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ABSTRACT
A new topology for combination of adaptive filters is proposed.
Based on incremental strategies, the standard convexly combined
parallel-independent filters are rearranged into a series-cooperative
configuration without changing the computational complexity. Two
new algorithms are derived from the new topology. Simulations
in a stationary system identification scenario show the superior
performance of the new algorithms.

Index Terms— convex combination, adaptive filtering, incre-
mental strategies.

1. INTRODUCTION

Combination of adaptive filters (AF) has been explored in thelit-
erature in order to improve filtering performance when an accurate
design of a single filter is difficult. In such an approach, a set of AFs
is aggregated via a supervisor which attempts to achieve universal
behavior, in which the overall system performs at least as well as the
best filter in the set, usually in the mean-square error sense. Combi-
nations of adaptive filters with different step-sizes, different orders
and different adaptive algorithms are available in [1]–[5]. In such
schemes, an adaptive parameter aggregates the component filters via
a convex combination so that the resulting overall structure achieves
fast convergence and accuracy in steady-state, as well as better track-
ing properties, if the combining parameter is properly adapted.

In this work, a new combination structure and algorithms are
introduced, inspired by incremental cooperative strategies and the
celebrated convex combination schemes [1, 6]. The component fil-
ters are rearranged in a series-cooperative topology and two new
algorithms are introduced with advantages with respect to convex
parallel–independent counterpart. The new techniques aremotivated
in the system identification formulation with LMS componentfilters
handling stationary signals, although the approach may be readily
extended to other learning rules.

2. PARALLEL-INDEPENDENT STRUCTURE

The common ground for the convex structures currently available in
the literature is that the component adaptive filters (AFs) are inde-
pendent and operate, in a sense, in parallel. As depicted in Fig. 1,
the outputs of a fast filter (LMS1) and an accurate filter (LMS2) are
convexly aggregated via a combining parameterλ(i)

wi−1 = λ(i)w1,i−1 + [1− λ(i)]w2,i−1 (1)
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wherew1,i−1 andw2,i−1 are the individual LMS filters updated in-
dependently according to [7]

wk,i = wk,i−1 + µku∗
i (d(i)− uiwk,i−1), k = 1, 2 (2)

resembling the usually adopted system identification scenario, in
which ui is a 1 × M row regressor vector that captures samples
of an input (white) signalu(i) with varianceσ2

u andµk is the filter
step-size. The plant output is modeled asd(i) = uiw

o+v(i), where
v(i) is the white gaussian measurement noise with varianceσ2

v, and
wo is aM × 1 column vector that models the unknown plant. The
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Fig. 1. Adaptive convex combination of two transversal filters

combining factorλ(i) plays the role of an activation function, which
is chosen to guarantee convexity [1, 2, 4], e.g.,

λ(i) =
1

1 + e−a(i)
(3)

The parametera(i) is adapted attempting to minimize the over-
all estimation errore(i) = d(i) − uiwi−1 in the mean-square
sense.Generally a gradient-descent rule is adopted

a(i) = a(i− 1) + µae(i)[y1(i)− y2(i)]λ(i)[1− λ(i)] (4)

whereyk(i) = uiwk,i−1 , k = 1, 2, andµa is a step-size. Fig. 1 de-
picts the arrangement. The resulting algorithm is typically known as
the convex LMS algorithm, or CLMS for short, and it is well known
to present universal behavior. Fig. 2 depicts the excess mean-square
error (EMSE = E|ui(w

o − wi−1)|
2) curves for a typical exam-

ple employingµ1 = 0.07, µ2 = 0.007, µa = 1000, σ2
u = 1 and

σ2
v = 10−3. Note how CLMS is able to track the transient response

of the faster filter (µ1) and reach the steady-state performance of the
more accurate (slower) filter (µ2) [1].
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Fig. 2. EMSE of the LMS filters and their Convex Combination
averaged over 200 realizations.

3. SERIES-COOPERATIVE STRUCTURE

Despite the clear CLMS advantage over the component filters,the
transient of the accurate filter is not relevant and the steady-state
of the fast filter is wasted: most of the time one filter is numeri-
cally annihilated by the combinerλ. This is caused by the inherent
parallel-independent structure, in which the overall system inex-
orably “awaits” the accurate filter to catch up in order to quickly
commute. In stationary environmentsλ can be interpreted as a
switching mechanism. The great advantage offered by that structure
is the simple design of the combiner.

In order to compensate for the aforementioned effect and antic-
ipate the switching time, in the literature ad-hoc weight transfers
(w1 → w2) are conditionally performed [8], and further control
mechanisms are required, since the accurate filter may be contam-
inated with the higher gradient noise arising from the fast filter.
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Fig. 3. Proposed topology

3.1. A switching algorithm

The ad-hoc weight transfer procedure may be formally motivated
and naturally implemented, without resorting to control mecha-
nisms, inspired by incremental and cooperative structures[6]. Topo-
logically the filters are rearranged in series – see Fig. 3, and λ now
continuously and progressively transfer the weights. The resulting
algorithm is quite simple and summarized in the sequel:

w1,i = wi−1 + µ1λ(i)u∗
i (d(i)− uiwi−1)

w2,i = w1,i + µ2(1− λ(i))u∗
i (d(i)− uiw1,i)

wi ← w2,i

(5)

Note that the filters are no longer independent, they explicitly co-
operate, balanced byλ. Furthermore, the incremental arrangement
allows λ to play simultaneously the role of a combiner while de-
creasing the net step-size at the same time. On the other hand, direct
cooperation makes the combiner design quite challenging.

3.2. Enhancing performance: simultaneous operation

The potential of the series-cooperative structure can be further ex-
plored if simultaneous operation is implemented. For that,λ can be
more efficiently used as follows

w1,i = wi−1 + µ1λ(i)u∗
i (d(i)− uiwi−1)

w2,i = w1,i +

»

µ1λ(i) + (1− λ(i))µ2

1/γ

–

u∗
i (d(i)− uiw1,i)

wi ← w2,i

(6)
whereγ ∈ (0, 1] is a step-size contracting factor introduced to im-
prove steady-state while keeping transient performance. This is only
possible in the series-cooperative arrangement; nevertheless,λ has
to be designed so that the AFs operate simultaneously.

4. DESIGN OF THE MIXING PARAMETER

As a matter of fact, algorithms (5) and (6) may be regarded as a
resource reallocation of the original CLMS: the same AFs areem-
ployed (same complexity), the same combiner and the same signals.
Therefore, a direct comparison is fair. The challenge is to design
λ(i) properly, since the filters are explicitly impacting each other via
the incremental procedure.

In this section we illustrate the potential of the new structure
and both new algorithms. Initially a deterministic design for λ is
introduced to test the new algorithms; in the sequel a simplethough
effective way to design the mixing parameter automaticallyis pre-
sented.

4.1. Deterministic design

Due to the “switching nature” attributed toλ, it can be chosen simi-
larly to the parallel case

λ(i) =
1

1 + es·(i−n)
(7)

where nown is the activation instant and s controls the curve
smoothness. The parameters[s, n] have been tuned carefully to
extract the best performance from the new INC-COOP algorithms
and the CLMS algorithm, yielding a meaningful comparison.

Consider the system identification scenario and letwo =
1√
10

[1, 1, · · · , 1], (‖wo‖ = 1) andM = 10, the signal variances

areσ2
u = 1 andσ2

v = 10−3. All the LMS component filters used
in the combinations (CLMS, INC-COOP1 and INC-COOP2) have
step-sizesµ1 = 0.07 andµ2 = 0.007. For the CLMS,µa = 1000.
Fig. 4 depicts theλ(i)’s (top) and the EMSE (bottom) employed
in the pilot experiment. For CLMS we have[s = 0.012, n = 550]
and for both INC-COOPs[s = 0.015, n = 120]. INC-COOP2 uses
γ = 0.1.

Note in Fig.4–bottom the superior performance of the INC-
COOP algorithms. INC-COOP1 is able to promptly switch filters
earlier, avoiding the stagnation experienced by the CLMS algorithm
(which awaits the crossing point), and reproducing the steady-state
performance of the accurate filter (LMS2). Furthermore, the simulta-
neous operation imposed by INC-COOP2 yields faster convergence
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Fig. 4. Top - Time evolution of the deterministicλ(i). Bottom - the
correspondent EMSE averaged over 200 realizations.

andsmaller error for thesame λ. Note that innon-stationary envi-
ronments (currently under study) all algorithms are valid candidates.

4.2. A simple design for the mixing parameter

A simple rule for parameter adjustment in adaptive filteringis to low-
pass filter a quantityq(i) that captures the learning status and feed it
back into the adaptive process, namely

a(i) = α · a(i− 1) + β · q(i) (8)

in which 0 < α < 1 andq(i) is a chosen figure of merit related
to adaptation performance. Such approach has been successfully
adopted across several areas in adaptive filtering, such as step-size
design [9], regularization control [10] and robust filtering [11].

Heuristically, experience across the several fields in adaptive fil-
tering aforementioned shows that0.95 < α < 0.99 renders a good
learning evolution for a wide Signal-to-Noise Ratio (SNR) range.
For a quick design, one can assignβ = (1 − α). Depending on the
metric selected forq(i), β < (1−α) compensates for low SNR (say
β = 0.1 · (1−α)). Detailed analysis is required to show the impact
of such parameters on system performance (future work).

Here the output overall quadratic error is chosenq(i) = e2(i)
to train the INC-COOP algorithms, wheree(i) = d(i) − uiw2,i−1.
Sincee2(i) approaches zero, a slight bias is required inλ for the
INC-COOP case

λs(i) =
2

1 + e−a(i)
− 1 (9)

so that the full excursionλs ∈ [0, 1] is guaranteed.
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Fig. 5. EMSEs of the combinations using adaptiveλ(i) averaged
over 200 realizations.

5. SIMULATIONS

The low-pass filter (8) and theλs(i) (9) are implemented withα =
0.98 and a(−1) = 10 in all the simulations to evaluate the per-
formance of the INC-COOP algorithms as compared to the CLMS
algorithm. Simulations are carried out in the system identification
scenario mentioned in subsection 4.1.

5.1. High SNR

Algorithms have been tested atσ2
v = 10−3 (SNR=30dB). Fig. 5

shows the EMSEs curves of the INC-COOP algorithms and CLMS
averaged over 200 realizations. Both algorithms proposed present a
transient response at least as fast as CLMS, allied with thesame
steady-state EMSE as that of the accurate LMS component filter
(µ2). In particular, INC-COOP2 goes beyond and achieve a steady-
state EMSE level of approximately 10dBlower than CLMS.

5.2. Low SNR

Additionally, simulations have been performed at SNR={10, 5, 3}
dB, with σ2

v tuned correspondingly. With no change in the com-
binations parameters, it can be seen in Fig. 6 that the INC-COOP
algorithms perform better than the CLMS for this specific situation.
Moreover, INC-COOP2 presents the best performance among the
three combinations, significantly lower than the CLMS. Also, the
INC-COOP curves present lower variance than CLMS and are less
susceptible to sparks. Note thatβ = (1−α) was used in SNR=10dB.
For SNR={5, 3}dB, β = 0.1(1 − α).

6. CONCLUSION

This work introduced a new framework for combination of adaptive
filters. Motivated in a simple though meaningful scenario, the new
technique is able to naturally circumvent the stagnation effect with-
out sacrificing steady-state performance. This is achievedwith no
extra complexity. The same effect in the parallel-independent case
is alleviatedonly partially and relies on extra weight transfer control
mechanisms.

Future work includes deriving new training techniques forλ(i),
the use of different algorithms for the component filters andstudy
in non-stationary environments. Furthermore, mean-square analysis
and affine combinations [12] will also be considered.
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Fig. 6. EMSEs of the combinations for (a)SNR=10dB,
(b)SNR=5dB, (c)SNR=3dB. The curves are averaged over 200 re-
alizations.


