
AUTOMATIC VHDL GENERATION FOR SOLVING
ROTATION AND SCALE-INVARIANT TEMPLATE MATCHING IN FPGA

Henrique P. A. Nobre and Hae Yong Kim

Escola Politécnica, Universidade de São Paulo, Brazil
hennobre@provida.org.br and hae@lps.usp.br

ABSTRACT

Template matching is a classical problem in computer vi-
sion. It consists in detecting the presence of a given tem-
plate in a digital image. This task becomes considerably
more complex with the invariance to rotation, scale, trans-
lation, brightness and contrast (RSTBC). A novel RSTBC-
invariant robust template matching algorithm named
Ciratefi was recently proposed. However, its execution in
a conventional computer takes several seconds. Moreover,
the implementation of its general version in hardware is
difficult, because there are many adjustable parameters.
This paper proposes a software that automatically gener-
ates compilable Hardware Description Logic (VHDL)
modules that implements Ciratefi in Field Programmable
Gate Array (FPGA) devices. The proposed solution accel-
erates the time to process a frame from 7s (in a 3GHz PC)
to 1.06ms. This excellent performance (more than the re-
quired for a real-time system) may lead to cost-effective
high-performance co-processing computer vision systems.

1. INTRODUCTION

Image processing and computer vision are becoming
popular in many areas and more and more powerful but
time-consuming new algorithms are being developed.
These algorithms require intensive use of mathematical
calculations, such as averaging, interpolation and correla-
tion. FPGA (Field-Programmable Gate Array) seems to
be an adequate hardware system for many image process-
ing algorithms, because FPGAs have the capability of
making thousands of tasks in a single clock. Authors in
[1] mention advantages of FPGAs for image processing
and authors in [2] compare performance of FPGA
systems. Paper [3] exemplifies high performance of
FPGA architectures, where the authors implemented a
string matching algorithm with execution time 8-340
times faster than the implementation in a Pentium 4 com-
puter 3.5 GHz.
 Parallel processing is particularly important in image
processing algorithms where the same series of operations
must be repeated for each pixel. Authors in [4] developed
an object-tracking method based on a real time vision

module. In this method, real-time image-processing per-
formance is achieved by a parallel implementation in a
multiprocessor, DSP-based system. A more complex sys-
tem was proposed in [5], where the authors implemented
highly parallel architecture for real-time object recogni-
tion using signal processing and FPGA technologies.
 A novel template matching, invariant to rotation,
scale, translation, brightness and contrast (RSTBC),
named Ciratefi was recently proposed [6, 7]. The imple-
mentation of its general version in hardware is difficult,
because there are many adjustable parameters that require
hardware modifications. Figure 1 demonstrates the
matching result of the algorithm. This algorithm repeats
the same series of operations for each pixel, what makes
it good for hardware implementation. However, the
hardware implementation of the general version of
Ciratefi is not straightforward, because it must be flexible
to changes in the size of the template and the range of
template scales. Therefore, we propose a software that,
given the parameters, automatically generates compi-
lables VHDL modules that implements Ciratefi in FPGA.
The generated VHDL modules are highly optimized and
pipelined. The performance of our implementation is op-
timal, because it classifies one pixel (as matching or non-
matching) per clock.
 Ciratefi consists of three cascaded filters, named Cifi,
Rafi and Tefi. The first two filters are time-consuming
and they are the objects of this hardware implementation.
The last one is usually fast even in software and we have
decided to let it as a software implementation. Therefore,
we present in this paper a FPGA system that implements
Cifi and Rafi. However, until now, we have completed
only the implementation of Cifi. The implementation of
Rafi is quite similar and we intend to finalize it soon. The
proposed solution has accelerated Cifi 5000 times, from
7s to process a frame (in a 3GHz PC) to 1.06ms (in
FPGA).
 In the literature, there are some other implementations
of template matching in FPGA. Hegel et al. [8] present a
binary image template matching algorithm in FPGA. This
technique is neither rotation nor scale-invariant. Shen et
al. [9] present a rotation-invariant template matching
based on circular projections. However, it is not scale-
invariant.

Fig. 1. Output of Ciratefi, where the matching positions,

angles and scales are depicted as circles with pointers

The circular projections different scales Fig. 2.

The radial projection at the selected scale Fig. 3.

2. CIRATEFI

The objective of the Ciratefi algorithm is to find a gray-
scale query image Q in a larger image “to analyze” A,
invariant to rotation, scaling, translation, brightness and
contrast. We present below a brief description of Ciratefi.
The readers are referred to [6] for further details.
 Ciratefi consists of three cascaded filters. Each filter
successively excludes pixels that have no chance of
matching the template.

2.1. First Filter: Cifi

The first filter, called Cifi (Circular Sampling Filter),
computes the average grayscales of images A and Q on
circles (figure 2), and uses them to classify some pixels of
A as “first grade candidate pixels” for matching. This
filter also determines a “probable scale factor” for each
candidate pixel. To accomplish this, Cifi makes
successive correlations between the 2-D matrix CQ of
average values on circles of Q in several scale factors
(figure 2) and the 3-D matrix CA that contains, for every
pixel (x,y) in A, a vector of the average values of the
circles centered at (x,y). That is, CA is obtained processing

at (x,y). That is, CA is obtained processing all the pixels of
A according to the equation:

θθ+θ+
π

= ∫
π

drsinyrxB
r

ryxCA),cos(
2

1],,[
2

0
 (1)

 Cifi uses matrices CQ and CA to detect the correlation
coefficient at the best matching scale for each pixel (x,y).
A pixel (x,y) is classified as a first grade candidate pixel if
the best correlation is larger than some defined threshold.

2.2. Second Filter: Rafi

The second filter, called Rafi (Radial Sampling Filter),
computes, for each first grade candidate pixel (x,y), the
projections of images A and Q on radial lines (figure 3)
with the radius given by the scale factor computed by
Cifi. Rafi upgrades the first grade candidate pixels that
have chance of matching the template to the second
grade. It makes successive correlations between the two
sets of projections using circular shifting. It also com-
putes the “probable rotation angle” for each second grade
candidate pixel.

2.3. Third Filter: Tefi

The third filter, called Tefi (Template Matching Filter), is
a conventional brightness and contrast-invariant template
matching applied to the second grade pixels, using the
scales and angles determined respectively by Cifi and
Rafi. It makes use of the correlation coefficient to evalu-
ate how well the template Q matches each second grade
candidate pixel.

2.4. Performance of Ciratefi

The interesting points of Ciratefi are its roughness and
accuracy when compared to others algorithms [6]. How-
ever, it takes several seconds to compute the matching
positions. For the worst case tested (A with 465×338 pix-
els, Q with 52×51 pixels, 6 scales and 36 angles) the
complete Ciratefi algorithm took 22s, divided as follows:

• The first filter – Cifi, took 2.5s for the 3D matrix cal-
culation and 4.5s for the correlation process, with total
of 7s.

• The second filter – Rafi, took 13s to output its result.
• The final filter – Rafi, was the fastest and took about

1s to output its result.
These times were obtained using a 3GHz Pentium 4.

Fig. 4. Architecture of the reading process

3. OBJECTIVES

Our objective is to propose and demonstrate a methodol-
ogy to design a FPGA system capable of executing in real
time, very time-consuming image processing algorithms
originally developed for PCs. This strategy was used to
design a hardware system (FPGA) that applies to Cifi, the
first of the three Ciratefi filters. The solution for Rafi, the
second filter, is very similar. Tefi, the third filter is very
fast, and it does not make part of the proposed innovation.
 The proposed system should be: flexible enough to be
used by other similar processing algorithms; independ-
ently of the FPGA vendors; and easily adaptable for dif-
ferent input parameters maintaining its performance. In
this case, the parameters are the size of the query image Q
(that is, the size of the window matrix); the number of
circles (where the average grayscales are computed); and
the number of different scales.

4. FPGA IMPLEMENTATION

To attend both flexibility and performance requirements,
we decided to use the high level programming language C
to automatically create all the VHDL files needed in
every development steps.
 The only third-part VHDL codes used in this project
are those for computing the square root and the division.
All the generated VHDL files can be implemented in any
FPGA (depending naturally of the resources of the de-
vice).
In this work, we chose to work with Altera devices using
its tools for synthesis, router and timing analysis. For
simulation, we used ModelSim from MentorGraphics that
permits to explore the parallel behavior and analyze the
results of the designed VHDL hardware.

Fig. 5. The window and the circle coordinates calcu-
lated by program in C to generate the CWP for Cifi

 The Configurable Window Processor
Our system makes use of a hardware module that we
named “Configurable Window Processor” (CWP). An-
other paper [3] uses the same expression, with a very dif-
ferent meaning: The 7×7 CWP proposed in [3] is config-
urable in the sense it can have different functionalities; in
our case, the CWP size can be configured from 23×23 to
53×53 pixels. Even these limits can be easily changed.
 The objective of our CWP module is to calculate the
sum and averages of the pixels in each circle (Cifi filter)
or radial line (Rafi filter), for every pixel of image A. To
avoid accessing external memories, we chose a FPGA
capable to store a full 640×480 grayscale image A: the
EP3SL340H1152C3 device that has an internal memory
of 16 Mbits. Some other papers (for example, [10]) also
use the internal memory of the FPGA to store the ana-
lyzed image.

Figure 4 represents the hardware architecture to read
pixels from image A to the CWP. A whole column is writ-
ten in CWP in every clock cycle. Pixels are written in
CWP in just one way, from right to left. This choice sim-
plifies and minimizes the logical size of the module. A
similar approach was used in [11], where three small
processing windows works in parallel so that the pixels
used by a CWP is passed and used by the next one.
 The coordinates of the pixels to be averaged are
automatically calculated by the VHDL generator (imple-
mented in C). Figure 5 shows a plot of the calculated cir-
cles coordinates for the following parameters: CWP of
size 53×53 and two pixels distance between two
neighboring circles. With this approach, we use neither
trigonometric functions in hardware as [12, 13] nor look-
up tables as [9] to calculate circles coordinates. As conse-
quence, while COrdinate Rotation Digital Computer
(CORDIC) [12, 13] spends some iterations (clock cycles)
to calculate each result, our implementation spend one
clock cycle per result. The lookup table solution [13] re-
quires much memory resources as the size of the images
grows and would be impractical in our high resolution
non-simplified images.

Fig. 6. Interconnections between the two filters

4.1. System Architecture

Figure 6 depicts the different modules of the Cifi hard-
ware architecture. The same figure also demonstrates the
interconnections between Cifi and Rafi filters. Implemen-
tation of the Rafi filter is left to a second phase.
 In the proposed approach, the first column of the
CWP module (in Cifi filter) is passed to the next filter
(Rafi filter) after the first correlation. Thus, it is not nec-
essary for the Rafi filter to wait the end of Cifi to start
processing the data. Both filters process simultaneously
one pixel at every clock cycle, with an initial latency of
53 clocks (the resolution of the larger template scale).
That is, at every clock, one pixel is categorized as a “can-
didate pixel” or “not candidate”. In the former case, the
most suitable scale value (Cifi) and the most suitable rota-
tion angle (Rafi) are also computed.
 Following the data path, after the computation of the
sums of the grayscales in circles in CWP, the average
module divides each sum by the number of pixels. Then,
using the pre-calculated Cq matrix, the correlations are
calculated and the largest correlation is chosen. Finally,
we compare the result of the largest correlation with a
given threshold to infer if the pixel has some probability
of matching the given template. The probable scale is the
scale that yielded the best correlation.

Parallel architecture for correlation computation Fig. 7.

Pipelined sum’s tree Fig. 8.

 To maximize the performance, we pipelined the in-
termediate results in order to classify one pixel in every
clock cycle (after the latency of the system for the initials
data). This is why we implemented as many correlation
modules as scale factors in the system. Figure 7 depicts
this, where one correlation module is instantiated for each
template scale. The work [4] uses a similar solution to
make many correlations simultaneously. The number of
scale factors is configurable. Our program in C generates
modules with up to 7 different scale factors.

4.2. Mathematical Calculations in Pipeline

The four mainly used operations in our system are: sum,
multiplication, division and square root. The CWP mod-
ule calculates the average of the sums of grayscales of the
pixels in each circle, for all pixels in A (except at tiny
image borders). As the high-end FPGAs have multipliers
implemented within the device, we multiply the sums by
the inverses of the numbers of pixels in each circle to
calculate the average grayscales of the circles. Given the
parameters, the software in C calculates the coordinates
of the pixels in each circle, generating the pipelined sum’s
tree (Figure 8) and the final division (that we compute by
a multiplication) to finally generate the average.

 Intermediary steps to compute correlation coefficients. Fig. 9.

 For the computation of the correlation coefficient be-
tween two vectors x and y we use equation:

,
)()(

),(
2222 ∑ ∑∑ ∑

∑ ∑∑
−−

−
=

iiii

iiii

yynxxn

yxyxn
yxCorr (2)

 Figure 9 depicts how the equation (2) is divided into
smaller equations to compute the correlation coefficients
through pipeline trees. The results are stored as a 16 bits
fixed-point variables with all the 16 bits for the fraction
part.

5. SIMULATIONS

Until now, we have implemented and analyzed only Cifi,
the first of the Ciratefi filters. The implementation of Rafi
(the second filter) is similar, and is subject of a future
work. However, the hardware infra-structured of the sys-
tem with both filters is already designed (figure 6). We
have compared the outputs of the software implementa-
tion of Cifi (that uses float-point variables) with the fixed-
point FPGA implementation from ModelSim simulations,
and verified that the two are quite similar. Figure 10 de-
picts the simulation architecture that permits to validate
the VHDL hardware using real images.

5.1. Timing Analysis

In this section, we present the timing analysis for each
individual module, based on the Altera Stratix III device
EP3SL340H1152C3. In Table 1, we present the resource
usage and the performance for the worst case (the largest
template with 53×53 resolution, the maximum quantity of
circles 14, and the maximum number of scales 7). We
also present the data for the largest and the smallest corre-
lation module. All frequency informations were obtained
with the Classical Timing Analyzer tool (Slow Model
Analysis) on the Altera Quartus II software.

Simulation Architecture involving the input and

output images
Fig. 10.

 After the system latency, the proposed architecture
will classify one pixel in each clock as “candidate for
matching” or “not candidate”, and will output the prob-
able scale and angle. The processing time for Cifi (that
searches a 640×480 image for a 53×53 template) is
1.06ms for the FPGA running at 258 MHz, to be com-
pared with 7s in a 3GHz Pentium.

Table 1. Performance of each module
 Maximum

Frequency (Mhz)
Size in Logical

Elements Latency

380 31.258 (12%) 9

258 21.538 (1%) 75

CWP
(Sums and Averages)

Correlations

Module

Device: EP3SL340H1152C3

6. CONCLUSION

In this paper, we have designed an FPGA system that
implements a novel rotation and scale-invariant template
matching named Ciratefi. We have actually implemented
and tested only the first filter, however the implementa-
tion of the second filter is quite similar. To achieve both
flexibility and high performance, we created a C language
program that automatically generates the VHDL for dif-
ferent parameters. The proposed system has the optimal
performance, classifying one pixel as matching or non-
matching per clock cycle, and takes 1.06ms to process a
frame, 5000 times faster than the software implementa-
tion. Seemingly, the same strategy can be used to imple-
ment other Image Processing and Computer Vision algo-
rithms.

7. REFERENCES

[1] C. Torres-Huitzil, M. Arias-Estrada, “Real-time image
processing with a compact FPGA-based systolic
architecture,” Real-Time Imaging 2004 (177-187).

[2] T. Kean, A. Duncan, “A 800 Mpixel/sec Reconfigurable
Image Correlator on XC6216,” Proceedings of FPL’97,
pp. 382-391, 1997.

[3] P. D. Michailidis, K. G. Margaritis. “A programmable
array processor architecture for flexible approximate
string matching algorithms,” J. Parallel Distrib. Comput.,
131 – 141, 2007.

[4] J. Ferruz, A. Ollero “Integrated real-time vision system
for vehicle control in non-structured environments,"
Engineering Applications of Artificial Intelligence 215-
236, 2000 .

[5] M. Sen, I. Corretjer, F. Haim, S. Saha, J. Schlessman, S.
Bhattacharyya and W. Wolf. "A parallel algorithm for
real-time object recognition," Pattern Recognition 1917–
1931, 2002.

[6] H. Y. Kim and S. A. Araújo, “Grayscale Template-
Matching Invariant to Rotation, Scale, Translation,
Brightness and Contrast,” IEEE Pacific-Rim Symposium
on Image and Video Technology, Lecture Notes in
Computer Science, vol. 4872, pp. 100-113, 2007.

[7] S. A Araújo, H. Y Kim, “Rotation, scale and translation-
invariant segmentation-free grayscale shape recognition
using mathematical morphology,” In: Int. Symposium on
Mathematical Morphology, 2007.

[8] S. Hezel, A. Kugel, R. Manner, D. M. Gavrila “FPGA-
based Template Matching using Distance Transforms,”
Proceedings of the 10 th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, 2008

[9] M. Shen, H. Song, W. Sheng, Z. Liu "Fast Correlation
Tracking Method based on Circular Projection" Eighth
ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel /
Distributed Computing 235-238, 2007.

[10] A. Lindoso, L. Entrena "High performance FPGA-based
image correlation," J. Real-Time Image Proc. 2:223–233,
2007.

[11] C. Torres-Huitzil, M. Arias-Estrada, “FPGA-Based
Configurable Systolic Architecture for Window-Based
Image Processing,” Journal on Applied Signal Processing
1024–1034, 2005.

[12] V. Bonato, “Proposta de uma arquitetura de hardware em
FPGA implementada para SLAM com multi-câmeras
aplicada à robótica móvel,” Ph.D. Thesis, Universidade
de São Paulo, Brazil, 2008.

[13] M. Ma, A. van Genderen, P. Beukelman “A Sign Bit Only
Phase Normalization for Rotation and Scale Invariant
Template Matching,” Proceedings of the 16th Annual
Workshop on Circuits, Systems and Signal Processing,
ProRisc, pp. 641-646, 2005.

	INTRODUCTION
	CIRATEFI
	First Filter: Cifi
	Second Filter: Rafi
	Third Filter: Tefi
	Performance of Ciratefi

	OBJECTIVES
	FPGA IMPLEMENTATION
	System Architecture
	Mathematical Calculations in Pipeline

	SIMULATIONS
	Timing Analysis

	CONCLUSION
	REFERENCES

