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ABSTRACT
The incremental combination of adaptive filters (AFs), recently in-
troduced in the literature, presents intrinsic features capable of im-
proving the overall filtering performance. In this work, theincre-
mental combination is extended to account for AFs with different
adaptive rules; when Recursive Least-Squares (RLS) and theLeast-
Mean-Squares (LMS) filters are employed, it is shown, by tracking
analysis and extensive simulations, that the new structureis mean-
square universal in terms of the combining parameter, particularly
in nonstationary scenarios with highly-correlated signals. The simu-
lations and the analytical model match well, showing that the new
algorithm outperforms its parallel-independent counterpart.

Index Terms— Adaptive filtering, incremental combination,
convex combination.

1. INTRODUCTION

Combinations of AFs have been explored as design solutions to en-
hance the overall performance of an adaptive system. In general, the
component filters present their estimates to a supervisor, responsible
to generate an overall estimate at least as good as the best filter in the
pool (universality) in the mean-square sense [1].

Designs based on convex and affine combining rules, AFs with
different step sizes, different orders, and from differentfamilies are
studied in [2–8]. In stationary scenarios, convex-parallel combina-
tions experience a stagnation effect in the adaptation [2].In order to
circumvent this, several techniques have been proposed: the transfer
of coefficients [9, 10]; the cyclic feedback of coefficients [11]; and
the incremental-cooperative combination [12].

Inspired by the successful parallel combination of different
AFs [4], this work extends the incremental structure proposed in [12]
to comprehend a hybrid chain with different adaptive rules at the
component filters. In this sense, this study shows that the hybrid
incremental combination is able to achieve universality instringent
scenarios (nonstationary and highly-correlated input), outperform-
ing the parallel arrangement, while endowing robustness tothe
overall combination.

2. HYBRID INCREMENTAL COMBINATIONS

This section introduces a general form for the incremental combi-
nation (hereon INC), giving rise to a hybrid chain of severalfilters,
each one with its own adaptive rule.

The first author is supported by a scholarship from CAPES, granted by
the Electrical Engineering Graduate Program of the University of Sao Paulo,
Brazil. The second author is supported by a CNPq research award.

2.1. Generic Case

The general form of the INC combination forK component filters
with different adaptive rules is given by

wk,i = wk−1,i + λk(i)µkpk, (1)
in which thekth component filterwk,i is an Mx1 vector; it updates
the estimatewk−1,i received from the previous filter in the chain, ac-
cording to the local adaptive rulepk = −Bk∇∗J(wk−1,i), with Bk

any positive-definite matrix,J(wk−1,i) the underlying cost function
the filter minimizes, and∗ denoting the conjugate transpose [13]. In
addition,λk(i) is the combining parameter, andµk is the filter step
size. As adopted in [12], the values ofλk(i) are subject to the convex
rule

∑K

k=1
λk(i) = 1.

The incremental chain ofK filters of the form (1) results in an
overall filter whose update rule is summarized by

wi = wi−1 +
K
∑

k=1

λk(i)µkpk. (2)

2.2. Mean-Square Filters - K=2

In this work, the focus is on combinations generated by particulari-
zing Eq. (2) for two component filters (K = 2) whose cost functions
minimize the mean-square error.

The data-dependent matricesHk,i, k = 1, 2 are defined accord-
ing to the desired adaptive rule for the component filter. Thus, the
INC combination forK = 2 is given by

w1 = wi−1 + λ(i)H1,iu
∗
i [d(i)− uiwi−1]

wi = w1 + (1− λ(i))H2,iu
∗
i [d(i)− uiw1],

(3)

whereui is a 1xM vector,d(i) is the desired signal, and[d(i) −
uiwi−1] is the estimation error. Note that selectingH1,i = µ1I and
H2,i = µ2I , with I the MxM identity matrix, the INC combination
from [12] is recovered.

3. RLS–LMS COMBINATION

The INC combination of RLS and LMS filters (RLS–LMS) is ob-
tained by selectingH1,i = Pi andH2,i = µI , resulting in

w1 = wi−1 + λ(i)Piu
∗
i [d(i)− uiwi−1]

wi = w1 + (1− λ(i))µu∗
i [d(i)− uiw1],

(4)

in whichPi is obtained by the recursion [13],

Pi = η−1

[

Pi−1 − η−1Pi−1u
∗
i uiPi−1

1 + η−1uiPi−1u∗
i

]

, P−1 = ǫ−1I , (5)

with the regularization parameterǫ, and the forgetting factorη.



Extensive parametric simulations in terms of the combiningpa-
rameterλ(i) = λ ∈ [0, 1], conducted in a system identification
configuration (order M), has shown that the INC combination in (4)
can clearly present universal behavior in adverse scenarios (nonsta-
tionary plants and highly correlated input signals).

In the following example, the plant is time-varying and evolves
according to the random-walk model [13]

wo
i = wo

i−1 + qi . (6)

In the literature,qi is generated as the realization of a zero-mean
independent and identically distributed (i.i.d.) processwith covari-
ance matrixEqiq

∗
i , Q = σ2

qI . The measurement noise variance is
σ2

v = 10−3, random-walk varianceσ2

q = 10−4, and the regressors
are originated by a white Gaussian process filtered by a first-order
auto-regressive process with transfer function

√
1− b2/(1− bz−1),

b = 0.98, andσ2

u = 1. The LMS step size isµ = µo/(Mσ2

u), in
which µo ∈ [0, 1], andM is the system order. The RLS forget-
ting factor isη = 0.98. The initial state of the plant coefficients
(M = 20) is drawn from a normalized unit variance white Gaussian
process. Fig. 1 depicts the curves for both parallel and INC combi-
nations, and their component filters.

Note how both combinations achieve universality for optimized
combining parameters, namelyλ = 0.4 for INC andλ = 0.7 for
the parallel. The INC combination performance is clearly superior
(about4dB lower than the parallel in steady-state). Thus, it turns out
that the RLS–LMS combination is very promising if the combining
parameterλ is properly chosen.
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Fig. 1: Universality achieved by the combinations (INC and parallel)
of RLS and LMS filters forµo = 0.3 (500 realizations).

4. PERFORMANCE ANALYSIS - TRACKING

Motivated by the previous example, performance analysis isdevised
to study in which scenarios the INC combination described by(3)
is able to achieve universality. The mean-square analysis is carried
out in terms of the parameterλ ∈ [0, 1], attempting to optimize it for
tracking purposes. In the sequel, Section 4.2 particularizes the analy-
sis for the RLS–LMS case and universality in terms of mean-square
error is shown. From now on, signals are modelled as stochastic
processes, and random quantities are represented in boldface.

4.1. Mean-Square Filters - K=2

Eq. (3) is rewritten adopting the data-dependent matricesHk,i, k =
1, 2, defined according to the desired adaptive rules. Note that now,
Eq. 7 is a stochastic equation, in which the boldface terms are ran-
dom quantities:

w1 = wi−1 + λH1,iu
∗
i [d(i)− uiwi−1]

wi = w1 + (1− λ)H2,iu
∗
i [d(i)− uiw1].

(7)

The goal is to derive an expression for the mean-square error(MSE)
in steady-state of any filter that can be written in the form (7), via

energy conservation relations (ECR) [13]. The MSE is definedas
MSE= ξ , limi→∞ E|e(i)|2, wheree(i) = d(i) − uiwi−1. For
that matter, since adaptive filters are non-linear, time-varying, and
stochastic, it is necessary to adopt a set of simplifying assumptions
collected into an extended nonstationary data model [13–15]:

(1) There exits a vectorwo
i such thatd(i) = uiw

o
i + v(i) ;

(2) The weight vector varies according towo
i = wo

i−1 + qi

(random-walk model);
(3) The noise sequence{v(i)} is i.i.d. with constant variance
σ2

v = E|v(i)|2 ;
(4) The noise sequence{v(i)} is independent ofui for all i, j ;
(5) The sequence{qi} has covariance matrixQ , Eqiq

∗
i and is

independent of{v(i),uj} for all i, j ;
(6) The initial conditions{w−1,w

o
−1} are independent of all

{d(j),uj ,v(j), qj} ;
(7) The regressor covariance matrix is denoted by
Ru = Eu∗

iui > 0 ;
(8) The random variables{d(i),v(i),ui, qi} are zero mean;
(9) The weight vectorwo

i has constant meanwo .
(8)

The ECR technique is an energy balance in terms of the follow-
ing error quantities











w̃i−1 , (wo
i−1 −wi−1) weight-error vector

ea(i) = ui(w
o
i −wi−1) a priori estimation error

ep(i) = uiw̃i a posterioriestimation error

(9)

together with the adaptive filter’s recursion. The resulting energy
equation leads to a variance relation from which the MSE and the
EMSE can be derived; for details see [13].

Merging the two equations in (7) results in a simple recursion,
wi = wi−1 +Hiu

∗
i e(i), (10)

in terms of the data-dependent matrix

Hi = [λH1,i + (1− λ)H2,i(1− λ‖ui‖2H1,i
)], (11)

where‖ui‖2Hi
, uiH iu

∗
i is the weighted norm ofui. In the

general case,‖x‖2Σ = xΣx∗.
Subtracting (10) fromwo

i gives

(wo
i −wi) = (wo

i −wi−1)−Hiu
∗
i e(i). (12)

Multiplying (12) from the left byui results in

ep(i) = ea(i)− ‖ui‖2Hi
e(i). (13)

Substituting (13) in (12) gives

(wo
i −wi) +

Hiu
∗
i

‖ui‖2Hi

ea(i) = (wo
i −wi−1) +

Hiu
∗
i

‖ui‖2Hi

ep(i) .

(14)

Using H−1

i as weighting matrix and equating the squared
weighted norms of (4.1) results in

‖wo
i −wi‖2

H
−1

i

+ µ(i)|ea(i)|2 =

‖wo
i −wi−1‖2

H
−1

i

+ µ(i)|ep(i)|2,
(15)

whereµ(i) , (‖ui‖2Hi
)† =

1

‖ui‖2Hi

, if ui 6= 0 or equals zero

otherwise, with† representing the pseudoinverse operator [16].
Taking the expectations of (15) gives

E‖w̃i‖2
H

−1

i

+ Eµ(i)|ea(i)|2 =

E‖wo
i −wi−1‖2

H
−1

i

+ Eµ(i)|ep(i)|2 (16)

Using the random-walk model into the first term of the right-hand
side of (16) yields



E‖w̃i‖2
H

−1

i

+Eµ(i)|ea(i)|2 =

E‖w̃i−1‖2
H

−1

i

+ E‖qi‖2H−1

i

+ Eµ(i)|ep(i)|2 (17)

In steady-state (i → ∞), E‖w̃i‖2
H

−1

i

= E‖w̃i−1‖2
H

−1

i

holds.

Moreover, whenever it is reasonable to assume thatw̃i−1 is inde-
pendent ofui (for instance, small step sizes), one has

{

E(H−1

i ) ≈ [E(Hi)]
−1 = H−1

H , EHi.
(18)

Applying (18) in (17) results in thevariance relation:

E‖ui‖2H |e(i)|2 + E‖qi‖2H−1 = 2Re{Ee∗
a(i)e(i)} (19)

The separation principle states that in steady-state‖ui‖2H is in-
dependent ofea(i) [13]. From the data model one has

e(i) = d(i)− uiwi−1 = ea(i) + v(i) (20)

which substituting into (19) leads to

2E|ea(i)|2 = σ2

vE‖ui‖2H + E‖ui‖2HE|ea(i)|2 + E‖qi‖2H−1 ,
(21)

whereE|ea(i)|2 is the very definition of the Excess-Mean-Square
Error: EMSE= ζ , E|ea(i)|2.

PluggingE‖ui‖2H = Tr(RuH) andE‖qi‖2H−1 = Tr(QH−1)
into (21) results in the steady-state EMSE, in nonstationary scenar-
ios, for the INC combination described by (7):

ζ =
σ2

vTr(RuH) + Tr(QH−1)

2− Tr(RuH)
. (22)

Eq. (22) holds for filters of the form (3), and whenever assump-
tion (18) is reasonable.

The MSE is obtained as follows (see Eq. (20)),

ξ = ζ + σ2

v . (23)

Eq. (22) holds under the data model (8), and requires the calculation
of the data momentsRu andH (which is filter dependent).

4.2. RLS–LMS case

For the RLS–LMS1 combination (refer to (7)),H1,i = P i (the
stochastic version of Eq. 5) andH2,i = µI , with I the MxM identity
matrix, andµ = µo/(Mσ2

u), µo ∈ [0, 1]. Thus,

Hi = [λP i + µ(1− λ)(1− λ‖ui‖2P i
)I ]. (24)

To calculate the EMSE and MSE of the structure, one needs to
determineEHi from (24). This is accomplished by particularizing
(18) for the RLS–LMS case (see [13] p.288),































lim
i→∞

E(P−1

i ) =
Ru

1− η
, P−1

EP i ≈ [E(P−1

i )]−1 = (1− η)R−1

u = P

‖ui‖2P i is independent ofea(i)

E‖ui‖2P i ≈ E‖ui‖2P = Tr(RuP ) = (1− η)M ,

(25)

resulting in

H = {λ(1− η)R−1

u + µ(1− λ)[1− λ(1− η)M ]I}. (26)

Substituting (26) into (22), together with (23) returns theEMSE
(MSE) of the RLS–LMS incremental structure. It is a functionof
several parameters. Hereη and M are fixed, and for a givenRu

and Q theζ behavior is explored in terms ofµo andλ. Note that
for this case, an expression for an optimal combining parameter λo

can be derived by makingλo = {λ|(∂ζ/∂λ) = 0}, which is not
shown here due to space constraints. In any event, it is a guideline
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Fig. 2: RLS–LMS - EMSE theoretical surfaces in terms ofµo andλ
in both stationary and nonstationary scenarios, with whiteand cor-
related input data.

for adaptive designs (λ(i) → λo). Such adaptive implementations
will be pursued in forthcoming publications.

Fig. 2 depicts an example of the EMSE surface for RLS–LMS
in four cases, varyingµo andλ, in both stationary and nonstation-
ary scenarios. Regressors are either white Gaussian or highly corre-
lated, obtained from a first-order auto-regressive processwith trans-
fer function

√
1− b2/(1− bz−1), b = 0.98. The signals variances

areσ2

u = 1, σ2

v = 10−3, andσ2

q = 10−4 for the random walk2. The
RLS forgetting factor isη = 0.98, regularization factorǫ = 10−5

and the system order isM = 20. Figs. 2 (a), (b) and (c) do not
show improvement from the combination. On the other hand, itis
noticeable from the convex shape of the correlated data surface (d)
that there are optimum pairs(µo, λ) that attain the minimum EMSE.
This shows that the structure is universal and considerablyoutper-
forms the component filters in nonstationary scenario with highly
correlated input.

5. SIMULATIONS

In the next two examples, simulations are presented comparing the
parallel with the INC structure. The EMSE curves are generated
for µo = {0.2, 0.9} and forλ ∈ [0, 1]. The nonstationary plant is
initialized with wo

−1 drawn from a normalized unit variance white
Gaussian process, and follows the random-walk model withσ2

q =
10−4. Regressors are correlated and generated according to Sec-
tion 3, namelyσ2

u = 1, σ2

v = 10−3, η = 0.98, ǫ = 10−5.
The first example is run withµo = 0.2. Fig. 3 (a) is an abacus

comparing in steady-state the parallel and the INC structure (theory
and simulations). The simulated curves were generated as the ave-
rage of the last 300 estimates after convergence. INC combination
clearly outperforms the parallel as well as its component filters. This
figure can be regarded as a slice of Fig. 2 (d). Fig. 3 (b) presents the
learning curves forλ = 0.4, with an improvement of nearly4dB

1Analysis for the LMS–RLS case is obtained by swappingH1,i andH2,i.
2Note how high the nonstationary degree is compared to the typical litera-

ture range[10−6, 10−8]
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Fig. 3: (a) EMSE versusλ for both combinations withµo = 0.2 and
σ2

q = 10−4. (b) EMSE of the individual filters and the combinations
for µo = 0.2 andλ = 0.4 (500 realizations).

over the parallel combination. Note how the theoretical andthe sim-
ulated curves match.

In the same vein, Fig. 4 presents the same scenario, only with
the step size increased toµo = 0.9, while keepingλ = 0.6. The
abacus has not been depicted as it is nearly meaningless: dueto
the highly correlated input signal, the LMS component filterexpe-
riences severe spikes (outliers), and so does the parallel as it can
not fully combat this phenomenon. Steady-state performance for the
INC case achieves7dB lower than the best component filter (RLS).
Although the RLS can converge, the LMS is unstable, driving the
parallel combination with fixedλ (CVX1) into divergence. The par-
allel combination with adaptiveλ (CVX2: λ → λ(i)) [2, 4] was
included to illustrate that, even with an update rule, in this stringent
scenario the parallel combination is not able to cope with LMS insta-
bility: the best it may do is to track the RLS performance, by setting
λ = 1. Once again, the simulated curve corroborates the theory.

Fig. 4 also illustrates the stabilization effect provided by the in-
cremental nature of the structure. Even with a poorly designed step
size for the LMS (in the example,µo = 0.9), the INC combination
is able to circumvent this issue, making the final EMSE curve con-
verge. In this situation, the only way the INC can diverge is setting
λ very close or equal to0, turning the RLS component into a relay
filter, and consequently the combination becomes the unstable LMS
filter.

Fig. 5 presents an abacus showing the universal behavior of the
INC combination for different degrees of non-stationarity(σ2

q ) with
µo = 0.2. Note that an improvement of about5dB of the combina-
tion over the component filters remains over a wide range ofσ2

q .

6. CONCLUSION

By extending the INC combination of AFs [12] to account for dif-
ferent adaptive rules, this work resorts to theoretical analysis and

(a)

(b)

Fig. 4: (a) EMSE of the individual filters and the combinations for
µo = 0.9, λ = 0.6 and σ2

q = 10−4 (500 realizations). (b) A
zoomed-in view of the convergent curves.

Fig. 5: Abacus for RLS–LMS combination withµo = 0.2 and dif-
ferent values ofσ2

q .

parametric simulations (in terms ofλ) to show that the RLS–LMS
incremental combination is able to achieve universality instringent
scenarios (nonstationary and highly correlated input). Moreover, the
INC scheme provides an stabilization effect, improving thecombina-
tion robustness and allowing it to outperform the parallel [2,4] in the
same conditions. In this way, the INC structure is a good candidate
when the combination runs in challenging scenarios. The analysis
framework presented may be easily employed for different compo-
nent filters (other than RLS and LMS) whose adaptive rules canbe
properly described by the filter-dependent matricesHk,i.

Future work considers the procedure to obtain an optimalλ via
(∂ζ/∂λ) = 0, what may provide a guideline for adaptingλ(i).
Also, the study of the INC combination removing the constraint
∑K

k=1
λk(i) = 1 will be pursued.
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