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ABSTRACT

The incremental combination of adaptive filters (AFs), nglyein-

troduced in the literature, presents intrinsic featurgsbée of im-
proving the overall filtering performance. In this work, timere-
mental combination is extended to account for AFs with dfe
adaptive rules; when Recursive Least-Squares (RLS) andethst-
Mean-Squares (LMS) filters are employed, it is shown, bykirar
analysis and extensive simulations, that the new strudsuneean-
square universal in terms of the combining parameter, quaatily
in nonstationary scenarios with highly-correlated sign@he simu-
lations and the analytical model match well, showing that bw
algorithm outperforms its parallel-independent courdetrp

Index Terms— Adaptive filtering, incremental combination,
convex combination.

1. INTRODUCTION

Combinations of AFs have been explored as design solutman-t
hance the overall performance of an adaptive system. Irrgktiee
component filters present their estimates to a supervisgponsible
to generate an overall estimate at least as good as the bergnfthe
pool (universality) in the mean-square sense [1].

Designs based on convex and affine combining rules, AFs with"

different step sizes, different orders, and from differamilies are
studied in [2-8]. In stationary scenarios, convex-paraitenbina-
tions experience a stagnation effect in the adaptationfizjrder to
circumvent this, several techniques have been proposedratsfer
of coefficients [9, 10]; the cyclic feedback of coefficienid]; and
the incremental-cooperative combination [12].

Inspired by the successful parallel combination of differe
AFs [4], this work extends the incremental structure prepds [12]
to comprehend a hybrid chain with different adaptive rulesha
component filters. In this sense, this study shows that thoeidhy
incremental combination is able to achieve universalitgtimgent
scenarios (nonstationary and highly-correlated inputfperform-
ing the parallel arrangement, while endowing robustnesshéo
overall combination.

2. HYBRID INCREMENTAL COMBINATIONS

This section introduces a general form for the incremertat -
nation (hereon INC), giving rise to a hybrid chain of sevdilgdrs,
each one with its own adaptive rule.
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2.1. Generic Case

The general form of the INC combination féf component filters
with different adaptive rules is given by

Wh,i = We—1,i + Ak(2) kP, 1)
in which thek*" component filterwy, ; is an Mx1 vector; it updates
the estimatev;,_, ; received from the previous filter in the chain, ac-
cording to the local adaptive rufg, = — B, V* J (wk—1,;), with By,
any positive-definite matrix/ (wx—1,;) the underlying cost function
the filter minimizes, and denoting the conjugate transpose [13]. In
addition, Ak (¢) is the combining parameter, apg is the filter step
size. As adopted in [12], the valuesXxf(:) are subject to the convex
rule >0, Ae(i) = 1.

The incremental chain oK filters of the form (1) results in an
overall filter whose update rule is summarized by
K
Wi = wi—1 + Z e (3) Dt -

k=1

)

2.2. Mean-Square Filters - K=2

In this work, the focus is on combinations generated by paleii-
zing Eq. (2) for two component filterg{ = 2) whose cost functions
inimize the mean-square error.

The data-dependent matricBs ;, k = 1, 2 are defined accord-
ing to the desired adaptive rule for the component filter. sThbe
INC combination forK = 2 is given by

w] = Wi—1 + )\(i)Hl,iu;‘ [d(l) — uiwifl] 3)
w; = wi + (1 — )\(Z))HQJU: [d(l) — uiwl],
whereu; is a 1xM vector,d(7) is the desired signal, and(:) —
u;w;—1] is the estimation error. Note that selectiAg,; = p1 1 and
Hs; = p2l, with I the MxM identity matrix, the INC combination
from [12] is recovered.

3. RLS-LMS COMBINATION

The INC combination of RLS and LMS filters (RLS-LMS) is ob-
tained by selecting?, ; = P; andHs,; = pul, resulting in
w1, = Wi—1 + )\(Z)qu;f [d(l) — uiwifl]

wi = wy + (1= A@D) e [d6) — wswa], )
in which P; is obtained by the recursion [13],
—1p. * P
P, = 7771 P, — M Py =¢'I, (5)

1+ n*luiPi,1uZ’f

with the regularization parameterand the forgetting factoy.



Extensive parametric simulations in terms of the combiiag

energy conservation relations (ECR) [13]. The MSE is defiagd

rameter\(i) = A € [0, 1], conducted in a system identification MSE = ¢ £ lim;_, E|e(i)|?, wheree(i) = d(i) — w;w;_1. For

configuration (order M), has shown that the INC combinatio4)
can clearly present universal behavior in adverse scenémansta-
tionary plants and highly correlated input signals).

In the following example, the plant is time-varying and e
according to the random-walk model [13]

(6)

o o
w; = W1+ qi .

In the literature,q; is generated as the realization of a zero-mean

independent and identically distributed (i.i.d.) procesth covari-

ance matrix®q,q; £ Q = o—gl. The measurement noise variance is

o2 = 1073, random-walk variance. = 10~*, and the regressors
are originated by a white Gaussian process filtered by adids#
auto-regressive process with transfer functiéh— 52 /(1 — bz~"),
b = 0.98, ando2 = 1. The LMS step size ig = j0/(Mc?), in

which u, € [0,1], and M is the system order. The RLS forget-
ting factor isn = 0.98. The initial state of the plant coefficients
(M = 20) is drawn from a normalized unit variance white Gaussian

process. Fig. 1 depicts the curves for both parallel and INGhi-
nations, and their component filters.

Note how both combinations achieve universality for optieci
combining parameters, namely= 0.4 for INC and\ = 0.7 for
the parallel. The INC combination performance is clearlgesior

(about4d B lower than the parallel in steady-state). Thus, it turns out

that the RLS-LMS combination is very promising if the conibin
parameten is properly chosen.
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Fig. 1: Universality achieved by the combinations (INC and paiall
of RLS and LMS filters fon., = 0.3 (500 realizations).

4. PERFORMANCE ANALYSIS - TRACKING

Motivated by the previous example, performance analysisvised
to study in which scenarios the INC combination described3)y
is able to achieve universality. The mean-square analysiariried
out in terms of the parametare [0, 1], attempting to optimize it for
tracking purposes. In the sequel, Section 4.2 partici@atize analy-
sis for the RLS—LMS case and universality in terms of mearasg|

error is shown. From now on, signals are modelled as stachast

processes, and random quantities are represented in tmldfa

4.1. Mean-Square Filters - K=2

Eq. (3) is rewritten adopting the data-dependent matikes, k =
1, 2, defined according to the desired adaptive rules. Note that n
Eq. 7 is a stochastic equation, in which the boldface terragan-
dom quantities:
w1 = wi—1 + AH1u][d(i) — uiwi—1] )
w; = w1 + (1 — )\)I'_l'zﬂ"ll,;-K [d(l) — uL'w1]
The goal is to derive an expression for the mean-square @MSE)
in steady-state of any filter that can be written in the forry) {fa

that matter, since adaptive filters are non-linear, timging, and

stochastic, it is necessary to adopt a set of simplifyingiagsions
collected into an extended nonstationary data model [13-15
(1) There exits a vectow§ such thaid(i) = u;w§ + v(i) ;
(2) The weight vector varies accordingdef = w; ; + q;
(random-walk model);
(3) The noise sequende(4)} is i.i.d. with constant variance
0% = Elw(i)? ;
(4) The noise sequenda (i) } is independent ofy; for all 4, j ;
(5) The sequencéq,} has covariance matri® £ Eq,q; and is
independent of v (), u, } forall 4, j ;
(6) The initial conditions{w_1, w? ; } are independent of all
{d(5), us,v(j), qj} ;
(7) The regressor covariance matrix is denoted by
R, = Euju; >0;
(8) The random variablegd (i), v (%), u;, g, } are zero mean;
(9) The weight vectorw; has constant mean® .

@

The ECR technique is an energy balance in terms of the follow-
ing error quantities
w;—1 2 (wf_, — w,_1) Weight-error vector
eq(i) = u;(wj —w;_1) a priori estimation error
e, (i) = u;w; a posterioriestimation error
together with the adaptive filter's recursion. The resgltenergy
equation leads to a variance relation from which the MSE &ed t

EMSE can be derived; for details see [13].
Merging the two equations in (7) results in a simple recursio

9)

w; = W;—1 + Hiu:e(i), (10)
in terms of the data-dependent matrix
H;, =[\Hi;+(1-XNH2:(1—Muwl#, ), (11)

where ||lu; ||z, £ uwH,u] is the weighted norm ofe;. In the
general casé|z||} = zXz*.
Subtracting (10) fromw{ gives

(wi —w;) = (wj —w;—1) — Hyuje(i). (12)
Multiplying (12) from the left byu,; results in
ep(i) = ea(i) — [|uil 7z, €(d). (13)
Substituting (13) in (12) gives
H;uj . Hu; )
w! —w;) + ——=—e.(i) = (W) —wi—1) + ———e,(i) .
R TP U iy,
(14)

Using H; ' as weighting matrix and equating the squared
weighted norms of (4.1) results in

[wf — wil| 3,1 +7i(0) ea ()| =

i —/ . 15
oo — wicl?, -+ A len), ()

wherezi(i) £ (Hui||2Hi)T - T if u; # 0 or equals zero
7 H;
otherwise, with' representing the pseudoinverse operator [16].

Taking the expectations of (15) gives
El\ﬂnllil;l + En(i)|eq(i)* = (16)
Bllwf — wi-1|3,-1 + ER(i)]ey(9)[?

Using the random-walk model into the first term of the rightati
side of (16) yields



B3, -+ + Efi)|ea(i)]* = :
- 2 2 — (2 -\ (2 (17

Bllwi-1llzg—r + Ellgillzy -1 + ER(0)lep ()]

In steady-statei( — o), Ellwl3,-1 = Ellwi-1[3,~: holds

. . K . .
Moreover, whenever it is reasonable to assume hat; is inde
pendent ofu; (for instance, small step sizes), one has

EH; Y Y~ [EH)] '=H"
(H) = [BCH)] s
H=FH,.
Applying (18) in (17) results in theariance relation
Ellui||%e(@)]* + Ellg;|7-1 = 2R{Ees(i)e(i)}  (19)

The separation principle states that in steady-dtatel%; is in-
dependent oé, (i) [13]. From the data model one has

e(i) =d(i) —uwi—1 = eq(i) + v(7)
which substituting into (19) leads to
2Eea(i)[* = o0 Ellwillt + Ellwill i Elea(i)” + Ellqil\i—(lzy
1

(20)

where Ele, (i)|? is the very definition of the Excess-Mean-Sq
Error: EMSE= ¢ £ Ele.(i)|>.

PluggingE||u;||3; = Tr(R.H)andE||g,||3,- = Tr(QH ")
into (21) results in the steady-state EMSE, in nonstatipsaenar-
ios, for the INC combination described by (7):

o Tr(R.H)+Tr(QH ™)
N 2 —Tr(R.H)

¢

(22)

Eq. (22) holds for filters of the form (3), and whenever assump .

tion (18) is reasonable.
The MSE is obtained as follows (see Eq. (20)),

£=(+os.

Eq. (22) holds under the data model (8), and requires thelleion
of the data moment&,, and H (which is filter dependent).

(23)

4.2. RLS-LMS case

For the RLS-LMS combination (refer to (7))H.; = P; (the
stochastic version of Eq. 5) add > ; = pI, with I the MxM identity
matrix, andu = 1o /(Mo2), 1o € [0, 1]. Thus,

H; = WP+ u(1 - N1 - Nwld)1. (24)

To calculate the EMSE and MSE of the structure, one needs to
determineE H ; from (24). This is accomplished by particularizing

(18) for the RLS—-LMS case (see [13] p.288),
lim E(P; ") o

i—o00 1-n
EP;~[E(P;")] ' =(1-nR;'=P
[|; || is independent o0&, (7)
Elluillp; = E|lui| 7 = Tr(RuP) = (1 —n)M,
resulting in
H={M1-nR" +u(l - N[l = A(1 — n)M]I}.

2 pl

(25)

(26)

Substituting (26) into (22), together with (23) returns EMSE
(MSE) of the RLS—-LMS incremental structure. It is a functioin
several parameters. Hereand M are fixed, and for a giveR.,
and Q the¢ behavior is explored in terms @f, and A. Note that
for this case, an expression for an optimal combining patamé
can be derived by making® = {\|(9¢/0X) = 0}, which is not
shown here due to space constraints. In any event, it is a&liued
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Fig. 22 RLS-LMS - EMSE theoretical surfaces in termgofand\
in both stationary and nonstationary scenarios, with wéite cor-
related input data.

for adaptive designs\(i) — A°). Such adaptive implementations
will be pursued in forthcoming publications.

Fig. 2 depicts an example of the EMSE surface for RLS-LMS
in four cases, varying,, and A, in both stationary and nonstation-
ary scenarios. Regressors are either white Gaussian dy luigite-
lated, obtained from a first-order auto-regressive proegtsstrans-
fer functiony/T — b2/(1 — bz"1), b = 0.98. The signals variances
aress = 1,00 = 10°, ando? = 10~* for the random walk The
RLS forgetting factor is; = 0.98, regularization factoe = 10~°
and the system order %/ = 20. Figs. 2 (a), (b) and (c) do not
show improvement from the combination. On the other hanid, it
noticeable from the convex shape of the correlated dataci(d)
that there are optimum paifg., A) that attain the minimum EMSE.
This shows that the structure is universal and considerabfyer-
forms the component filters in nonstationary scenario witghlly
correlated input.

5. SIMULATIONS

In the next two examples, simulations are presented conmpénie
parallel with the INC structure. The EMSE curves are gererat
for po = {0.2,0.9} and for\ € [0, 1]. The nonstationary plant is
initialized with w? ; drawn from a normalized unit variance white
Gau4ssian process, and follows the random-walk model wjth=
1077,
tion 3, namelyr2 = 1,02 = 103,71 = 0.98, ¢ = 107>,

The first example is run witp, = 0.2. Fig. 3 (a) is an abacus
comparing in steady-state the parallel and the INC stradtineory
and simulations). The simulated curves were generatedeaavet
rage of the last 300 estimates after convergence. INC catibm
clearly outperforms the parallel as well as its componetar§l This
figure can be regarded as a slice of Fig. 2 (d). Fig. 3 (b) ptesha
learning curves fon = 0.4, with an improvement of nearlyd B

1Analysis for the LMS—RLS case is obtained by swappthg; andH> ;.
2Note how high the nonstationary degree is compared to thediyjiera-
ture rangg10—%,10~8]

Regressors are correlated and generated according to Sec-
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Fig. 3: (a) EMSE versus for both combinations with, = 0.2 and

) oM . - it

o = 107". (b) EMSE of the individual filters and the combinations gy 4. (a) EMSE of the individual filters and the combinations for

for pzo = 0.2 andA = 0.4 (500 realizations). jo = 0.9, A = 0.6 ando? = 10~* (500 realizations). (b) A
zoomed-in view of the convergent curves.

over the parallel combination. Note how the theoretical tedsim-
ulated curves match.

In the same vein, Fig. 4 presents the same scenario, only with 5
the step size increased to = 0.9, while keepingh = 0.6. The
abacus has not been depicted as it is nearly meaninglesstodue
the highly correlated input signal, the LMS component fikgpe-
riences severe spikes (outliers), and so does the paralliglcan
not fully combat this phenomenon. Steady-state performéorcthe
INC case achievesd B lower than the best component filter (RLS).
Although the RLS can converge, the LMS is unstable, drivimg t
parallel combination with fixed (CVX;) into divergence. The par- -25
allel combination with adaptive. (CVX2: A — A(¢)) [2, 4] was 30 . . ‘
included to illustrate that, even with an update rule, iis gtringent 0 02 04 2 06 08 !
scenario the parallel combination is not able to cope wittH.ikkta-
bility: the best it may do is to track the RLS performance, éftisg  Fig. 5: Abacus for RLS-LMS combination with, = 0.2 and dif-

A = 1. Once again, the simulated curve corroborates the theory. ferent values 0&3.

Fig. 4 also illustrates the stabilization effect providedthe in-
cremental nature of the structure. Even with a poorly desigstep
size for the LMS (in the example,, = 0.9), the INC combination o . )
is able to circumvent this issue, making the final EMSE cuiwe-c ~Parametric simulations (in terms of to show that the RLS-LMS
verge. In this situation, the only way the INC can divergesiing |ncrem_ental combl_natlon is ablg to achieve unlyersalltytmngent
) very close or equal t6, turning the RLS component into a relay Scenarios (nonstationary and highly correlated inputréduer, the
filter, and consequently the combination becomes the uiestabs ~ INC scheme provides an stabilization effect, improvingdbebina-
filter. tion robustness and allowing it to outperform the parale] in the

Fig. 5 presents an abacus showing the universal behavibeof t S8Me conditions. In this way, the INC structure is a good icitel
INC combination for different degrees of non-stationait) with when the combination runs in challenging scenarios. Théysisa
1o = 0.2. Note that an improvement of abai B of the combina- ~ framework presented may be easily employed for differemum
tion over the component filters remains over a wide range;of nent filters (other than RLS and LMS) whose adaptive rulesbean

properly described by the filter-dependent matriegs; .

= INC (Theory)
- INC

2 0.3
=1
o 0

6. CONCLUSION Future work considers the procedure to obtain an optinah
(0¢/oX) = 0, what may provide a guideline for adaptings).
By extending the INC combination of AFs [12] to account fof-di Also, the study of the INC combination removing the consirai
ferent adaptive rules, this work resorts to theoreticalymimand ~ S°1 | A\ (i) = 1 will be pursued.
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