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Unbiased and Stable Leakage-Based Adaptive Filters
Vı́tor H. Nascimento and Ali H. Sayed,Senior Member, IEEE

Abstract—The paper develops a leakage-based adaptive algo-
rithm, refered to as circular-leaky, which in addition to solving
the drift problem of the classical least mean squares (LMS) adap-
tive algorithm, it also avoids the bias problem that is created by
the standard leaky LMS solution. These two desirable properties
of unbiased and bounded estimates are guaranteed by circular
leaky at essentially the same computational cost as LMS. The
derivation in the paper relies on results from averaging theory
and from Lyapunov stability theory, and the analysis shows that
the above properties hold not only in infinite-precision but also in
finite-precision arithmetic. The paper further extends the results
to a so-called switching-� algorithm, which is a leakage-based
solution used in adaptive control.

Index Terms—Adaptive algorithm, averaging theory, bias, fi-
nite precision, leakage, Lyapunov stability, stability.

I. INTRODUCTION

T HE LEAKY least-mean-squares (leaky LMS) algorithm
is a widely used adaptive scheme, having been employed

in applications such as fractionally spaced equalizers (FSE’s)
[1], speech digitization for telephony [2], prevention of burst-
ing in adaptive echo cancelation and auto regressive moving
average (ARMA) predictors [3], adaptive control [3], [4], and
antenna arrays [5], among others. The algorithm was originally
proposed to stabilize the weight-drift problem that occurs when
the standard LMS algorithm is used in environments that do
not satisfy a certain persistence of excitation (PE) condition.
Unfortunately, however, the solution provided by leaky LMS
comes at a price [6, p. 746]. There is both an increase in
the computational/hardware cost when compared with the
conventional LMS algorithm, and there is a degradation in
performance due to the introduction of bias to the weight
estimates. The drift and bias problems, and their implications,
are discussed in the references cited above, as well as in
[7]–[11] and in Section III.

The purpose of this paper is to address the two issues of
drift and bias, by proposing a variant to the LMS algorithm
that we refer to as thecircular-leaky LMS algorithm. Under
some conditions that are described in this paper, this algorithm
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TABLE I
COMPARISON OF THEVARIOUS ADAPTIVE ALGORITHMS. THE MATRIX Rk IN THE

THIRD COLUMN IS THE AUTOCORRELATION MATRIX OF THE INPUT SEQUENCExk

solves the weight drift problem without introducing bias to the
estimates and at essentially the same computational cost as
conventional LMS. These facts are established by relying on
results from averaging theory and Lyapunov stability theory.
We use averaging theory to show that circular leaky does
not lead to biased estimates and then employ a deterministic
stability analysis to show that the algorithm avoids unbounded
growth of the weight estimates. In fact, we establish stronger
results by showing that these properties hold even in the pres-
ence of finite-precision effects in fixed-point implementations.

The results of the paper are further extended to a modified
version of the so-calledswitching- algorithm, which is stud-
ied in the adaptive control literature [12], [13]. This algorithm
also provides unbiased weight estimates, but it has a computa-
tional cost higher than that of leaky LMS. While the literature
currently available for the switching-algorithm provides only
deterministic analyses for infinite-precision arithmetic, our
analysis will provide both stochastic and deterministic results
for the finite-precision case as well. Table I summarizes the
properties of the four different algorithms mentioned above.
In the complexity column, we list approximate values for the
number of multiplications (M), additions (A), multiply-and-
accumulate (MA), and if-then (IF) commands necessary for
each algorithm.

The paper is organized as follows. In the next section,
we describe the algorithms studied here, giving the infinite-
precision models and update-laws (while the fixed-point up-
date equations are delayed to Appendix A). To further motivate
our results, we also present a few examples showing both the
drift problem of LMS and the bias introduced by leaky LMS in
Section III. Results from averaging theory are briefly reviewed
in Section IV-A and then used to study both circular leaky and
switching- Our main results are in Sections IV and V, which
describe, respectively, the performance and stability properties
of the algorithms. Simulations showing the advantages of
circular-leaky are provided in Section VI.

II. M ODELS AND ALGORITHM DEFINITIONS

The adaptive problem we are concerned with is the follow-
ing. Given noisy scalar measurements that

1053–587X/99$10.00 1999 IEEE
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satisfy a linear model of the form

(1)

we want to estimate the unknown constant vector
Here, the are known regressor vectors, whereas
the is an unknown disturbance (noise) sequence.
We define theoutput error for a given estimate of at
time as and theweight error vector
as the difference We further introduce the
input covariance matrix E in addition to the upper
bounds

(2)

where and are finite positive constants. The require-
ment of bounded is actually a standard one in the
literature whenever finite-precision arithmetic effects are being
studied, although it is often implicit in the assumptions. For
example, the assumption that all variables are suitably scaled
so that overflow never occurs in fact requires that all variables
be bounded (see [14]–[16]).

There are several algorithms that can be used to compute
estimates for In this paper, we focus on the following
adaptive schemes of the LMS class.

LMS: In the standard LMS algorithm, the estimates are
computed via [17], [18]

with initial condition (3)

Leaky LMS: In order to prevent unbounded growth of the
weight estimates in LMS (see Section III), this algorithm
incorporates a positive leakage factor to the adder in (3)

(4)

where we use the symbol to indicate that the output error
is computed using the leaky LMS estimate

Circular-Leaky: We denote the weight vector estimate for
this algorithm by , and let denote its individual
entries (for ). There are three modifications with
respect to leaky LMS in this new variant. First, leakage is
applied to asingle tap at each iteration. Second, leakage is
appliedonly if the tap magnitude exceeds a prespecified level,
say, , and finally, the value of the leakage factor is
dependenton the magnitude of the tap (and therefore changes
with time as well).

Before exhibiting the mathematical description of the algo-
rithm, let us first explain its operation schematically for ease
of presentation. Thus assume that , i.e., assume that
we are dealing with weight vector estimates that are three taps
long. The diagram below shows the proposed procedure for the
first five iterations of the algorithm, where the arrows indicate
the entries that are checked forpossibleapplication of leakage
at each iteration:

In words, we start by checking the top entry of and
verifying whether its magnitude exceeds or not the prespecified
level If it does, then we apply leakage to it. If not, then
no leakage is applied. The weight vector is then updated (as
explained below) to obtain We now repeat the procedure
by checking thesecondentry of followed by the third
entry of At the end of these three iterations, we return
to checking the top entry of , the second entry of , and
so on.

We thus see that this procedure employs anonlinear and
time-variantleakage term instead of the constant fac-
tor in leaky LMS (4). More specifically, at an arbitrary time

, we check whether , where mod If
the condition is true, we compute an intermediate estimate
that is identical to except for a leakage term that is applied
to its th entry, as shown in

...

...

if

otherwise

Note that at most one entry of is modified in the com-
putation of [the value of the leakage term is
defined later]. Once the intermediate estimate has been
computed, we proceed with an LMS-type update, namely

(5)

where We can describe the algorithm
more compactly as follows. Let denote the th basis vector
(i.e., for ). Then, the new algorithm
takes the form

(6)

The function is defined as follows. Let
and be given positive constants,1 and define

Then2

if

if

if
otherwise.

(7)

Fig. 1 shows a plot of the leakage function for the
choices and Later in the paper
[see, e.g., (18)], we show how should be chosen.

1Later in Section VII, we show how these constants could be chosen.
2It is possible to simplify this definition and use a discontinuous

�c(k; wc
k;�k

)—see Section VII as well as [19].
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Fig. 1. Leakage function�c(k; �) with C1 = 0:5; C2 = 0:7; and�0 = 0:1:

TABLE II
DIFFERENCES IN THELEAKAGE TERMS AMONG THE ALGORITHMS

In words, (7) shows that starting from , we examine
the magnitude of thetop entry of and check in which
interval it lies

The interval tells us the value of the leakagethat we should
apply to this tap entry. In this way, we create and then
via (5). Next, we examine the magnitude of thesecondentry of

, determine in which interval it lies, and find the appropriate
We then generate and via (5). Next, we examine

the magnitude of thethird entry of and determine
and We continue in this fashion by examining in each
iteration a single entry of and by moving circularly from
one entry in a weight vector to the following entry in the next
weight vector as the iterations progress.

Note that the constant must satisfy in
order to guarantee that the leakage term is zero when
the estimate is close to Hence, in the sequel, we
shall assume that a bound is available (see
Section VII).3

The time dependency of comes from the fact that a
different entry of is checked at each time instant. To
simplify the notation, we will not explicitly indicate this time
dependency in the remainder of the paper and will thus write

instead of
Modified Switching- Algorithm: In this algorithm, the

leakage factor is applied to all taps whenever is too
large4

(8)

where the function is defined as follows. Let
and be positive constants, and define

3The notationk � k1 denotes the largest absolute entry of its argument.
4The notationk � k denotes the Euclidean norm of its vector argument or

the maximum singular value of its matrix argument.

Then

if

if

if
otherwise.

(9)

As was the case for circular leaky, the constantis chosen
so that leakage is off when is close to (i.e., we assume
that a bound is available and choose ).
A variant of this algorithm is well known in the adaptive
control literature [12], where the leakage function
is not smooth, as above, but has a discontinuous transition
between 0 and

Table II summarizes the differences among the leakage-
based algorithms.

III. T HE WEIGHT DRIFT AND BIAS PROBLEMS

The fact that the LMS algorithm (3) can produce un-
bounded weight estimates in some situations is described in
several works including, for example, [1], [4], [6], and [8].
The work [8] studies the drift problem in a deterministic
infinite-precision setting, whereas finite precision effects are
considered in [9] and [20]. The work [4] provides an analysis
in the adaptive control context.

The use of the leaky LMS algorithm to avoid the drift
problem of LMS was apparently proposed as early as 1973
[1], [2], [5]. Leaky LMS, however, introduces a bias problem
that was also described and studied in these references, as
well as in [10] and others.

Given that many works on the drift and bias problems of
LMS and leaky LMS exist in the literature, we shall provide
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here only a brief description of these problems (in addition
to a few examples) in order to better motivate the discussion
in later sections and in order to highlight the problems that
we address in this paper. We consider both cases of infinite
precision and finite-precision arithmetic for reasons explained
below.

A. The Drift Problem in Infinite Precision Arithmetic

We illustrate the drift problem of LMS as follows. Consider
the following contrived (deterministic) example. Let the re-
gressors be scalar and given by
In addition, assume that the step-sizeis 1, that the noise
sequence is , and that the “true” weight vector
is It then follows from the model (1) and from the
LMS recursion (3) that

Solving this time-variant linear equation, we find that for a
zero initial condition and for

which implies that as
This example shows that the weight estimates computed by

the LMS algorithm can grow slowly to very large values, even
when the noise is small. Even with zero noise, unbounded
growth of the estimates can happen due to finite-precision
arithmetic errors (see [9], [20], and the example below).
Such unbounded growth of the LMS estimates can happen
if two conditions are satisfied: 1) The noise or the finite-
precision arithmetic errors have nonzero mean, and 2) the
covariance matrix of the input sequence is not uniformly
positive definite (i.e., there is no such that
for all ). As shown in [1] and [20], these situations do
arise in practice. For example, applications such as adaptive
equalization with fractionally spaced equalizers do not have
inputs with uniformly positive-definite covariance matrices.

B. The Drift Problem in Fixed-Point Arithmetic

The example in this section shows how finite-precision
errors can also cause drift. For this purpose, we assume that
fixed-point arithmetic is used and employ the symbol fx
to denote the fixed-point representation of a real number

We denote by the machine precisionor the largest
absolute difference between a real numberand its fixed-
point representation, namely,fx For simplicity,
we assume that all variables are stored withbits plus sign
and that rounding is used (this implies that ).

Finite-precision errors can result in nonzero mean variables
in a number of ways. Consider, for example, a random variable

with distribution

with probability
with probability

The expected value of is E Assume, however, that
is quantized to fixed-point, with six bits plus sign (so that

). If rounding is used, the quantized variable will have
the distribution5

fx with probability
with probability

The mean of fx is Another situation where finite-
precision errors introduce nonzero mean variables is discussed
in [20]. Basically, this reference shows that the rounding error
of a product fx may not have zero mean in
some situations.

Thus, a zero-mean variable may become nonzero-mean
after quantization or after a fixed-point multiplication. This
small mean might cause a slow drift of the LMS estimates,
causing the algorithm to overflow. We illustrate this effect by
simulating an LMS filter whose input regressors satisfy
(the values shown below are chosen such that the weight drift
effect is amplified)

with probability 0.5
with probability 0.5.

The noise is uniformly distributed with variance
, the step-size is , and the true weight vector

is The weight estimates of the
LMS recursion in finite precision are denoted by, and they
are computed via (the rounding function is implemented as
described in [20])

fx fx

Fig. 2 plots the values of We see that overflow occurs
at approximately

C. Solution of Drift Problem by Leakage

The leakage term in (4) prevents unbounded growth of the
weight vectors from occurring. In the first of our examples,
using leakage, we obtain the recursion for the error vector

This recursion can be shown to result in a bounded sequence
if More generally, the following

result can be established for leaky LMS (see [8]).
Lemma 1 (BIBS Stability of Leaky LMS):Consider the

leaky LMS algorithm (4) in infinite-precision arithmetic. If
, then remains bounded if the noise

sequence is bounded.
In other words, under the condition the

leaky LMS algorithm is bounded-input bounded-state (BIBS)-
stable, where we treat the weight estimates as the state and the
noise sequence as the input. This result can be extended
to finite-precision arithmetic, as follows from the arguments
we provide in Section V. We state the conclusion here.

Lemma 2 (Fixed-Point Stability of Leaky LMS):The leaky
LMS algorithm implemented in fixed-point arithmetic guaran-
tees that the sequence is bounded if is bounded,
and

5The result depends on exactly how the rounding function is implemented.
For example,�0:5+2�7 might be rounded to�0:5+2�6 in some machines.
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Fig. 2. Effect of small nonzero mean finite-precision error with theLMS algorithm. The plot showskzzzkk1 for theM = 2 example described in the text.

Fig. 3. Comparison of the squared errorse(k)2 (LMS) and el(k)2 (leaky LMS) for theM = 2 example of Fig. 2. The darker curve with the spikes
corresponds to LMS. No averaging was performed.

Proof: This result follows from the proof of Theorem 4
further ahead.

D. The Bias Problem of Leaky LMS

Although the leaky LMS algorithm (4) solves the weight-
drift problem, it leads to biased estimates, which can be seen
as follows. The error equation for leaky LMS is given by

Now, assume that and are stationary, indepen-
dent, and identically distributed (iid) sequences. Assume also
that these sequences are independent of each other and have
zero mean. Computing the expectation of , we obtain

E E

where Therefore, if all eigenvalues of the
coefficient matrix are strictly less than
one in magnitude, we obtain in steady-state

E (10)

That is, the average weight error E computed by the leaky
LMS algorithm will not converge to zero, even in ideal
conditions (positive-definite , zero noise, and no quantization
errors).

The conventional solution to the bias problem in (4) has
been to use a very small However, this choice has its
drawbacks. A value of too small might not be capable
of countering the effects of finite-precision arithmetic. In
addition, even a small might create a significant bias, as
shown in the simulation in Fig. 3. The lighter curve is the plot
of the squared error (not its average) computed by the
leaky LMS algorithm for the same environment as in Fig. 2
(same and noise and input statistics). The step size is again

, and the leakage parameter is Note that
this is the second smallest value that could be chosen for,
corresponding to twice the value of the least-significant bit
( LSB in this example).

The darker curve is a plot of the squared error computed
by the LMS algorithm Almost all the time, is
smaller than , but there are spikes when overflow occurs.
[This kind of sudden worsening of the performance is what
turns the filter unusable for some applications.] Comparing
the results for LMS and leaky LMS, we note that although the
latter avoids overflow, the level of the error is significantly
increased. More examples are provided in Section VI.

E. Objectives of the Analyzes in the Sequel

The above examples and discussion motivate us to pursue
in this paper other ways to solve the bias and drift problems
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without compromising the performance of the adaptive algo-
rithm. We do so by introducing a leakage-based algorithm,
called circular-leaky (6) and by studying the performance of
the modified switching- algorithm (8). The purpose of the
discussion in the sequel is twofold.

1) We want to establish that the modified switching-and
the proposed circular-leaky algorithms solve the drift
problem even under the more demanding environment
of a finite-precision implementation. In particular, we
determine conditions on the leakage parameters so that
rounding effects will not contribute to drift.

2) We want to establish that both algorithms also compute
asymptotically unbiased estimates when the regressor
covariance matrix is positive-definite

We employ two tools in our analysis. The first tool is a
stochastic averaging analysis, which is used in Section IV
to establish point 2) above. The second tool is based on a
deterministic Lyapunov stability analysis, which is used in
Section V to show that both algorithms avoid unbounded
growth of the weight error vector.

IV. STOCHASTIC PERFORMANCE ANALYSIS

In this section, we show that the estimates provided by
circular-leaky and switching- algorithms are unbiased. In
fact, we establish a stronger conclusion, namely, that this
property holds even when using fixed-point arithmetic with
rounding. These results are established by relying on averaging
methods, which we first review.

A. Averaging Analysis

Averaging methods provide a powerful means to study the
performance and stability of adaptive algorithms under the
assumption of sufficiently small step-sizes. There are many
excellent expositions on the subject (see, for example, [21],
[24], [25], and the references therein). For this reason, we
restrict our discussion here only to the steady-state results that
are needed in our derivation, following, for the most part, [21].

Consider an adaptive update of the general form

with some initial condition

(11)

where is the error vector we want to minimize. The
function is stochastic, i.e., for every and ,
is a random vector. We could be more explicit in the notation
and write , where is a stochastic sequence. For
example, in the LMS case, we have

and would be formed from and Now,
define the averaged function as

E

where is consideredconstantfor the computation of the
expected value. For example, if is a stationary sequence,
the averaged function for LMS is In
addition, define theaveraged system

(12)

The fully averaged system does not allow us to predict the
steady-state performance of the adaptive algorithm. For this
purpose, it is necessary to study thepartially averaged system

(13)

where denotes the value of the gradient of (with
respect to ) at the origin.

The following result, which is proven in [21, ch. 9], shows
that if the step-size is sufficiently small, the original esti-
mates will remain close to the partially averaged estimates

and that the steady-state covariance ofwill be close
to that of The theorem assumes that the satisfy a
uniform mixingproperty. Essentially, this condition says that
the correlation of and dies out as increases (see
[22]).

Theorem 1 (Averaging Result):Consider the error equation
(11) and its averaged forms (12) and (13), where the se-
quence is uniform-mixing (see [21, p. 357]). Assume
the following.

i) The origin is an exponentially stable equilibrium
point of the averaged system (12) with decay rate .

ii) The gradient exists and is continuous at
the origin.

iii) There exists a constant such that, for any vectors
and the following Lipschitz condition holds

Under these three conditions, obtained from (11) satisfies

P (14)

for every , and

E

E (15)

Using the LMS algorithm as an example again, we have

B. Circular-Leaky Algorithm

We now consider the circular-leaky algorithm (6) and show
that contrary to the standard leaky form (4), circular leaky
does not lead to biased estimates. We establish this result in
the more demanding context of a fixed-point implementation.

Since we are interested in accounting for finite precision
effects, we need to distinguish between the infinite-precision
and the finite precision versions of the update laws. For
this reason, we shall denote the weight error vector in finite
precision by (and reserve for the infinite-precision case).
Using (A.5) from Appendix A, we can show that satisfies
the recursion

(16)
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where the variable accounts for all finite-precision errors
and satisfies certain bounds given by (A.2)–(A.4), and

with mod We shall assume for
simplicity that is independent of all other quantities.6

To use Theorem 1, we need to prove that the fixed-point
circular-leaky error equation (16) and its averaged counterparts
satisfy i)–iii) given in the statement of the theorem. Averaging
the error equation (16) over the input , the noise , and
the finite-precision errors , we obtain the recursion7

(17)

It is shown in Appendix B that this recursion satisfies i)–iii)
for values of and that satisfy

(18)

where is a constant that satisfies
The partially averaged system is further given by

This is, in fact, the same partially averaged recursion that
would result for the LMS algorithm in fixed-point arithmetic.
Therefore, in steady-state, the circular-leaky algorithm will
behave like the LMS algorithm. In particular, circular-leaky
computes asymptotically unbiased estimates since the esti-
mates computed by LMS have this property. The value of the
steady-state mean-square error, E can then be
obtained from the literature (e.g., [15] and [28]) and is stated
below, with the necessary conditions.

Theorem 2 (Steady-State Performance of Circular-Leaky):
Assume that and are stationary, have zero
mean, and satisfy E Assume further that
is iid and independent of and that this last sequence is
uniform mixing. Then, if the step-size is small enough and
(18) holds, the circular-leaky estimates are asymptotically
unbiased, and in the steady-state, we have

E
Tr

Tr
(19)

where for a fixed-point implementation with
bits plus sign.

6We should note that the results obtained with this “linear” model for the
quantization error are valid if the so-called stopping phenomenon does not
occur (i.e., when the step-size is large enough; see [15] and [26]). Reference
[14] considers an alternative nonlinear model for finite-precision errors, albeit
under the more restrictive assumption of iid Gaussian input variables with
R = �2

x
I—see the comments immediately before the concluding remarks of

[27].
7To simplify the notation, in this section we will drop the superscriptc

from the averaged variables.

Proof: The complete argument requires some effort and
is given in Appendix B.

This theorem shows that circular-leaky has essentially the
same good performance as LMS if and (18) is satisfied.
Therefore, the parameters and must be chosen so
that (18) holds. We provide design examples in Sections VI
and VII.

C. The Modified Switching-Algorithm

A similar result can be obtained for the modified switching-
algorithm, but the conditions are less restrictive than

for circular-leaky. (The finite-precision error equation for
switching- is given in Appendix A.)

Theorem 3 (Steady-State Performance of Switching-):
Assume that and are stationary, have zero
mean, and satisfy E Assume further that
is iid and independent of and that this last sequence is
uniform mixing. Then, if the step-size is small enough and

, the switching- estimates are asymptotically
unbiased, and in the steady state, we have

E
Tr

Tr
(20)

Proof: As we did for Theorem 2 in Appendix B, we
need to check conditions i)–iii) from Theorem 1. Conditions
ii) and iii) can be checked as before, but a stronger result can
be obtained if we modify the argument for checking condition
i). Indeed, instead of working with the averaged error we
now work with the averaged version of , namely

(21)

Condition i) is equivalent to proving that is an exponen-
tially stable equilibrium point for (21).

We show in Appendix C that there exists a such that
for all Therefore, for large , the leakage

term remains equal to zero , and the averaged
recursion (21) becomes

from which we conclude that exponentially fast if
satisfies Having verified that condition

i) is satisfied, we can then apply Theorem 1 to obtain (20),
just as we did for circular-leaky in Theorem 2.

V. DETERMINISTIC PERFORMANCE ANALYSIS: STABILITY

Having shown that the circular-leaky and switching-algo-
rithms do not introduce bias, we now prove that they also avoid
drift for any bounded input and noise sequences (provided that
the step-size is small enough). The following result is proved
in Appendix D.
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Fig. 4. Application of the LMS, leaky LMS, and circular-leaky algorithms to the example of Fig. 2.

Theorem 4 (Stability of Switching-: If satisfies

(22)

then the fixed-point switching- algorithm is bounded-input
bounded-state stable [with the as input and as the
state].

The stability analysis of the circular-leaky algorithm is
similar in spirit to, although more involved than, that for
switching- However, the fact that leakage is applied (or
not) to only one tap at each time instant in a prespecified
circular order requires a closer study to verify stability. This
is because it can happen that is large, but the tap
that is being checked by at time , i.e., , is small,
so that no leakage is applied. We then need to verify that
such possibilities do not cause instability. To account for this
scenario, we need to look at the variation of the norm of
after time-steps, i.e., we compare with The
reassuring conclusion is that circular leaky is also stable—see
Appendix E.

Theorem 5 (Stability of Circular-Leaky):If satisfies

and

(23)

then the fixed-point circular-leaky algorithm is bounded-input
bounded-state stable.

VI. SIMULATION RESULTS

We now present several simulation results. We first apply
the circular-leaky algorithm to the example of drift shown in
Fig. 2. In that example, we had
and As in Section III-A, we implemented
the algorithms in fixed point with 7 bits plus sign.

To choose the parameters for the circular-leaky algorithm,
we need bounds on and on Assume that

the bound is given. Choosing ,
(18) requires that , and thus, we need
We chose and The results are shown
in Fig. 4, where we plotted for circular-leaky, LMS,
and for leaky LMS with (note that for fixed-
point numbers with 7 bits plus sign, this value of is
only the second smallest representable number). Since, in
this example, the input distribution does not satisfy ,
the LMS algorithm overflows, as we saw in Section III-A.
Circular-leaky (middle curve) prevents the overflow, keeping
the estimates at a safe level. The squared error curves
and are presented in Fig. 5 (without averaging), where
we see that the error level is clearly smaller for circular-leaky
(dark curve) than for leaky LMS (light curve).

In Fig. 6, we plot the ensemble-averaged learning curves
(i.e., E ) computed by the same algorithms, when
diag Note that the performance of leaky LMS
(light curve) is considerably worse, even though we have used
the second smallest value for

We now present two examples to highlight the robustness
of circular-leaky. In the first one, we used and,
again, and

The input sequence has covariance matrix
with nine zero eigenvalues and one eigenvalue equal to 2.5. We
also artificially added 1 LSB to every entry of at
every time step, in order to make the task of circular-leaky and
leaky LMS more challenging. In Fig. 7, we plotted for
LMS and circular-leaky. The discontinuities in the LMS plot
correspond to points where overflow occurs; circular-leaky
avoids overflow even in this demanding environment.

The last example has and was implemented with
11 bits plus sign. The input and true weight were

and
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Fig. 5. Squared error curves for leaky LMS and circular-leaky in the same example as in Fig. 2.

Fig. 6. Learning curves(e(k)2 averaged over 100 runs) for leaky LMS and circular-leaky, withR = diag(0:25; 0:25):

Fig. 7. kzzzkk1 for LMS and circular-leaky, withM = 10; ��0 = 0:1 andC1 = 0:60; C2 = 0:61:

The input correlation matrix had 99 zero eigenvalues and one
eigenvalue equal to 25. The other parameters were

and
The plots of (LMS) and (circular-leaky) are
shown in Fig. 8.

VII. FILTER DESIGN

In order to choose the design parameters for the circular-
leaky algorithm (6), a bound is necessary. This
bound could be obtained from approximations for the statistics
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Fig. 8. kzzzkk1 for LMS and circular-leaky, withM = 100; ��0 = 0:1: Only one out of every 20 samples is plotted.

of the signals involved. For example, if we know that the true
covariance E and cross-correlation E
are inside balls, say

with , a bound for could
be computed from

The matrix inversion lemma can be applied to obtain

Assuming that so that , we obtain

Assuming that a bound for is available, the design
is made in the following way. Begin by choosing adequate
values for and satisfying , and use (18) to
find the smallest possible The parameter is then chosen
from If the resulting is too large, we
can reduce or or both to allow for a smaller in (18)
and repeat the above procedure.

This procedure guarantees that circular-leaky is unbiased if
the step-size used is small enough (unfortunately, as always
with the use of averaging results, we cannot tell how small

must be).
Although it is not a necessary condition, (18) is not ex-

cessively conservative. We also proved that circular-leaky
is stable if (23) is satisfied. This condition, however, is
conservative; the filter may be stable even if the condition
is not satisfied.

VIII. C ONCLUDING REMARKS

We proposed a leakage-based LMS algorithm, called
circular-leaky, that avoids the drift problem of LMS without
the drawbacks of leaky LMS, namely, the introduction of
bias and the higher computational cost. In addition, circular-
leaky is cheaper to implement than leaky LMS (for large
filter lengths, the computational cost of circular-leaky is only
slightly larger than that of standard LMS). The arguments
in this paper relied on results from averaging theory and

(Lyapunov) stability theory. They essentially established that
for small enough step sizes, the two problems of bias and drift
are solved by circular-leaky and by switching-

A point that deserves further investigation is the choice
of the leakage function Our choice of a differentiable

was motivated by the fact that the averaging results of
Theorem 1 are not applicable to discontinuous The
stability results of Section V, however, are still valid if instead
of (7) we choose a hard-limiting , say, one of the form

if
if

This is, of course, a simpler function to implement than (7). In
the related work [19], we used a deterministic argument (rather
than one based on averaging theory) and provided simulation
results, showing that if this alternative leakage function is used,
circular-leaky still computes unbiased estimates.

APPENDIX A
FINITE PRECISION UPDATE LAWS

We assume, as explained in Section III-B, that all algorithms
are implemented using fixed-point arithmetic, where all vari-
ables are stored with bits plus sign, and that rounding is used
(with ). We also assume that and represent
already-quantized variables [i.e., there are exact fixed-point
representations for and ].

In fixed-point arithmetic, additions are performed without
error if the variables are scaled so that overflow does not
occur. On the other hand, there is an error when performing a
multiplication, say, fx , where We usually
assume that is a random variable with uniform distribution
and zero mean [so that its variance is ] and
that is independent of both and It is also common to
assume that errors in two different operations are independent.
Note that none of these assumptions is exactly true—in
particular, there are systems in which E, although small, is
nonzero (see the discussion in Section III-B).

To differentiate between the infinite and finite-precision ver-
sions of the various algorithms, the weight estimates computed
by the fixed-point algorithms are denoted by(for LMS),
(for circular-leaky), and (for switching- ). Similarly, the
weight error vectors are and
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Circular-Leaky: In fixed-point, the update law of circular-
leaky is given by

fx fx fx (A.1)

where We now expand the terms fx in (A.1),

starting with fx Following [29], we obtain

fx

where the error satisfies8 and

E Similarly, define the error by

fx Expanding the term fx ,
we obtain

fx fx fx

where E and E
We conclude that

E

The last term we need to evaluate is fx
If , is not modified, and there is no error. On
the other hand, if , we have

fx

where E and

if

fx if

In general, it can be shown that satisfies
However, it turns out that the error incurred in computing
does not affect our analysis in an important way; therefore, in
the following, we will assume that this error is zero.

The combination of all finite-precision errors is denoted by
, i.e.,

From our assumptions, it follows that satisfies

(A.2)

E (A.3)

(A.4)

where if and zero otherwise. In
addition, the last equation provides bounds for the individual
elements of

With these definitions, we can write the finite-precision
update law for circular leaky as

(A.5)

8If the multiplications are computed in double precision and only the final
result is rounded toB bits, thenj�(k)j � � and�2� = �2d:

Modified Switching-: The update law for the switching-
algorithm is obtained by following a similar procedure. The
result is

(A.6)

The only difference is in the term , which satisfies

E

APPENDIX B
AVERAGED SYSTEM FOR CIRCULAR-LEAKY ALGORITHM

As mentioned in Section IV-B, in order to apply Theorem 1,
we need to show that the fixed-point circular-leaky error equa-
tion (16), and its averaged counterparts, satisfy the conditions
i)–iii) given in the statement of the theorem. Dropping the
superscript from the averaged variables for ease of notation,
the averaged error equation is [cf. (17)]

(B.1)

Conditions ii) and iii) follow from the above recursion and
from the definition of In fact

From the definition of , we obtain

if

if

otherwise

and thus, the gradient of is

From this relation, we conclude that condition ii) is satisfied.
We now compute

Condition iii) follows from this relation and the fact that both
and its derivative are continuous and bounded functions.

We still need to check condition i) before we can use
Theorem 1, i.e., we need to prove that the origin
is an exponentially stable equilibrium point of (17). Note first
that is an equilibrium point of (17) since, by definition,

To prove that it is exponentially stable, we
shall proceed by showing that for all
and for some

Before we evaluate the norm of , we need to relate the
term in (B.1) to We do so by
relating to as follows.
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Let the constant be such that satisfies

(B.2)

Recall that the leakage term is nonzero if and only if
Therefore, if

implies that

and thus, implies that (if
and have the same sign). Repeating the argument for

, we conclude that

if

if
(B.3)

This allows us to express as for some in the
interval Using this result in (17),
we obtain

Introduce the coefficient matrix
We now show that is uniformly

contractive, i.e., for all (note that since
is symmetric, , and we can thus show

instead that the eigenvalues of are uniformly upper
bounded by 1).

Therefore, let be a vector with unit norm, and compute

If , , and if and only if

and

which are the usual conditions for the mean-square stability of
LMS. On the other hand, if , for some ,
we have

Therefore, if

and

(B.4)

The first of these conditions is always satisfied since, by
assumption, and The second condition
provides an upper bound on as a function of our choices for

and (or ). In this case, we obtain It
then follows that , and thus,

is an exponentially stable equilibrium point of (17).

With this result, we can apply Theorem 1 and conclude that
the steady state of circular-leaky can be obtained from the
partially averaged recursion

For the MSE, we use the fact from Theorem 1 that

E (B.5)

as The computation of the MSE will be performed in
several steps. First, note that , and from
the independence of and , we obtain

E E (B.6)

To compute E , we show that (in steady state) this
expectation is equal to E , where is the weight error
obtained from the LMS algorithm with the same input and
noise sequences.

This is shown as follows. Notice that the above recursion
for , which is obtained for circular-leaky, is the same
partially averaged recursion that would be obtained for LMS.
Therefore, Theorem 1 also implies that

E

as , where now, is the weight error computed by
LMS. From this relation and (B.5), we conclude that

E

as
Next, it can be verified that

Now, since and are bounded, is also a bounded
sequence for small This fact and the general inequality for
random variablesE E imply that

E

as Similar arguments show that

E

We conclude that, for small and in steady-state, E
E We can repeat this argument, replacingwith

to conclude that, in the steady state

E E E (B.7)

The quantity on the right-hand side is the value obtained
from the LMS algorithm. We can use the following argument
to obtain the MSE formula in (19) [23].
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Let the covariance of be E We know from the
above arguments that this covariance reaches a steady state so
that we can write

Tr Tr E

E Tr

where we already ignored the cross-terms. Expanding the first
term in the right-hand side, we obtain

E

Tr Tr

Combining this result with (B.6) and (B.7), we obtain the MSE
formula (19) in the statement of the theorem.

APPENDIX C
AVERAGED SYSTEM FOR SWITCHING-

We need to show that in the steady state, the averaged
variable has norm less than so that the leakage term
remains equal to zero. To do so, we compare the averaged
recursion (21) with the averaged LMS recursion

Note that if , this recursion satisfies

(C.1)

On the other hand, expanding , we obtain

Since the first term in the above relation tends to zero, (C.1)
implies that

and therefore, the relation below holds for any vectorwith
unit norm

(C.2)

We will now rewrite this expression in a more adequate
form. Let be a symmetric square-root factor of, i.e.,

We can rewrite each term in
the above sum as

(C.3)

From (C.3) and (C.2), we obtain

(C.4)

where we have defined the matrices Assuming that
, all the are positive-definite, and thus, all

the terms in the above sum are positive. We shall use this
result soon.

Returning to the switching- algorithm, we have

If , the term in will tend to
zero, and therefore

(C.5)

Taking norms on both sides, we obtain

We will now use (C.4) to show that the above matrix norm
is not greater than one, from which we can conclude that

for large enough
Similarly to what we did in (C.3), we can write

Assume that , and choose such that
, i.e.,

(C.6)

If this condition is satisfied, then for all

Let be a unit-norm vector. From the above relations, we
conclude that
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Therefore, we have the bound

This relation and (C.5) imply that there is a such that for
all

completing our proof.

APPENDIX D
PROOF OF THEOREM 4

From Appendix A, the fixed-point recursion for the
switching- algorithm is

(D.1)

Our goal is to show that the sequence is bounded.
The first task in the proof is to find a ball (centered at the
origin) outside of which the norm is strictly decreasing,
i.e.,

if

We do not need to find the smallest ball satisfying the above
property to prove that is bounded; we only need
to find one such ball. With this in mind, our argument is
simplified if we restrict ourselves to balls with radii
so that for any

Assume then that satisfies at some instant
Taking norms of both sides of (D.1) and using (22) to upper
bound , we obtain the inequality

(D.2)

where we also used (2) to bound and and the bound
for from Appendix A. Subtracting from both sides
of (D.2), we obtain

From this inequality, and from our assumption that ,
it follows that if we have (D.3), shown at the
bottom of the page. We therefore can choose

To complete our argument, note the following.

1) We may have only if However,
cannot be arbitrarily large. In fact, using the

switching- recursion (D.1), we can evaluate the worst-
case (the bound below is not tight)

(D.4)

2) If is not inside at a particular time instant
(i.e., ), then Repeating this
argument, we conclude that either for all

or there exists a time (say, ) such that

The result of the theorem follows from these two observations.

APPENDIX E
PROOF OF THEOREM 5

The variable can be shown to satisfy

(E.1)

Given that and satisfy , we find that
all matrices in the expression for above are contractive
(i.e., have 2-induced norms less than or equal to 1). It follows
that the second term in (E.1) is bounded from above by

(E.2)

We also need to bound the norm of the first term of (E.1).
Define

and note that In addition, if ,
we have

(E.3)

With these definitions, the product we want to bound is

(D.3)
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Consider the second term. From (E.3), its norm is bounded by

To approximate the first term, note that if
; thus

Now, let denote the entry of that has the largest
absolute value Let be such that

, and assume for now that so
that

(E.4)

Putting all these results together, we obtain

(E.5)

Assume that such that

We still need to show that if is large enough, then
, and The expression for

is

Note that for and therefore,
using again the decomposition for , we conclude

that

if

Since , it follows from the above
inequality that the leakage term will be equal to at time

(where ) if

If the above condition holds, using (E.5) and (E.2), we
conclude that the norm will be smaller than if

Therefore, will be strictly smaller than if
From this point, we can use an argument similar

to that of Theorem 4 to show that the sequence is
bounded.
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