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ABSTRACT

A new topology for combination of adaptive filters is propdse
Based on incremental strategies, the standard convexlyiceah
parallel-independent filters are rearranged into a sedegerative
configuration without changing the computational comgiextwo
new algorithms are derived from the new topology. Simutaio
in a stationary system identification scenario show the rsope
performance of the new algorithms.

Index Terms— convex combination, adaptive filtering, incre-
mental strategies.

1. INTRODUCTION

Combination of adaptive filters (AF) has been explored inlithe
erature in order to improve filtering performance when arueate

design of a single filter is difficult. In such an approach, teo$é\Fs

is aggregated via a supervisor which attempts to achieweersail

behavior, in which the overall system performs at least dkagehe

best filter in the set, usually in the mean-square error sebgmbi-

nations of adaptive filters with different step-sizes, efiéint orders
and different adaptive algorithms are available in [1]-[& such
schemes, an adaptive parameter aggregates the compateest/fa
a convex combination so that the resulting overall strecaahieves
fast convergence and accuracy in steady-state, as welitas toack-
ing properties, if the combining parameter is properly &edp

wherew: ;—1 andws ;1 are the individual LMS filters updated in-
dependently according to [7]

k=1,2 (2
resembling the usually adopted system identification stznan
which u; is a1l x M row regressor vector that captures samples
of an input (white) signal:(i) with variances2 and yy is the filter
step-size. The plant output is modelediés = u;w°+v(i), where
(%) is the white gaussian measurement noise with variatjcand

w? is aM x 1 column vector that models the unknown plant. The

Wk = Wki—1 + et (d(2) — wiwgi—1),

Fig. 1. Adaptive convex combination of two transversal filters

In this work, a new combination structure and algorithms are

introduced, inspired by incremental cooperative strategind the
celebrated convex combination schemes [1, 6]. The compditen
ters are rearranged in a series-cooperative topology anchew
algorithms are introduced with advantages with respecbtwex
parallel-independent counterpart. The new techniquesatigated
in the system identification formulation with LMS componéiters
handling stationary signals, although the approach mayebdily
extended to other learning rules.

2. PARALLEL-INDEPENDENT STRUCTURE

The common ground for the convex structures currently alabelin
the literature is that the component adaptive filters (AFs)iade-
pendent and operate, in a sense, in parallel. As depictedyinlk
the outputs of a fast filter (LM and an accurate filter (LMS are
convexly aggregated via a combining parametg)

Wi—1 = )\(i)wM,l + [1 - /\(i)]wg,Fl (l)
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combining factor\(¢) plays the role of an activation function, which
is chosen to guarantee convexity [1, 2, 4], e.g.,

1

Ai) = ———— 3

(i) = T 3)
The parameter(i) is adapted attempting to minimize the over-
all estimation errore(7) d(i) — u;w;—1 in the mean-square

sense.Generally a gradient-descent rule is adopted
a(i) = a(i — 1) + pae(@) [y (i) — y2 (DAL — A@)] ()

whereyy (i) = wswg,i—1, kK = 1,2, andu, is a step-size. Fig. 1 de-
picts the arrangement. The resulting algorithm is typjcltiown as

the convex LMS algorithm, or CLMS for short, and it is well kmo

to present universal behavior. Fig. 2 depicts the excesssgaare
error EMSE = El|u;(w® — wi—1)|?) curves for a typical exam-
ple employingu: = 0.07, ue = 0.007, ua = 1000, 2 = 1 and

o2 =103, Note how CLMS is able to track the transient response
of the faster filter 1) and reach the steady-state performance of the
more accurate (slower) filter:¢) [1].



Note that the filters are no longer independent, they exjlico-
operate, balanced by. Furthermore, the incremental arrangement
allows X\ to play simultaneously the role of a combiner while de-
creasing the net step-size at the same time. On the othey thiaect
cooperation makes the combiner design quite challenging.

3.2. Enhancing performance: simultaneous operation

EMSE (dB)

The potential of the series-cooperative structure can bbduex-
plored if simultaneous operation is implemented. For thatan be
more efficiently used as follows

CLMS
1,=1000
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Fig. 22 EMSE of the LMS filters and their Convex Combination  w:i <« W2,
averaged over 200 realizations. (6)
wherey € (0, 1] is a step-size contracting factor introduced to im-
prove steady-state while keeping transient performanbis i$ only
3. SERIES-COOPERATIVE STRUCTURE possible in the series-cooperative arrangement; nevesthe. has
to be designed so that the AFs operate simultaneously.

Despite the clear CLMS advantage over the component filtiees,

transient of the accurate filter is not relevant and the ststate 4. DESIGN OF THE MIXING PARAMETER

of the fast filter is wasted: most of the time one filter is numer

cally annihilated by the combinex. This is caused by the inherent As a matter of fact, algorithms (5) and (6) may be regarded as a
parallel-independent structure, in which the overall systinex-  resource reallocation of the original CLMS: the same AFseane
orably “awaits” the accurate filter to catch up in order tooily  ployed (same complexity), the same combiner and the samalsig
commute. In stationary environmeniscan be interpreted as a Therefore, a direct comparison is fair. The challenge isdsigh
switching mechanism. The great advantage offered by thattate A (:) properly, since the filters are explicitly impacting eachestvia

is the simple design of the combiner. the incremental procedure.

In order to compensate for the aforementioned effect arid-ant In this section we illustrate the potential of the new stuvet
ipate the switching time, in the literature ad-hoc weiglainsfers  and both new algorithms. Initially a deterministic desigm A is
(w1 — w2) are conditionally performed [8], and further control introduced to test the new algorithms; in the sequel a sinf@agh
mechanisms are required, since the accurate filter may laroen effective way to design the mixing parameter automaticallgre-
inated with the higher gradient noise arising from the fatstrfi sented.

4.1. Deterministic design

Due to the “switching nature” attributed fq it can be chosen simi-
larly to the parallel case

. 1

)‘(Z) - 1+€S‘(i7n) (7)
where nown is the activation instant and s controls the curve
smoothness. The parameters$s, n] have been tuned carefully to
extract the best performance from the new INC-COOP algosth
and the CLMS algorithm, yielding a meaningful comparison.
Fig. 3. Proposed topology Consider the system identification scenario and Jét =
\/%[1,1,~~ 1], (lw?|l = 1) and M = 10, the signal variances
arec2 = 1 ando? = 1073, All the LMS component filters used
in the combinations (CLMS, INC-COOP1 and INC-COOP2) have
step-sizeg; = 0.07 andp2 = 0.007. For the CLMS u, = 1000.
The ad-hoc weight transfer procedure may be formally mteiva Fig. 4 depicts the\(z)’s (top) and the EMSE (bottom) employed
and naturally implemented, without resorting to controlctre  in the pilot experiment. For CLMS we haye = 0.012, n = 550]
nisms, inspired by incremental and cooperative strucéledopo- ~ and for both INC-COOP& = 0.015, n. = 120]. INC-COOR; uses
logically the filters are rearranged in series — see Fig. 8 Janow 7 = 0-1.

3.1. A switching algorithm

continuously and progressively transfer the weights. Eseilting Note in Fig.4-bottom the superior performance of the INC-
algorithm is quite simple and summarized in the sequel: COOP algorithms. INC-COOP1 is able to promptly switch féter
earlier, avoiding the stagnation experienced by the CLM®rithm
wii = wi—1 + piA(@)u] (d(i) — uswi—1) (which awaits the crossing point), and reproducing thedstestate
wa; = wii+ p2(l— ( Mg (d(i) — wiwn ;) (5)  performance of the accurate filter (LM)S Furthermore, the simulta-

w;  — way neous operation imposed by INC-CO9¥elds faster convergence
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Fig. 5. EMSEs of the combinations using adaptivg) averaged
over 200 realizations.

5. SIMULATIONS

EMSE (dB)

The low-pass filter (8) and thi, (7) (9) are implemented with =
0.98 anda(—1) = 10 in all the simulations to evaluate the per-
formance of the INC-COOP algorithms as compared to the CLMS
algorithm. Simulations are carried out in the system idieatiion
scenario mentioned in subsection 4.1.
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Iterations

5.1. High SNR

Algorithms have been tested af = 10~* (SNR=30dB). Fig. 5
shows the EMSEs curves of the INC-COOP algorithms and CLMS
averaged over 200 realizations. Both algorithms proposeskpt a
transient response at least as fast as CLMS, allied withsdhe
steady-state EMSE as that of the accurate LMS component filte
(u2). In particular, INC-COOPR goes beyond and achieve a steady-
state EMSE level of approximately 10d8wer than CLMS.

Fig. 4. Top - Time evolution of the deterministiy(:). Bottom - the
correspondent EMSE averaged over 200 realizations.

andsmaller error for thesame A. Note that innon-stationary envi-
ronments (currently under study) all algorithms are vadiddidates.

4.2. A simple design for the mixing parameter

A simple rule for parameter adjustment in adaptive filtergtp low-  5.2. Low SNR
pass filter a quantity(7) that captures the learning status and feed it

back into the adaptive process, namely Additionally, simulations have been performed at SNR3; 5, 3}

dB, with o2 tuned correspondingly. With no change in the com-

a(i) =a-a(i—1) + B - q(4) ®) binations parameters, it can be seen in Fig. 6 that the INOERO
algorithms perform better than the CLMS for this specifioaiion.

in which0 < a < 1 andg(i) is a chosen figure of merit related Moreover, INC-COOP presents the best performance among the

to adaptation performance. Such approach has been sudbessf three combinations, significantly lower than the CLMS. Alstze

adopted across several areas in adaptive filtering, suctepsige  INC-COOP curves present lower variance than CLMS and aee les

design [9], regularization control [10] and robust filteyifi1]. susceptible to sparks. Note that= (1—«) was used in SNR=10dB.

Heuristically, experience across the several fields intsfil- ~ For SNR=5,3}dB, 8 = 0.1(1 — «).

tering aforementioned shows thab5 < a < 0.99 renders a good

Iearning_evoluti_on for a wide Signal-to-Noise Ratio (_SNlahge. 6. CONCLUSION

For a quick design, one can assi@r= (1 — «). Depending on the

metric selected fog(i), 5 < (1 —«) compensates for low SNR (say Thjs work introduced a new framework for combination of atileg

B =0.1-(1 - «a)). Detailed analysis is required to show the impactfjiers. Motivated in a simple though meaningful scenarie hew

of such parameters on system performance (future work). ) technique is able to naturally circumvent the stagnatidecefvith-
Here the output overall quadratic error is chogef) = ¢°(i)  out sacrificing steady-state performance. This is achievié no

to tra|n2th_e INC-COOP algorithms, wheegi) = d(i) — uiwa,i—1.  extra complexity. The same effect in the parallel-independase

Sincee”(i) approaches zero, a slight bias is requiredhifor the s gjleviatedonly partially and relies on extra weight transfer control

INC-COOP case mechanisms.
) 9 Future work includes deriving new training techniquesX¢#),
As(i) = 1teat 1 (9)  the use of different algorithms for the component filters atutly

in non-stationary environments. Furthermore, mean-sgaaalysis
so that the full excursion, € [0, 1] is guaranteed. and affine combinations [12] will also be considered.
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