectively the scale and rotation angle.  

Actually, Ciratefi uses a set of discrete angles and 

scales. To avoid that a small misalignment may cause 

a large mismatching, a low-pass filter (for example, 

the Gaussian filter) may smooth both images A and 

Q. This low-pass filtering lessens the errors intro-

duced by using discrete scales and angles. 

2.1. Correlation coefficient 

The original Ciratefi uses the correlation coeffi-

cient (also known as normalized correlation) in each 

Ciratefi step to evaluate how well Q matches (in 

brightness/contrast-invariant sense) a region of A 

around a pixel (x, y). Let v be the vector that 

represents the mean grayscales of certain parts of Q 

and w the corresponding vector of the parts of 

A(x, y). Then, the correlation coefficient is defined: 

 
wv

wv
wv ~~

~~
)( =,X . (1) 

where vvv −=~
 is the mean-corrected vector and v  

is the mean of v (similar definitions are applicable to 

w). Division by zero must be avoided certifying that 

v~  and w
~

 are not null vectors. The correlation coef-

ficient between two non-zero vectors always ranges 

from -1 to +1 and is BC-invariant. If the correlation 
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is greater than some threshold t≥0, we consider that 

Q matches A(x, y). This comparison may be signed 

tX ≥),( wv  (in this case, a black-white reversed 

negative instance will not match) or absolute 

tX ≥),( wv  (either negative or positive instance will 

match). 

2.2. First Filter: Cifi 

The first filter, called Cifi (Circular sampling Fil-

ter) uses the projections of the images A and Q on a 

set of circular rings (Figure 1) to detect the “first 

grade candidate pixels” and their “best matching 

scales”. Given an image B, let us define the circular 

sampling as the average grayscale of the pixels of B 

situated at distance r from pixel (x, y): 

∫
πΩ θθ+θ+

π
=

2

0
d)sin,cos(

2

1
),,( ryrxB

r
ryxSB .(2) 

We use the superscript Ω to indicate circular sam-

pling. 

Given the template Q and the set of n scales s0, s1, 

..., sn-1, the image Q is resized to each scale si, obtain-

ing the resized templates Q0, Q1, ..., Qn-1. Then, each 

resized template Qi is circularly sampled at a set of 

circle rings with l predefined radii r0, r1, …, rl-1, 

yielding a 2-D table of multi-scale rotation-invariant 

features with n rows (scales) and l columns (radii): 

),,(],[ 00 kQQ ryxSkiC
i

Ω= , lkni <≤<≤ 0  and  0  (3) 

where (x0, y0) is the central pixel of Q. In small 

scales, some of the outer circles may not fit inside the 

resized templates. These circles are represented by a 

special value in table CQ (say, -1) and are not used to 

compute the correlations.  

Given the image to analyze A, we build the 3-D 

image that contains l circular projections for each 

pixel (x, y): 

 
)domain(),( ,0

),,,(],,[

Ayxlk

ryxSkyxC kAA

∈<≤

= Ω

. (4) 

Cifi uses matrices QC  and AC  to detect the circular 

sampling correlation at the best matching scale for 

each pixel (x, y): 

 [ ]]),[],[(MAX),(
1

0
, yxCiCXyxX AQ

n

i
QA

−

=

Ω = , (5) 

where ]),[],[( yxCiCX AQ  is the correlation coeffi-

cient between vectors ][iCQ  and ],[ yxCA . A pixel 

(x, y) is classified as a “first grade candidate pixel” if 

1, ),( tyxX QA ≥Ω  for some threshold t1. The appropri-



4 

 

ate value for t1 depends on the application. Assigning 

small value for t1 makes the algorithm slower, and 

assigning large value for t1 decreases the algorithm’s 

accuracy. In section 4, we explain this parameter can 

be automatically chosen. The “best matching scale” 

of a first grade candidate pixel (x, y) is the argument 

that maximizes the correlation: 

 [ ]]),[],[(ARGMAX),(
1

0
, yxCiCXyxG AQ

n

i
QA

−

=

Ω = . (6) 

 

 
s=1.0 

 
s0=0.5 

 
s1=0.57 

 
s2=0.66 

 
s3=0.76 

 
s4=0.87 

Fig. 1. The original query image and the circular projections at 

different scales. 

2.3. Second Filter: Rafi 

The second filter, called Rafi (Radial sampling 

Filter), uses the projections of images A and Q on a 

set of radial lines (Figure 2) to upgrade some of the 

first grade candidate pixels to the second grade. The 

pixels that are not upgraded are discarded. It also 

assigns the “best matching rotation angle” to each 

second grade candidate pixel. Given an image B, let 

us define the radial sampling as the average grayscale 

of the pixels of B located on the radial line with one 

vertex at (x, y), length λ and inclination α: 

∫
λΦ α+α+

λ
=αλ

0
)sin,cos(

1
),,,( dttytxByxSB  (7) 

We use the superscript Φ to indicate radial sampling. 

Given the template Q and the set of m angles α0, 

α1, ..., αm-1, Q is radially sampled using rl-1, the ra-

dius of the largest sampling circle that fits inside Q, 

yielding a vector with m features: 

 ),,,(][ 100 jlQQ ryxSjR α= −
Φ , mj <≤0  (8) 

where (x0, y0) is the central pixel of Q.  

For each first grade candidate pixel (x, y), A is ra-

dially sampled at its probable scale ),(, yxGi QA

Ω= : 

  0),,,,(],,[ 1 mjrsyxSjyxR jliAA <≤α= −
Φ . (9) 

where 1−lirs  is the radius of the scaled template Qi.  

At each first grade candidate pixel (x, y), Rafi 

uses vectors ],[ yxRA  and QR  to detect the radial 

sampling correlation at the best matching angle: 

 ( )[ ])(cshift],,[MAX),(
1

0
, QjA

m

j
QA RyxRXyxX

−

=

Φ = , (10) 

where “cshiftj” means circular shifting (or element-

wise rotation) j positions of the argument vector. A 

first grade pixel (x, y) is upgraded to the second grade 

if 2, ),( tyxX QA ≥Φ  for some threshold t2. In section 4, 

we explain how to select this parameter automatical-

ly. The probable rotation angle at a second grade 

candidate pixel (x, y) is the angle that maximizes the 

correlation: 

 ( )[ ])(cshift],,[ARGMAX

),(

1

0

,

QjA

m

j

QA

RyxRX

yxG

−

=

Φ =
. (11) 

 

 

Fig. 2. Radial projections at the selected scale. 

2.4. Third Filter: Tefi 

The third filter, called Tefi (Template matching 

Filter), computes the correlation coefficient between 

the neighborhood of each second grade candidate 

pixel and the template scaled and rotated using the 

scale and angle determined respectively by Cifi and 

Rafi. 

Tefi first resizes and rotates template Q to all m 

angles and n scales and stores them in a table named 

TQ. Let (x, y) be a second grade candidate pixel, with 

its probable scale ),(, yxGi QA

Ω=  and probable angle 

),(, yxGj QA

Φ= . Tefi computes the correlation coeffi-

cient between the image A at pixel (x, y) and ],[ jiTQ  

(the template image Q at scale si and angle αj). Ac-

tually, to make the algorithm more robust, Tefi tests 

scales i-1, i, i+1 and angles j-1, j, j+1 (in this case, 

subtraction and addition are computed modulus m) 

and takes the greatest correlation coefficient. If the 

greatest coefficient is above some threshold t3, the 

template is considered to be found at pixel (x, y), at 

the scale and the angle that yielded the greatest corre-
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lation. If the user knows that Q appears only once in 

A, the threshold t3 is not used. Instead, a single pixel 

with the highest correlation is chosen. 

2.5. Considerations 

Cifi, Rafi and Tefi cannot be executed in different 

order, because Cifi detects the probable scale, to be 

used by Rafi, and Rafi detects the probable angle, to 

be used by Tefi. Rafi cannot be executed without the 

probable scale, and Tefi cannot be executed without 

the probable scale and angle. 

Some query images may have “ambiguous” scale 

and/or rotation angle. Consider the query image de-

picted in Figure 3. All the circular and radial projec-

tions yield the same average grayscale. So, Ciratefi 

cannot search for this image. However, even in this 

case, Ciratefi can search for an off-centered subimage 

of this query image.   

 

 

Fig. 3. A query image with ambiguous scale and rotation angle. 

Let us make the following considerations to show 

that, under some assumptions, if a rotated, scaled or 

brightness/contrast-changed (but not deformed) in-

stance of non-ambiguous Q appears in A, it will al-

ways be detected by Ciratefi. Let us suppose that Cifi 

uses enough number of circular projections and the 

images were low-pass filtered so that any scaled in-

stances of Q in A yield correlations almost equal to 

one. In this case, it is clear that Cifi will never make 

a false negative error. However, Cifi can still make 

false positive errors, because different templates can 

be mapped into the same circular projections. Simi-

larly, supposing that Cifi has computed the correct 

probable scale and using enough number of radial 

projections, Rafi will never make a false negative 

error, though it can make false positive errors. Final-

ly, supposing Q is non-ambiguous and that the scale 

and angle were correctly computed, Tefi will never 

make any (false negative or positive) error, because it 

compares all the pixels of Q and of the corresponding 

instance in A to compute the correlation coefficient. 

An instance of Q in A may pass undetected by Cirate-

fi only if Q is ambiguous or if the chosen thresholds 

are too high to discard a true matching. 

The template matching proposed by Lin and Chen 

[23] uses circular (or ring) projection together with 

parametric template to obtain RST-invariance. It has 

no secondary filter as Rafi or Tefi. As we discussed 

above, it is not possible to avoid false positive errors 

using only circular projections (or any template 

matching that uses a set of a few local features), be-

cause different templates can be mapped into the 

same features.  

3. Accuracy of the Original Ciratefi 

We compare original Ciratefi
3
 with SIFT (Scale 

Invariant Feature Transform) proposed and imple-

mented by Lowe
4
 and EasyMatch 1.0, a template 

matching tool of Euresys Open eVision.  

Lowe’s SIFT implementation finds the keypoint 

correspondences, but does not find the template 

matching locations. To find Q in A using the key-

point correspondences, we implemented the genera-

lized Hough transform [4] to identify clusters, as 

suggested by Lowe. Although both SIFT and Ciratefi 

can be used for image matching, they are quite dif-

ferent. We enumerate some differences below: 

1. SIFT is based on keypoints and local gradient 

orientations while Ciratefi compares directly 

grayscales of regions of Q and A. This makes Ci-

ratefi more reliable than SIFT when the images 

are blurred, have large areas with constant grays-

cales, suffer JPEG compression, have few tex-

tures or suffer large brightness/contrast changes. 

SIFT is more reliable than Ciratefi when the im-

ages have many small textures. A small misa-

lignment of the tiny textures may decrease the 

correlation used by Ciratefi to find the template, 

decreasing its accuracy. 

2. Template matching using SIFT followed by 

Hough transform is robust to partial occlusions, 

while Ciratefi alone is not. However, Ciratefi (as 

well as any template matching algorithm) can be-

come robust to partial occlusions by taking some 

sub-templates of Q, finding them all in A, and 

combining the results by a Hough transform. This 

idea was used in [19]. 

                                                           
3
 Executable Ciratefi implementation is available at 

http://www.lps.usp.br/~hae/software/cirateg 
4
 http://www.cs.ubc.ca/~lowe/keypoints/ 
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3.1. Preliminary experiments 

We made some preliminary experiments and the 

results are depicted in Table 1. SIFT and EasyMatch 

use square query images and Ciratefi uses only the 

circular regions inscribed in the square query images. 

SIFT and Ciratefi searched for the templates without 

knowing how many instances occur in image A. We 

specified in the Hough transform (that follows SIFT) 

that a matching must have at least a cluster of three 

keypoint correspondences, as suggested by Lowe 

[24]. On the other hand, we informed EasyMatch the 

exact number of occurrences of the template. This 

gives a comparative advantage to EasyMatch and 

makes the numbers of false positive and negative 

errors to be always the same. Table 2 presents a sim-

plification of Table 1, where we present the accuracy 

computed as Hits/(Hits+FP+FN). Note that this for-

mula is slightly different from the conventional accu-

racy (TP+TN)/ (TP+TN+FP+FN), because there is 

no TN in our examples. 

a) Toy shapes 

We took some simple toy shapes, scattered them 

on the floor, and took 70 photos with different 

zooms. Then, we extracted 5 query images with 

51×51 pixels and searched for them in the 70 images. 

In each image to analyze, there are two instances 

(with different grayscales but the same shape) of 

each query image, resulting in 700 total searchings. 

Ciratefi found correctly all the 700 instances, without 

any false negative or false positive (accuracy 100%). 

Figure 4(a) depicts one of the outputs of Ciratefi, 

obtained by concatenating the results of the 5 search-

ings. As the query images have few textures, we can 

anticipate that SIFT will perform poorer than Cirate-

fi. Indeed, SIFT hit only 564 searchings, missed 136 

and made 4 false positive errors (accuracy 80%). Due 

to the impossibility to run automatized experiments, 

we used EasyMatch to search only for the “frog” 

shapes. It hit 131 searchings (out of 140 possible 

matchings) and missed 9 (accuracy 88%). 

b) McDonald’s logotype 

We searched for the McDonald’s logotype in 60 

natural images where the logo appears 116 times 

(Figure 4(b)). Ciratefi has more hits (114) than SIFT 

(54) or EasyMatch (101), with accuracies respective-

ly 97%, 39% and 77%. This query image also has 

few textures and so SIFT’s performance is poor. 

c) H-shaped Buildings 

We searched for H-shaped popular dwelling 

buildings in the 15 satellite images provided by 

Google Earth (Figure 4(c)). The query building ap-

pears 187 times in the 15 images. Again, Ciratefi has 

more hits (171) than SIFT (61) or EasyMatch (118), 

with accuracies respectively with 83%, 21% and 

46%.  

d) Memory cards 

We searched for 12 memory cards in 3 sets of 10 

images to analyze. This problem is appropriate for 

SIFT, because the query images have many textures. 

In set A, the cards are only rotated. In set B, the cards 

are rotated and scaled. In set C, the cards are rotated 

with partial occlusions (Figure 4(d)).  

Tables 1 and 2 present the results. In set A, Cira-

tefi and SIFT made zero errors, closely followed by 

EasyMatch (accuracies 100%, 100% and 97%). In set 

B, SIFT has the best accuracy (98%), closely fol-

lowed by Ciratefi (96%). EasyMatch has substantial-

ly lower accuracy (38%). In set C, SIFT fared much 

better (accuracy 100%) than Ciratefi (73%) and Ea-

syMatch (63%). Note that we are comparing SIFT 

followed by Hough transform against Ciratefi and 

EasyMatch alone. The former is robust against partial 

occlusions while the latters are not. This explains 

SIFT’s clear superiority in set C. 

3.2. Mikolajczyk’s image database 

We made more comparison between Ciratefi and 

SIFT using the 8 sets of natural images provided by 

Mikolajczyk
5
 (Figure 5). This database is adequate 

for testing the image searching algorithm’s robust-

ness to focus blur, viewpoint changes (perspective), 

camera aperture (brightness/contrast change), JPEG 

compression, zoom and rotation. Each set is a se-

quence of 6 progressively distorted images, totalizing 

48 images. For each set, we extracted 50 square 

query images with 41×41 pixels uniformly distri-

buted within the first image and searched for them in 

the 6 images. Thus, each experiment consisted of 300 

searchings. SIFT and EasyMatch use all the square 

query image, while Ciratefi uses only the circular 

region inscribed in the square query image.  

                                                           
5
 http://www.robots.ox.ac.uk/~vgg/research/affine/  
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(a) Toy shapes. 

 
(b) McDonald’s logotype. 

 
(c) H-shaped buildings. 

 
(d) Memory cards with partial occlusions. 

Fig. 4. Preliminary experiments to compare Ciratefi with SIFT and EasyMatch. Yellow circles indicate false negative errors. 

 
Table 1 

Hits and error rates of Ciratefi, SIFT and EasyMatch in preliminary experiments. * means that the experiment was not done. 

 
toy shapes  memory game 

frog bear tree letter-S dog total McDonald buildings A B C 

Possible matchings 140 140 140 140 140 700 116 187 120 120 120 

Ciratefi 

 Hits 140 140 140 140 140 700 114 171 120 118 89 

 False pos. 0 0 0 0 0 0 1 18 0 3 2 

 False neg. 0 0 0 0 0 0 2 16 0 2 31 

SIFT 

 Hits 134 122 99 77 132 564 54 61 120 120 120 

 False pos. 0 4 0 0 0 4 23 99 0 2 0 

 False neg. 6 18 41 63 8 136 62 126 0 0 0 

EasyMatch 

 Hits 131 * * * * * 101 118 118 66 93 

 False pos. 9 * * * * * 15 69 2 54 27 

 False neg. 9 * * * * * 15 69 2 54 27 

 
Table 2 

Simplification of Table 1, where we present the accuracy computed as Hits/(Hits+FP+FN). 

 Toy shapes McDonald Buildings Game A Game B Game C 

Ciratefi 100% 97% 83% 100% 96% 73% 

SIFT 80% 39% 21% 100% 98% 100% 

EasyMatch 88% 77% 46% 97% 38% 63% 
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As each query image Q occurs only once in A, the 

results can be either correct (the algorithm correctly 

localizes the query image) or erroneous (the algo-

rithm points an incorrect location or fails to locate the 

query image). Then, we repeated the same experi-

ments using query images with 91×91 pixels. Both 

SIFT and Ciratefi searched for the templates knowing 

that each instance occurs only once in A. We speci-

fied in the Hough transform (that follows SIFT) to 

take the cluster with the maximal number of keypoint 

correspondences as the matching. With this choice, 

SIFT detects the template even if there is only one 

keypoint correspondence. The results are depicted in 

Table 3. Let us interpret the results: 

 
Table 3 

Error rates of Ciratefi and SIFT searching for 300 image patches in 
Mikolajczyk image database.  

 
41×41 91×91 

Cirat. SIFT Cirat. SIFT 

Bark (zoom/rotation) 18% 69% 16% 16% 

Bikes (focus blur) 23% 76% 10% 44% 

Boat (zoom/rotation) 26% 54% 20% 27% 

Graf (viewpoint) 50% 81% 44% 51% 

Leuven (camera aperture) 8% 59% 4% 26% 

Trees (focus blur) 38% 77% 54% 44% 

UBC (compression) 25% 52% 24% 30% 

Wall (viewpoint) 53% 46% 79% 30% 

Average 30% 64% 31% 34% 

 

Blur and JPEG compression: SIFT made far 

more errors than Ciratefi in set Bikes, because Cirate-

fi is more robust than SIFT against blurring. Howev-

er, this superiority is not clear in set Trees, where 

both Ciratefi and SIFT made many errors. In this set, 

the 6 photos were taken in different instants and the 

tree leaves are waving in the wind, what in our opi-

nion hinders any image matching algorithm from 

successfully finding small templates. According to 

the experiment with set UBC, Ciratefi is more robust 

than SIFT also against JPEG compression, because 

JPEG creates false edges weakening SIFT’s perfor-

mance. 

Brightness/contrast: Ciratefi made far less errors 

than SIFT in set Leuven, because Ciratefi is fully 

brightness/contrast-invariant.  

Perspective: Both Ciratefi and SIFT are not ro-

bust against perspective or affine deformation and so 

both made many errors in sets Graf and Wall. Set 

Wall has many small local textures that SIFT can use 

to find keypoint correspondences. So, SIFT was bet-

ter than Ciratefi in this set, especially using large 

templates. On the other hand, set Graf has few tex-

tures and Ciratefi fared better.  

Large templates: If a large template Q is given, 

any image searching algorithm can extract many 

small sub-templates T1, ..., Tn from Q, search for 

them in image to analyze A, and can combine the 

results using Hough transform. This approach would 

result in a high hit rate for Q, even the hit rates are 

low for sub-templates T1, ..., Tn. This is what SIFT 

followed by Hough transform is doing implicitly. So, 

SIFT fared relatively better using large templates. 

3.3. Processing time 

For A with 465×338 pixels, Q with 51×51 pixels, 

6 scales and 36 angles, the complete Ciratefi algo-

rithm took 12s, divided as follows: Cifi took 2s for 

the 3D matrix calculation and 4s for the correlation 

process; Rafi took 5s; Tefi took about 1s. EasyMatch 

and SIFT take respectively 1.5s and 2s to do the same 

task. These times were obtained in a 2GHz Intel Core 

2 Duo. Moreover, SIFT is especially fast when 

searching for many different templates in an un-

changing image A, because most of the processing 

time is spent in computing the keypoints and the fea-

tures of A (that can be done only once). From the 

experimental data, we conclude that Ciratefi is, in 

many cases, more accurate than SIFT and EasyMatch 

but slower. 

4. Improved Ciratefi 

Experimental results show that the original Cira-

tefi is accurate. However, there are many parameters 

left to be adjusted by hand. In this section, we intro-

duce some improvements to automatize the choice of 

the parameters. 
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Bark #1 

 
Bark #6 

zoom and rotation 

 
Bikes #1 

 
Bikes #6 

focus blur 

 
Boat #1 

 
Boat #6 

zoom and rotation 

 
Graf #1 

 
Graf #6 

viewpoint 

 
Leuven #1 

 
Leuven #6 

camera aperture 

 
UBC #1 

 
UBC #6 

JPEG compression 

 
Trees #1 

 
Trees #6 

focus blur 

 
Wall #1 

 
Wall #6 

viewpoint 

Fig. 5. We use Mikolajczyk database with 8 sets of natural images (each one with 6 progressively distorted images) to compare SIFT with 

Ciratefi. We took 50 square templates of the first image of each set and searched for them  in the 6 images. SIFT uses the whole square tem-
plate, while Ciratefi uses only the circular template inscribed in the square. The depicted images are parts of the Ciratefi output images, each 

one containing 50 red circles with pointers indicating the 50 matching positions found by Ciratefi. 
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4.1. Thresholds 

The appropriate values for t1, t2 and t3 are difficult 

to be set by hand. Choosing small thresholds (great 

number of candidate pixels) increases the accuracy 

but makes the process slower. Choosing large thre-

sholds may discard true matchings. Moreover, the 

appropriate values of these thresholds use to vary 

according to the application. So, we replaced these 

parameters by p1, p2 and p3, where pi is the num-

ber/percentage of the candidate pixels. We also de-

fined d1, d2 and d3, where di is the distance that sepa-

rates the candidate pixels of the degree i. Experimen-

tally, we chose p1=2%, p2=1% and p3=1 pixel, for 

applications where Q appears once in A. This means 

that 2% of pixels of A are first-grade candidate, 1% 

of pixels of A are second-grade candidate, and one 

single pixel is chosen as the final matching. If Q ap-

pears more than once, it is possible to define a mi-

nimal distance between matchings. For example, 

specifying p3=4 pixels and d3=50 pixels, the program 

will choose 4 matchings separated by at least 50 pix-

els. 

4.2. Scale range 

It is also difficult to choose the appropriate scale 

range. So, we decided to build a pyramidal structure 

for A. This structure is widely used to obtain scale-

invariance, for example, in [24]. Figure 6 depicts an 

example of this structure, obtained by concatenating 

the original A with its reduced versions at scales 0.5, 

0.25, etc. For the query image Q, we chose to use a 

set of 5 scales in geometric progression {0.5, 0.57, 

0.66, 0.76, 0.87}. With this choice, Ciratefi becomes 

scale-invariant in the range [0.5, ∞]. For example, 

suppose that Q at scale 0.66 was detected in A at 

scale 0.25. This means that Q scale 

(1/0.25)×0.66=2.64 appears in original A. In our im-

plementation, we took care to not detect the template 

in the boundaries of different scales of pyramidal A. 

In Cifi, we chose to use 16 circles whose radii in-

crease in arithmetic progression from zero to the ra-

dius of the query image at the greatest scale. With 

this choice, the query image at the smallest scale 

(0.5) has 9 circles inside, enough to compute the cor-

relation with some precision. Query image Q must be 

large enough in order to have 16 distinct circles in-

side the query image at scale 0.87. This happens 

when the size of Q is larger than 39×39. In the expe-

riments, we use query images with typical size 

61×61. Too large query Q makes the algorithm slow-

er without increasing the accuracy. In this case, we 

suggest extracting and finding a sub-image of Q or 

resizing down both Q and A. In Rafi, we chose to use 

36 angles. 

With these alterations and choices, we obtained 

an implementation where the standard parameters 

can be used in all experiments. 

 

 

Fig. 6. The scale range expands to infinite by building a pyramidal 

structure for A. Left column is the original A and the right column 

is A at scales 0.5, 0.25, 0.125, etc. If a query Q matches a region in 
the right column (red circles), actually Q at larger scale matches a 

region in the original image A (green circles in the left column). 

4.3. Structural similarity 

Structural similarity (SSIM) index is an image dis-

tortion metric for grayscale images designed to emu-

late the human visual perceptual system [38]. It sepa-

rates the image distortion in three independent com-

ponents: luminance (or brightness), contrast and 

structure (or correlation coefficient). Then, each 

component receives a weight that depends on the 

application. 

To assess the perceptual similarity between two 

images X and Y, the local statistics µx, µy, σx, σy, σxy 
are computed within the local windows x and y that 

moves pixel-by-pixel over the entire images (where 

µx is the mean of x, σx is the standard deviation of x 

and σxy is the covariance of x and y). The moving 

window can be an 8×8 square window or an 11×11 

circular Gaussian weighted window. In each window, 

three similarity functions are computed: 

• 
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where l measures the lightness similarity, c measures 

the contrast similarity and s measures the structural 

similarity. The constants Ci are small numbers intro-

duced to avoid numerical instability when the deno-

minators are close to zero. The structural similarity is 

defined: 

 [ ] [ ] [ ]γβα= ),(),(),(),SSIM( yxyxyxyx scl  (15) 

where α, β and γ are parameters to adjust the relative 

importance of the three components. The overall si-

milarity of the two images is defined as the mean 

SSIM. 

A template matching uses some metric to measure 

how well template Q matches a region of image A 

around a pixel p. Mean square difference and correla-

tion coefficient are two popular metrics used in tem-

plate matching. As SSIM was designed to evaluate 

how perceptually similar are two image patches, it 

seems natural to use it as similarity measure in tem-

plate matching. Using SSIM, the user can assign dif-

ferent weights for brightness, contrast and structure 

depending on the application. To obtain a complete 

invariance to brightness/contrast, one can set α=β=0 

and γ=1. However, this is not a good choice because 

regions of A with constant grayscale will match any 

template (SSIM will be one). In brightness/contrast 

invariant applications, we use α=β=0.01 and γ=0.98. 

If brightness/contrast changes only slightly in an ap-

plication, higher weights may be assigned to α and β 

to increase the accuracy. 

In the improved grayscale Ciratefi, we replace the 

correlation coefficient by SSIM as the similarity 

measure in all the three filters. 

As a curiosity, SSIM-based (not RS-invariant) 

template matching can become computationally effi-

cient for finding rectangular templates using the same 

ideas of the fast normalized cross correlation [22]. 

5. Color-Ciratefi
6
 

In this section, we introduce color-Ciratefi, which 

takes into account the color information. According 

to the literature, it seems that there is no color inva-

riant good for all applications. Our experiments con-

firm this information, indicating that color is not al-

ways useful. Color can even degrade Ciratefi’s accu-

racy in applications with great illumination variation. 

However, in most applications, color increases the 

accuracy. This increasing is more considerable for 

                                                           
6
 A preliminary work was published in [3]. 

detecting templates with distinctive colors in an illu-

mination-controlled environment. 

5.1. The proposed similarity measure 

Ciratefi’s robustness is rooted in using correlation 

of local mean grayscales instead of gradient orienta-

tions. To be consistent with this concept, we do not 

use color invariants that takes into account only color 

gradient, like [14]. Instead, we use chromaticity itself 

that allows us to distinguish the color of an image 

patch (that is, the property that allows us to say that 

an object is yellow, red, green, etc.) 

CIE L*a*b* (CIELAB) color space was designed 

to be perceptually uniform, that is, a small perturba-

tion to a color value produces a change of about the 

same perceptual importance across the range of all 

colors. Moreover, CIELAB isolates the lightness L* 

from the chromaticity a*b*. So, this color space is 

especially suited to evaluate the similarity of two 

image patches, evaluating independently the light-

ness similarity and chromaticity similarity.  

We made some simple experiments using images 

taken under different illumination conditions. We 

concluded that the chromaticity a*b* remains rela-

tively constant under small changes of illumination 

temperature, intensity and direction. However, we 

also realized that under a severe illumination varia-

tion, the chromaticity a*b* changes considerably. We 

tested also some other color spaces concluding that 

CIELAB’s chromaticity is one of the most stable. 

In CIELAB space, the lightness L* varies from 0 

to 100. The range of chromaticity components a*b* 

depends on the original color space of the image. If 

the original color space is RGB, one can assume the 

range -100 to +100.  

Let }...,,,{ 21 nxxx=x  and }...,,,{ 21 nyyy=y  be 

two vectors of colors. Each component ix  or iy  is 

composed by a set of tristimulus values L*, a* and b* 

denoted, respectively, as ibiaiL xxx ,,  and ibiaiL yyy ,, . 

The similarity functions l, c, and s are computed on 

the component L* as in the grayscale case. For simi-

larity of chromaticity h, we use the Euclidean dis-

tance of components a* and b*, because it is typical-

ly used as the distance measure in CIELAB color 

space [5, 17]: 
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where 200 is the greatest possible difference between 

the components a* and b*. To obtain the similarity 
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measure, the distance is subtracted from one. We 

define the color structural similarity as: 

[ ] [ ] [ ] [ ]δγβα= ),(),(),(),(),CSSIM( yxyxyxyxyx hscl  (17) 

We use weighted geometric mean (instead of 

weighted arithmetic mean between SSIM and h) be-

cause either complete chromaticity dissimilarity or 

complete lightness dissimilarity represents a com-

plete dissimilarity of the two patches. In the im-

proved color Ciratefi, we use CSSIM as the similarity 

measure in all the three filters. 

In the remainder of this paper, we use α=β=0.01 

and γ=δ=0.49 in all color experiments, to obtain a 

template matching invariant to brightness/contrast 

and that takes into account both color and structure 

information. For grayscale experiments, we use the 

improved grayscale Ciratefi with α=β=0.01 and 

γ=0.98. 

6. Experimental Results for Improved Ciratefi 

6.1. Preliminary experiment 

We made a preliminary experiment using toy 

shape images, where color is manifestly an useful 

information and where there are very few local tex-

tures (what makes SIFT disadvantageous over the 

other algorithms). In this experiment, we searched for 

16 query shapes (with approximately 43×43 pixels) 

in 3 images to analyze with different rotations and 

scales. Figure 6 depicts one of the 3 images with the 

results of the 16 searchings superimposed.  

We tested the improved color-Ciratefi
7
, the im-

proved grayscale Ciratefi, C-color-SIFT
8
 [7], the 

grayscale SIFT, color EasyMatch and grayscale Ea-

syMatch. All algorithms knew that there was only 

one instance of Q inside each A. The Hough trans-

form that follows C-color-SIFT and SIFT was pro-

grammed to detect the template even if there is only 

one keypoint correspondence between Q and A. In 

EasyMatch, we set the range of scales from 50% to 

200%. Table 4 presents the results. As expected, col-

or-Ciratefi and color easyMatch had the lowest error 

rate (0 errors or 0%), followed by grayscale Ciratefi 

with 8 errors or 17%. Surprisingly, C-color-SIFT 

made twice more errors (26 errors or 54%) than 

grayscale SIFT (13 errors or 27%). 

 

 

                                                           
7
 http://www.lps.usp.br/~hae/software/cirateg 

8
 http://staff.science.uva.nl/~mark/downloads.html#colorsift 

Table 4 

Errors rates of each algorithm searching for 48 toy shapes.  

color Ciratefi 0% 

gray Ciratefi 17% 

C-color-SIFT 54% 

gray SIFT 27% 

color EasyMatch 0% 

gray EasyMatch 40% 

 

6.2. Mikolajczyk’s image database 

Next, we compared the algorithms using Miko-

lajczyk’s image database. We tested EasyMatch 1.1 

only in some color cases, due to the impossibility to 

run automated tests. We discarded the set Boat, be-

cause it is originally grayscale. In all other sets ex-

cept Bark, we reduced the images to 50% of the orig-

inal sizes, extracted twenty 61×61 templates uniform-

ly distributed in the first image and searched for them 

in the six reduced images. In set Bark, we reduced 

the first image to 50% of the original size, extracted 

twenty 61×61 templates uniformly distributed in the 

first image and searched for them in the six original 

non-reduced images. The results are in Table 5.  

Overall, the two Ciratefis made fewer errors than 

the two SIFTs. Surprisingly, grayscale Ciratefi and 

color-Ciratefi made the same number of errors. C-

color-SIFT made considerably more errors than 

grayscale SIFT. EasyMatch has the highest error 

rates. Some considerations: 

Great illumination change: In set Leuven, there 

is great brightness/contrast variation and so the color 

algorithms made considerably more errors than the 

respective grayscale versions. 

Colorful images: Sets Graf, Trees and UBC have 

some colorful patches and almost no illumination 

change. In these 3 sets, color-Ciratefi made fewer 

errors than the grayscale version. Surprisingly, even 

in these cases, C-color-SIFT made more errors than 

the grayscale version. 

Blur and JPEG compression: The two Ciratefis 

made far less errors than the two SIFTs in sets Bikes 

and Trees (focus blur). In blurred images, SIFTs ex-

tracts only a small amount of keypoints, yielding 

errors. Ciratefis also made far less errors than SIFTs 

in set UBC (JPEG compression). In this case, a large 

amount of inconsistent features arises from the arti-

facts introduced by the JPEG compression, leading to 

erroneous SIFT keypoint matchings. 
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Table 5 

Error rates of each algorithm searching for 120 patches of Miko-
lajczyk database. * means that the experiment was not done. 

 
color 

Cirat. 

gray 

Cirat. 

color 

SIFT 

gray 

SIFT 

color 

EMat. 

Bark (zoom/rotation) 0% 0% 1% 0% * 

Bikes (focus blur) 0% 0% 28% 31% 53% 

Graf (viewpoint) 33% 38% 56% 55% * 

Leuven (cam. apert.) 13% 3% 47% 23% 55% 

Trees (focus blur) 10% 13% 38% 38% 86% 

UBC (JPEG) 2% 3% 54% 13% 49% 

Wall (viewpoint) 30% 30% 27% 33% * 

Average 12% 12% 36% 27% 60% 

 

6.3. ALOI image database 

ALOI is a color image collection of small objects
9
 

[15]. In order to capture the sensory variation in ob-

ject recordings, the authors systematically varied 

viewing angle, illumination angle, and illumination 

color for each object.  

We took the images with 4 different illumination 

colors (with the illuminating lamp temperatures 

3075K, 2750K, 2475K and 2175K) of the first 20 

objects, reduced them by 2 and glued the images with 

the same illumination temperatures together, obtain-

ing four 288×480 images. We searched the objects in 

the first image (3075K), cropped to 61×61 pixels, in 

the four images, using the four algorithms. The errors 

are depicted in row Color-A of Table 6. We repeated 

the experiment using the next 20 objects (row Color-

B). 

We took the images with 4 different illumination 

directions (identified as l8c1, l7c1, l6c1, l4c1 in the 

database) and searched the objects in the first image 

(l8c1) in the four images, obtaining rows Illum-A and 

Illum-B. 

We searched the unrotated objects in images with 

the objects rotated in 4 different angles (0, 20, 40 and 

60 degrees), obtaining rows View-A and View-B. 

Figure 7 depicts two of the images obtained in this 

experiment. 

We searched the unblurred objects in images dis-

torted with Gaussian blur with kernels 1×1, 3×3, 5×5 

and 7×7 (σ=0, 0.95, 1.25 and 1.55), obtaining rows 

Blur-A and Blur-B. 

                                                           
9
 http://staff.science.uva.nl/~aloi/ 

We searched the uncompressed objects in JPEG-

compressed images with qualities 100%, 75%, 50% 

and 25%, obtaining rows JPEG-A and JPEG-B.  

 
Table 6 

Errors rates obtained searching for 80 objects in ALOI database. * 

means that the experiment was not done. 

 
color 

Ciratefi 

gray 

Ciratefi 

color 

SIFT 

gray 

SIFT 

color 

EMatch 

Color-A 0% 1% 10% 5% 60% 

Color-B 0% 0% 15% 8% * 

Illum-A 6% 13% 30% 38% 53% 

Illum-B 15% 26% 35% 48% * 

View-A 21% 29% 39% 53% 65% 

View-B 20% 24% 36% 56% * 

Blur-A 0% 0% 28% 31% * 

Blur-B 0% 0% 26% 28% * 

Jpeg-A 0% 3% 51% 19% * 

Jpeg-B 0% 0% 46% 14% * 

Average 6% 9% 32% 30% 59% 

 

Let us analyze the results of Table 6. Color-

Ciratefi has equal or lower error rate than grayscale 

Ciratefi in all tests, indicating that the use of color 

helps to find colorful objects. The grayscale Ciratefi 

has lower error rates than the best SIFT in all cases, 

and this superiority is especially evident in: illumina-

tion color variation, blurring and JPEG compression. 

Color EasyMatch was the worst algorithm in all tests. 

To find an object, typically color-Ciratefi takes 

13s; grayscale Ciratefi takes 9s; C-color-SIFT takes 

3s; grayscale SIFT takes 2s and EasyMatch less than 

1s. 
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Fig. 7. We took the images of 20 unrotated objects and searched 

for them in images of the objects rotated by 20°, applying Ciratefi 
20 times. The image at top depicts the result, with 1 error. We 

repeated the process to objects rotated by 40°, resulting in the 

image at bottom, with 4 errors. The red circles indicates the match-
ings of Q at scales {0.5, 0.57, 0.66, 0.76, 0.87}. Whenever Q 

matches a reduced A (in red in the right column), actually Q at a 

larger scale matches the original A (in green in the left column).  

 

7. Considerations 

Our experiments indicate that Ciratefi is more ac-

curate than SIFT and EasyMatch most of the time. 

Nevertheless, SIFT has many practical advantages 

over Ciratefi: 

• SIFT is faster than Ciratefi. SIFT is especially 

fast when searching for many different templates 

in an unchanging image A, because most of the 

processing time is spent in computing the key-

points and the features of A (that can be done only 

once). 

• The query image in Ciratefi must contain only the 

searching pattern. The query image in SIFT may 

contain the searching pattern among many other 

“junk” background patterns, because it searches 

the occurrences of the keypoints of Q in A instead 

of the whole query image. 

• Template matching using SIFT followed by 

Hough transform is robust to partial occlusions, 

while Ciratefi by itself is not.  

• SIFT is wholly scale-invariant, while even the 

improved Ciratefi is scale-invariant only from 0.5 

to ∞. As a truly scale-invariant method, SIFT can 

find small or large template. Meanwhile, Ciratefi 

is better suited for finding relatively small tem-

plates, because large template may be time-

consuming. 

In our opinion, even if Ciratefi is not practical 

right now for some applications, it deserves to be 

more thoroughly studied because of its superior accu-

racy. There remains the challenge of designing an 

algorithm as practical as SIFT and as accurate as Ci-

ratefi.  

We have already taken some steps in that direc-

tion. Ciratefi repeats exactly the same series of sim-

ple operations for each pixel, making it especially 

appropriate for highly parallel implementation. One 

of the authors has participated of a research [29] to 

implement Ciratefi in FPGA (Field Programmable 

Gate Array). In this research, the authors have simu-

lated the first of the three Ciratefi filters and con-

cluded that the hardware implementation is 5000 

times faster than the software implementation and 

can classify one pixel as candidate or non-candidate 

in each clock (after the initial latency).  

One of the authors also have presented a template 

matching based on circular and radial projections that 

makes use of FFT (Fast Fourier Transform) and is 

fast even in a conventional computer [18].  

8. Conclusions 

In this paper we have presented an RST-invariant 

template matching named Ciratefi, with controlled 

robustness to brightness/contrast changes. We have 

compared Ciratefi with SIFT and EasyMatch con-

cluding that our technique is, most of the time, more 

accurate but slower. As the original Ciratefi has 

many adjustable parameters, we have presented a 

methodology to automatize the choice of all parame-

ters. We have also introduced a version of Ciratefi 

for color images. We have compared color-Ciratefi, 

grayscale Ciratefi, C-color-SIFT and grayscale SIFT. 

The overall result indicates that color-Ciratefi is the 

most accurate algorithm in most situations. However, 

in some applications with large illumination varia-

tion, grayscale Ciratefi can overperform the color 

version. In many applications, SIFT is more useful in 

practice than Ciratefi due to its many nice properties. 

However, as we have demonstrated experimentally 

that Ciratefi is manifestly more accurate than SIFT 

under many common image distortion scenarios, 

there remains the challenge for designing an algo-

rithm as practical as SIFT but as accurate as Ciratefi.  
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