IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 12, DECEMBER 1999 3261

Unbiased and Stable Leakage-Based Adaptive Filters

Vitor H. Nascimento and Ali H. Saye&enior Member, IEEE

Abstract—The paper develops a leakage-based adaptive algo- TABLE |
rithm, refered to as circular-leaky, which in addition to solving  COMPARISON OF THEVARIOUS ADAPTIVE ALGORITHMS. THE MATRIX Ry IN THE
the drift problem of the classical least mean squares (LMS) adap- THIRD COLUMN IS THE AUTOCORRELATION MATRIX OF THE INPUT SEQUENCE 2,

tive algorithm, it also avoids the bias problem that is created by Algorithm Drift Biased Complexity

the standard leaky LMS solution. These two desirable properties Problem | when Ry >0 [MA | M [A[TF
of unbiased and bounded estimates are guaranteed by circular Tg YES NO oM 1 010
leaky at essentially the same computational cost as LMS. The T Tms NO YES M | M+1]0]0
derivation in the paper relies on results from averaging theory  “§iitching-o NO NO 3M | M+2 | 2 3

and from Lyapunov stability theory, and the analysis shows that
the above properties hold not only in infinite-precision but also in
finite-precision arithmetic. The paper further extends the results
to a so-called switchings algorithm, which is a leakage-based solves the weight drift problem without introducing bias to the

Circular Leaky [ NO ] NO [2M] 3 J2]3

solution used in adaptive control. estimates and at essentially the same computational cost as
Index Terms—Adaptive algorithm, averaging theory, bias, fi- conventional LMS. These facts are established by relying on
nite precision, leakage, Lyapunov stability, stability. results from averaging theory and Lyapunov stability theory.

We use averaging theory to show that circular leaky does
not lead to biased estimates and then employ a deterministic
stability analysis to show that the algorithm avoids unbounded
T HE LEAKY least-mean-squares (leaky LMS) algorithmyrowth of the weight estimates. In fact, we establish stronger
is a widely used adaptive scheme, having been employie@yits by showing that these properties hold even in the pres-
in applications such as fractionally spaced equalizers (FSEgjce of finite-precision effects in fixed-point implementations.
[1], speech digitization for telephony [2], prevention of burst- The results of the paper are further extended to a modified
ing in adaptive echo cancelation and auto regressive movijgrsion of the so-calledwitchings algorithm, which is stud-
average (ARMA) predictors [3], adaptive control [3], [4], anGed in the adaptive control literature [12], [13]. This algorithm
antenna arrays [5], among others. The algorithm was originaliyso provides unbiased weight estimates, but it has a computa-
proposed to stabilize the weight-drift problem that occurs whenal cost higher than that of leaky LMS. While the literature
the standard LMS algorithm is used in environments that @@ rently available for the switching-algorithm provides only
not satisfy a certain persistence of excitation (PE) conditiogeterministic analyses for infinite-precision arithmetic, our
Unfortunately, however, the solution provided by leaky LM@nalysis will provide both stochastic and deterministic results
comes at a price [6, p. 746]. There is both an increase fy the finite-precision case as well. Table | summarizes the
the computational/hardware cost when compared with thggperties of the four different algorithms mentioned above.
conventional LMS algorithm, and there is a degradation If the complexity column, we list approximate values for the
performance due to the introduction of bias to the weighiymber of multiplications (M), additions (A), multiply-and-
estimates. The drift and bias problems, and their implicationgscumulate (MA), and if-then (IF) commands necessary for
are discussed in the references cited above, as well aseifth algorithm.
[7]-[11] and in Section II. The paper is organized as follows. In the next section,
The purpose of this paper is to address the two issues\@d describe the algorithms studied here, giving the infinite-
drift and bias, by proposing a variant to the LMS algorithyrecision models and update-laws (while the fixed-point up-
that we refer to as theircular-leaky LMS algorithm Under gate equations are delayed to Appendix A). To further motivate
some conditions that are described in this paper, this algoritiygir results, we also present a few examples showing both the
drift problem of LMS and the bias introduced by leaky LMS in
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satisfy a linear model of the form In words, we start by checking the top entry of and
- verifying whether its magnitude exceeds or not the prespecified
y(k) = z), w. + v(k) (1) level 1. If it does, then we apply leakage to it. If not, then

. no leakage is applied. The weight vector is then updated (as

we want to estimate the unknown constant veatore IR . akag bp S 9 P (
M explained below) to obtaimw$. We now repeat the procedure

Here, the{z; € R™} are known regressor vectors, whereag

the {v(k) € R} is an unknown disturbance (noise) sequencey checking thesecondentry of w; followed by thethird

. ; ; entry of ws. At the end of these three iterations, we return
We define theoutput errorfor a given estimataew;, of w. at . . .
. T . to checking the top entry ais, the second entry ofg, and
time k ase(k) = y(k) — x; wy and theweight error vector

. : . SO on.
fas the dlffe_renceuk = We — Wg- :\pN.e furthgr introduce the We thus see that this procedure employaaalinear and
input covariance matri¥t; = Exxx;j, in addition to the upper _. . L

bounds time-variantleakage termx. (%, -) instead of the constant fac-

tor ag in leaky LMS (4). More specifically, at an arbitrary time
k, we check whethefw; ;| > C1, wherek = (k mod M). If
the condition is true, we compute an intermediate estiragte
where 5 and v, are finite positive constants. The requireggi;ésé&GZt;?@ t(:;ksehx(;:v?lﬁtifnor a leakage term that is applied
ment of bounded =y, v(k)} is actually a standard one in the '
literature whenever finite-precision arithmetic effects are being ( w o
studied, although it is often implicit in the assumptions. For .
example, the assumption that all variables are suitably scaled T ;
so that overflow never occurs in fact requires that all variables @ = (1 — pore (b, wk,l@))wk,l@
be bounded (see [14]-[16]). :

There are several algorithms that can be used to compute
estimateaw;. for w... In this paper, we focus on the following
adaptive schemes of the LMS class.

LMS: In the standard LMS algorithm, the estimateg are Note that at most one entry ab is modified in the com-
computed via [17], [18] putation ofwf, [the value of the leakage term.(k, w¢ ;) is
defined later]. Once the intermediate estimatg has been
computed, we proceed with an LMS-type update, namely

sup ||zl =B, sup |v(k)| = vimax 2)
E>0 E>0

Wi M1
\wi, otherwise

wy+1 = wy + pare(k),  with initial conditionw,.  (3)

Leaky LMS: In order to prevent unbounded growth of the
weight estimates in LMS (see Section lll), this algorithm
incorporates a positive leakage facgax, to the adder in (3) wheree(k) = y(k) — z7ws. We can describe the algorithm
more compactly as follows. Le; denote the:th basis vector
(e, epr = 1, ¢ ; = 0 for j # k). Then, the new algorithm
where we use the symbel(k) to indicate that the output error takes the form
is computed using the leaky LMS estimat.

Circular-Leaky: We denote the weight vector estimate for
this algorithm bywj, and let{wy ;} denote its individual +.. ¢ nction ao(k,-) is defined as follows. Letw, Ci,

entries (forj =1, - -- ,M_). Thgre are thrge mod_ifications Withand C, > C, be given positive constantsand defineD —
respect to leaky LMS in this new variant. First, leakage |§02 —C)/2. Ther?

applied to asingle tap at each iteration. Second, leakage i

Wiy = W, + pxre’(k) (5)
wheps = (1 — peo )k + e (E) @

iy = (I = peve(ky . Jegel wf, + paie” (). (6)

appliedonly if the tap magnitude exceeds a prespecified level, (g, f |w2,z;| > Cy
say, C1, and finally, the value of the leakage factar is N Cy — |wt .| 2
dependenbn the magnitude of the tap (and therefore changes ap — —2 7kk>
with time as well). 2 D

Before exhibiting the mathematical description of the algo- (. e ) — if C1+ D < |wj 1| <Co 7)
rithm, let us first explain its operation schematically for ease TRk o lwe | — Ct z
of presentation. Thus assume thet = 3, i.e., assume that 70 T

we are dealing with weight vector estimates that are three taps
long. The diagram below shows the proposed procedure for the
first five iterations of the algorithm, where the arrows indicate

the entries that are checked foossibleapplication of leakage Fig. 1 shows a plot of the leakage function(k,-) for the

if Ol<|wzk|<01+D
\ 0, otherwise.

at each iteration: choicesC; = 0.5, C» = 0.7, anday = 0.1. Later in the paper
w w§ w ws w§ [see, e.g., (18)], we show hoyy:, g, C1} should be chosen.
— X X X — X X . .
ILater in Section VII, we show how these constants could be chosen.
X — X X X — X

It is possible to simplify this definition and use a discontinuous
x x —X x x ac(k,w§ - )—see Section VIl as well as [19].
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Fig. 1. Leakage functiomv.(k,-) with Cy = 0.5, C2 = 0.7, andap = 0.1.

TABLE 1
DIFFERENCES IN THELEAKAGE TERMS AMONG THE ALGORITHMS
Algorithm Leakage applied if Leakage term Applied to
Leaky LMS always applied #aowi all taps
Circular-leaky |wzJ—c| > Cy pa (wﬁ 2Jezelwf | a single tap
Modified switching-o ”w;” > 51 nog (wi)wi all taps

In words, (7) shows that starting frokfh= 0, we examine S;)/2. Then
the magnitude of théop entry of w§ and check in which

interval it lies ag, if [lwi]l = 52 N2
_ao (S2— ||
(0701]7 (01701+D)7 [Cl +D702)7 [02700)' 0 2 E
s if S1+F < |wi| <S
The interval tells us the value of the leakagethat we should as(wy) = ! @ Rl <52 (9)

o ( |lwill = 51
2 L

if Sp<|lwi]|<S1+F
L 0, otherwise.

apply to this tap entry. In this way, we creai§ and thernws
via (5). Next, we examine the magnitude of gexondentry of
w$, determine in which interval it lies, and find the appropriate
a.. We then generate{ andw$ via (5). Next, we examine
the magnitude of théhird entry of w§ and determinex., w5, As was the case for circular leaky, the constéptis chosen
and w§. We continue in this fashion by examining in eaclso that leakage is off whem, is close tow. (i.e., we assume
iterationk a single entry ofw$ and by moving circularly from that a bound#, > |jw.|| is available and choos§; > W>).
one entry in a weight vector to the following entry in the nexf variant of this algorithm is well known in the adaptive
weight vector as the iterations progress. control literature [12], where the leakage function(wy;)
Note that the constanC; must satisfy C; > ||w||., in IS not smooth, as above, but has a discontinuous transition
order to guarantee that the leakage tepf-) is zero when between O andyo.
the estimatew; is close tow.. Hence, in the sequel, we Table Il summarizes the differences among the leakage-
shall assume that a bourd,, > |lw.|.. is available (see based algorithms.
Section VII)3
The time dependency ofi. comes from the fact that a . THE WEIGHT DRIFT AND BIAS PROBLEMS
different entry ofwg is checked at each time instant. To .
simplify the notation, we will not explicitly indicate this time The fact that the LMS algorithm (3) can produce un-

dependency in the remainder of the paper and will thus wri'?é’unded weight estimates in some situations is described in
ao(ws ) instead ofca(k, wf ). several works including, for example, [1], [4], [6], and [8].

Modified Switchings Algorithm: In this algorithm, the 1€ Work [8] studies the drift problem in a deterministic
leakage factor is applied to all taps whenejes; || is too |nf|n|'Fe-preC|_S|0n setting, whereas finite precision effects are
largée _conS|dered in [9] and [20]. The work [4] provides an analysis

in the adaptive control context.
wi 1 = (1 — po,(w))w;, + pere’ (k) (8) The use of the leaky LMS algorithm to avoid the drift
problem of LMS was apparently proposed as early as 1973
where the functiony, (w},) is defined as follows. Letw, S1, [1], [2], [5]. Leaky LMS, however, introduces a bias problem
and S; > 51 be positive constants, and defide = (5S> — that was also described and studied in these references, as

3The notation|| - ||~ denotes the largest absolute entry of its argument. We”. as in [10] and others. . .

4The notation|| - || denotes the Euclidean norm of its vector argument or Given that many works on the drift and bias problems of
the maximum singular value of its matrix argument. LMS and leaky LMS exist in the literature, we shall provide
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here only a brief description of these problems (in addition= 2-7). If rounding is used, the quantized variable will have
to a few examples) in order to better motivate the discussitime distributiof

in later sections and in order to highlight the problems that 0.542-6 with probability 0.5 — 2-7

we address in this paper. We consider both cases of infinite x[a] = { o P oo

- - ~ ) _ : —-0.5, with probability 0.5 + 277,
precision and finite-precision arithmetic for reasons explained
below. The mean of fla] is —2713. Another situation where finite-
precision errors introduce nonzero mean variables is discussed
A. The Drift Problem in Infinite Precision Arithmetic in [20]. Basically, this reference shows that the rounding error

We illustrate the drift problem of LMS as follows. ConsideP! @ producté = fx[a - b] — ab may not have zero mean in

the following contrived (deterministic) example. Let the re§01r11heuss'u;at'22':§' mean variable may become nonzero-mean
ressors be scal = 1) and given byz(k) = (1/v/k + 1). ' ) ]

|gn addition assmjr% tha)t the gtep—syzy;(s )1 téa{ the+no)ise after quantization or after a fixed-point multiplication. This

sequence is(k) = 1074, and that the “true” weight vector small mean might cause a slow drift of the LMS estimates,
is w. = 0. It then foIIowys from the model (1) and from thecausing the algorithm to overflow. We illustrate this effect by

LMS recursion (3) that simulating anM = 2 LMS filter whose input regressors s_atisfy_
(the values shown below are chosen such that the welght drift
1 - 1 effect is alnplified)
1 =[1—-——— .+ 10 R
rr < k 1>Wk \//f— +1

Solving this time-variant linear equation, we find that for a

o = { [0.5 —0.5]7, with probability 0.5
zero initial conditionwy and fork > 1

[0.5 —0.5]7, with probability 0.5.

‘ The noise is uniformly distributed with variane€ = 1/3 x
107 & 2 x 10~ -3 th ize s — 0.15. and th ioh
Z Vi> Vi 107", the step-size ig: = 0.15, and the true weight vector
ko & - 3 is w, = [v0.2 — +0.2]Y. The weight estimates of the
’ LMS recursion in finite precision are denoted by, and they

which implies thatw;, — oo ask — oco. are computed via (the rounding function is implemented as
This example shows that the weight estimates computed B¥scribed in [20])

the LMS algorithm can grow slowly to very large values, even
when the noise is small. Even with zero noise, unbounded Zi1 = zp + X[pasix[e(R)]].
growth of the estimates can happen due to finite-precisig

wr =

arithmetic errors (see [9], [20], and the example below 19- 2 plot_s the values gfz’“”“'we see that overflow occurs
Such unbounded growth of the LMS estimates can happ happroxmatelyk = 250.
if two conditions are satisfied: 1) The noise or the finite-
precision arithmetic errors have nonzero mean, and 2) the
covariance matrix of the input sequenie, } is not uniformly The leakage term in (4) prevents unbounded growth of the
positive definite (i.e., there is np>0 such thatR; >pl weight vectors from occurring. In the first of our examples,
for all k). As shown in [1] and [20], these situations dausing leakage, we obtain the recursion for the error vector
arise in practice. For example, applications such as adaptive 104

equalization with fractionally spaced equalizers do not havew! ,, = <1 — pag — L)ﬁ[ + poows — ph ————.
q y Sp q B+1 Hoxo ra1 ) Hoo M N/

inputs with uniformly positive-definite covariance matrices.
This recursion can be shown to result in a bounded sequence
B. The Drift Problem in Fixed-Point Arithmetic {wl} if 0<pu<2/(ap+ 1). More generally, the following

The example in this section shows how finite-precisioffSult can be established for leaky LMS (see [8]).
errors can also cause drift. For this purpose, we assume thatmma 1 (BIBS Stability of Leaky LMSonsider  the
fixed-point arithmetic is used and employ the symbdkfx leaky LMS algorithm (4)1 in |nf|n|_te-preC|S|0n a_rlthmetlc._ If
to denote the fixed-point representation of a real numbr<2/(co + /), then [w; || remains bounded if the noise
a. We denote bye the machine precisionor the largest Seduence(v(k)} is bounded. =
absolute difference between a real numbeand its fixed- N other words, under the condition <2/(ao + f9), the
point representation, nameljfx[a] — a| < ¢. For simplicity, leaky LMS algorithm is bounded-input bounded-state (BIBS)-
we assume that all variables are stored wittbits plus sign stqble, where we treat the yvelght estimates as the state and the
and that rounding is used (this implies that 2-2-1). noise sequence(k) as the input. This result can be extended

Finite-precision errors can result in nonzero mean variablié finite-precision arithmetic, as follows from the arguments

in a number of ways. Consider, for example, a random variai§ Provide in Section V. We state the conclusion here.
o with distribution Lemma 2 (Fixed-Point Stability of Leaky LMSThe leaky

LMS algorithm implemented in fixed-point arithmetic guaran-
tees that the sequenge } is bounded if{v(k)} is bounded,
and |1 — pag — pf] < |1 — poo| < 1.

Solution of Drift Problem by Leakage

ao J05+ 277, with probability 0.5 — 2=7
~ 1 =0.54277, with probability 0.5 +277.

The expegted Valu_e of IS.Ea = 0. Assqme, how_ever' that  stpe result depends on exactly how the rounding function is implemented.
a is quantized to fixed-point, with six bits plus sign (so thator example—~0.5+2~" might be rounded te-0.542~% in some machines.
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Fig. 2. Effect of small nonzero mean finite-precision error with th&S algorithm. The plot show}z; ||« for the M = 2 example described in the text.
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Fig. 3. Comparison of the squared erraetg:)? (LMS) and e'(k)? (leaky LMS) for theM = 2 example of Fig. 2. The darker curve with the spikes
corresponds to LMS. No averaging was performed.

Proof: This result follows from the proof of Theorem 4 The conventional solution to the bias problem in (4) has
further ahead. { been to use a very smalt,. However, this choice has its
drawbacks. A value ofxg too small might not be capable
of countering the effects of finite-precision arithmetic. In

D. The Bias Problem of Leaky LMS
Although the leaky LMS algorithm (4) solves the weight?ddition’ even a smakllyyg might create a significant bias, as

drift problem, it leads to biased estimates, which can be se wn in the simulatlion ;n Fig._3. The lighter curve is the plot
as follows. The error equation for leaky LMS is given by of the squared error (k)" (not its average) computed by the
z leaky LMS algorithm for the same environment as in Fig. 2

Wy = (samew.. and noise and input statistics). The step size is again

i . . 1= 0.15, and the leakage parameternis, = 2-°. Note that
Now, assume thafz;} and {u(k)} are stationary, mdepen-this is the second smallest value that could be chosendgr

dent, and identically dlstnb_uted (iid) sequences. Assume al(s,(?rresponding to twice the value of the least-significant bit
that these sequences are independent of each other and I'(\ft\f_eSB — 27 in this example)

zero mean. Computing the expectatlomnijﬂ, we obtain The darker curve is a plot of the squared error computed

by the LMS algorithme(k)?. Almost all the time,e(k)? is
smaller thare!(k)?, but there are spikes when overflow occurs.
where R = Exzj. Therefore, if all eigenvalues of the [This kind of sudden worsening of the performance is what
coefficient matrix[(1 — pcxo)l — pR] are strictly less than yrns the filter unusable for some applications.] Comparing
one in magnitude, we obtain in steady-state the results for LMS and leaky LMS, we note that although the
latter avoids overflow, the level of the error is significantly
increased. More examples are provided in Section VI.

(1 = pao)I — pxrel Yok, + pogw, — pago(k).

Eﬂ)iﬂ_l = ((1 — pao)I — pR)Ew,, + popw,

Jim Ewl, = ao(col + R) ‘w,. (10)
That is, the average weight errorbE computed by the leaky L )
LMS algorithm will not converge to zero, even in ideaf- OPiectives of the Analyzes in the Sequel

conditions (positive-definit&, zero noise, and no quantization The above examples and discussion motivate us to pursue
errors). in this paper other ways to solve the bias and drift problems
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without compromising the performance of the adaptive algdhe fully averaged system does not allow us to predict the
rithm. We do so by introducing a leakage-based algorithrsteady-state performance of the adaptive algorithm. For this
called circular-leaky (6) and by studying the performance @lurpose, it is necessary to study {hetially averaged system

the modified switchings algorithm (8). The purpose of the . - pav
discussion in the sequel is twofold. w1 = L0V far (O™ +u(f(k, 0) = fau(k, 0)) (13)

1) We want to establish that the modified SWltChm@nd Wherevﬁfwv(o) denotes the value of the gradientﬁt (Wlth
the proposed circular-leaky algorithms solve the drifiespect tow) at the origin.
problem even under the more demanding environmentThe following result, which is proven in [21, ch. 9], shows
of a finite-precision implementation. In particular, wehat if the step-size: is sufficiently small, the original esti-
determine conditions on the leakage parameters so th@dtesw; will remain close to the partially averaged estimates
rounding effects will not contribute to drift. @’ and that the steady-state covariancemfwill be close
2) We want to establish that both algorithms also compugg that ofwh™. The theorem assumes that tf&, } satisfy a
asymptotically unbiased estimates when the regressg@fiform mixingproperty. Essentially, this condition says that
covariance matrix is positive-definitg? > 0). the correlation of; and¢; dies out agi — j| increases (see
We employ two tools in our analysis. The first tool is §22]).
stochastic averaging analysis, which is used in Section IVTheorem 1 (Averaging ResultlConsider the error equation
to establish point 2) above. The second tool is based on(1d) and its averaged forms (12) and (13), where the se-
deterministic Lyapunov stability analysis, which is used iguence{{,} is uniform-mixing (see [21, p. 357]). Assume
Section V to show that both algorithms avoid unboundetie following.

growth of the weight error vector. i) The origin 0 is an exponentially stable equilibrium
point of the averaged system (12) with decay ratg).
IV. STOCHASTIC PERFORMANCE ANALYSIS ii) The gradientVy f,.(k,w) exists and is continuous at

In this section, we show that the estimates provided by .. _}_Ze or|g|r_l.t tant h that. f ¢
circular-leaky and switching- algorithms are unbiased. In i) er ?ﬁ('sfsna c_onsLa_\ Srl1“t: ad,_t_or a;]n)fdvec ore
fact, we establish a stronger conclusion, namely, that this ands, the foflowing Lipschilz condition holds

property holds even when using fixed-point arithmetic with |Vaf(k, a) — Vaf(kb) < cla—b|.

rounding. These results are established by relying on averaging

methods, which we first review. Under these three condition&; obtained from (11) satisfies
. . li P{||ws — wi*” =0 14

A. Averaging Analysis ety i‘g Ulww = w1 > e} (14)

Averaging methods provide a powerful means to study thg, every ¢ >0, and
performance and stability of adaptive algorithms under the

assumption of sufficiently small step-sizes. There are many lm  lim <l Eﬁlkﬁlf>
excellent expositions on the subject (see, for example, [21], p=0 k—oo \ [
[24], [25], and the references therein). For this reason, we i i 1 pav-pav,T
restrict our discussion here only to the steady-state results that = }}L% klggo <; B wy, ) (15)
are needed in our derivation, following, for the most part, [21].
Consider an adaptive update of the general form <

Using the LMS algorithm as an example again, we have
wyy1 = wi + pf (k,wy), with some initial conditionwg
Vﬁ;fa'v(o) = _R7 f(k7 0) - fa'v(kv 0) = _-Tkv(k)-

(11)

where w;, is the error vector we want to minimize. TheB. Circular-Leaky Algorithm

function f is stochastic, i.e., for ever¥ and wy, f(k,ws) We now consider the circular-leaky algorithm (6) and show
is a random vector. We could be more explicit in the notatiafat contrary to the standard leaky form (4), circular leaky
and write (£, wy), where{, } is a stochastic sequence. FoHoes not lead to biased estimates. We establish this result in

example, in the LMS case, we hayék,w;) = —zxz @, — the more demanding context of a fixed-point implementation.
zv(k), and £, would be formed frome; and v(k). Now, Since we are interested in accounting for finite precision
define the averaged functiofy,, as effects, we need to distinguish between the infinite-precision

Lok i) = Ef (k) and the finite precision versions of the update Iavys. .F_or

A ’ this reason, we shall denote the weight error vector in finite
where @ is consideredconstantfor the computation of the Precision byz;, (and reserve;, for the infinite-precision case).
expected value. For example {i, } is a stationary sequence,USing (A.5) from Appendix A, we can show thaf satisfies
the averaged function for LMS ig,,(k,@) = —Rw. In (e recursion

addition, define theaveraged system T

341 = (I — pou(z peel — pmal)#

Wiy = B+ pfak, W), WY =0, (12) + ez el we — pav(k) — 85 (16)
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where the variablé; accounts for all finite-precision errors Proof: The complete argument requires some effort and

and satisfies certain bounds given by (A.2)-(A.4), apg = is given in Appendix B. &
w, j — % With k& = (k mod M). We shall assume for ~This theorem shows that circular-leaky has essentially the
simplicity thatéj, is independent of all other quantitiés. same good performance as LMSIif> 0 and (18) is satisfied.

To use Theorem 1, we need to prove that the fixed-poihherefore, the parametets,, 1, and 7. must be chosen so
circular-leaky error equation (16) and its averaged counterpaiat (18) holds. We provide design examples in Sections VI
satisfy i)—iii) given in the statement of the theorem. Averagingnd VII.
the error equation (16) over the inpmt, the noisev(k), and
the finite-precision erroré;, we obtain the recursidn C. The Modified Switching-Algorithm

A similar result can be obtained for the modified switching-
o algorithm, but the conditions are less restrictive than
+uac(w*7;;—7?,‘jf,';)e;;e%w*. (17) for circular-leaky. (The finite-precision error equation for
switching is given in Appendix A.)
It is shown in Appendix B that this recursion satisfies i)—iii) Theorem 3 (Steady-State Performance of Switching-
for values ofx and « that satisfy Assume thafz;}, {v(k)}, and{é;} are stationary, have zero
mean, and satisfy®g.zi = R > 0. Assume further thafv(k)}
1 is iid and independent ofz; } and that this last sequence is
“(1 + _>O‘0 <2 = pAmax(R) (18)  uniform mixing. Then, if the step-size is small enough and
‘ S1 > ||w.||, the switchings estimatesz; are asymptotically
unbiased, and in the steady state, we have

Sav

zZih = — poe(w, g — ;}Z,LIZ)CRC% — nR)z;”

wheren. > 0 is a constant that satisfi€® > (1+7n.)||w.]|co-
The partially averaged system is further given by

klim Ec*(k)? ~ o2 + (o 4+ 03) - Tr(2R)
Zian = (I — pR)Z™ — pyu(k) — 85, o )
I
n Tr(ad(2+R))~ (20)

This is, in fact, the same partially averaged recursion that
would result for the LMS algorithm in fixed-point arithmetic. Proof: As we did for Theorem 2 in Appendix B, we
Therefore_:, in steady—state,. the circular_—leaky a]gorithm WiHeed to check conditions i)—iii) from Theorem 1. Conéitions
behave like the LM.S aIgonthr_n. In part_lcular, u_rcular-leak){i .and iii) can be checked as before, but a stronger result can
computes asymptotically unbiased estimates since the eﬁ)g obtained if we modify the argument for checking condition
mates computed by LMS have this property. The value of tﬁf Indeed, instead of working with the averaged e&pi we

steady-state mean-square ertar;_.., Ec¢(k)? can then be . .
obtained from the literature (e.g., [15] and [28]) and is statenc? w work with the averaged version ef,, namely

below, with the necessary conditions. o o o

Theorem 2 (Steady-State Performance of Circular-Leaky): i = (1= sz — pl)2y” + plw,. (21)
Assume thafz;}, {v(k)}, and{é;} are stationary, have zero
mean, and satisfys.z] = R > 0. Assume further thafv(k)} Condition i) is equivalent to proving thab. is an exponen-
is iid and independent ofz;} and that this last sequence idially stable equilibrium point for (21).
uniform mixing. Then, if the step-size is small enough and We show in Appendix C that there existsi such that
(18) holds, the circular-leaky estimate$ are asymptotically ||z;"|| <51 for all k > K. Therefore, for largé:, the leakage
unbiased, and in the steady-state, we have term remains equal to zer@v,(2;") = 0), and the averaged

recursion (21) becomes

) Tr(R)
lim Ee®(k)? ~o2 + p(o? +o2) - " v
ko0 (k) vt ilow+ o) 2 Zph1 = (I — pR)zy" + pRw,
Tr(c3(I + R
2 from which we conclude that}” — w, exponentially fast if

) . . o _ _ p satisfies0d < pAnax (1) < 2. Having verified that condition
whereo, = 2727 /12 for a fixed-point implementation with j) s satisfied, we can then apply Theorem 1 to obtain (20),
B bits plus sign. just as we did for circular-leaky in Theorem 2. o

6We should note that the results obtained with this “linear” model for the
quantization error are valid if the so-called stopping phenomenon does not/, DETERMINISTIC PERFORMANCE ANALYSIS: STABILITY
occur (i.e., when the step-size is large enough; see [15] and [26]). Reference ] ) o
[14] considers an alternative nonlinear model for finite-precision errors, albeit Having shown that the circular-leaky and switchinglgo-
under the more restrictive assumption of iid Gaussian input variables WFl}hms do not introduce bias, we now prove that they also avoid
R = o2 I—see the comments immediately before the concluding remarksa . . ' . .
[27]. rift for any bounded input and noise sequences (provided that
"To simplify the notation, in this section we will drop the superscript Fhe step-size Is small enoth)' The followmg result is proved

from the averaged variables. in Appendix D.
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Fig. 4. Application of the LMS, leaky LMS, and circular-leaky algorithms to the example of Fig. 2.

Theorem 4 (Stability of Switching- If ;. satisfies the bound||w.||.. < 0.55 is given. Choosingucg = 0.1,
(18) requires that;. > 0.055, and thus, we need’; > 0.58.
We choseC; = 0.60 and C> = 0.61. The results are shown

then the fixed-point switching- algorithm is bounded-input in Fig. 4, where we plottedz; || for circular-leaky, LMS,
bounded-state stable [with thek) as input andz; as the and for leaky LMS withuao = 0.0156 (note that for fixed-
state]. & point numbers with 7 bits plus sign, this value pfy is
The stability analysis of the circular-leaky algorithm i®nly the second smallest representable number). Since, in
similar in spirit to, although more involved than, that fothis example, the input distribution does not satigty> 0,
switchings. However, the fact that leakage is applied (othe LMS algorithm overflows, as we saw in Section IlI-A.
not) to only one tap at each time instant in a prespecifiéercular-leaky (middle curve) prevents the overflow, keeping
circular order requires a closer study to verify stability. Thithe estimates at a safe level. The squared error cuiés”

is because it can happen thi:||.. is large, but the tap ande‘(k)? are presented in Fig. 5 (without averaging), where
that is being checked ba.(-) at timek, i.e., 2 is small, we see that the error level is clearly smaller for circular-leaky
so that no leakage is applied. We then need to verify th@ark curve) than for leaky LMS (light curve).

such possibilities do not cause instability. To account for this In Fig. 6, we plot the ensemble-averaged learning curves
scenario, we need to look at the variation of the norepf (i-e., E=(k)?) computed by the same algorithms, whéin=
after M time-steps, i.e., we compalfies , ,,|| with ||z;||. The diag(0.25,0.25). Note that the performance of leaky LMS

reassuring conclusion is that circular leaky is also stable—s@ight curve) is considerably worse, even though we have used

|1 — pevo — pBl < 1 — pao| <1 (22)

Appendix E. the second smallest value f@iy,.
Theorem 5 (Stability of Circular-Leaky)tf 1 satisfies We now present two examples to highlight the robustness
of circular-leaky. In the first one, we usetf = 10 and,
1 — povo — pfl <1 and again, i = 0.15, ey = 0.1, C; = 0.60, Cs = 0.61, and
peo(2 — pog) |lwi|lcc = 0.44. The input sequence has covariance matrix
\/1 - M tuMp<l (23) with nine zero eigenvalues and one eigenvalue equal to 2.5. We

§iso artificially added 1 LSB= 1/128) to every entry ok, at
every time step, in order to make the task of circular-leaky and
leaky LMS more challenging. In Fig. 7, we plottége||.. for
LMS and circular-leaky. The discontinuities in the LMS plot
correspond to points where overflow occurs; circular-leaky
We now present several simulation results. We first appéyoids overflow even in this demanding environment.
the circular-leaky algorithm to the example of drift shown in The last example ha& = 100, and was implemented with
Fig. 2. In that example, we had = 0.15, ||w.||cc = 0.44, 11 bits plus sign. The input and true weight were
and Ay (R) = 0.075. As in Section 1lI-A, we implemented
the algorithms in fixed point with 7 bit§ plus sign. _ w, =[0.06 —0.06 0.06---—0.06] and
To choose the parameters for the circular-leaky algorithm,
we need bounds ofjw.||oc @and onA,,.x(R). Assume that

then the fixed-point circular-leaky algorithm is bounded-inp
bounded-state stable.

VI. SIMULATION RESULTS

z, =[£0.5 F0.5 +0.5 -.-F0.5]%.
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Fig. 5. Squared error curves for leaky LMS and circular-leaky in the same example as in Fig. 2.
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Fig. 7. ||zk]|e for LMS and circular-leaky, with\f = 10, pao = 0.1 andCy = 0.60, C2 = 0.61.

The input correlation matrix had 99 zero eigenvalues and one VII. FILTER DESIGN
eigenvalue equal to 25. The other parameters weze0.01, . )
pog = 0.1, 02 = 1/3 x 1073, €y = 0.21, and C; = 0.22. In order to choose the design parameters for the circular-

The plots of ||zx||c (LMS) and ||2§||o (circular-leaky) are leaky algorithm (6), a boun® . > ||w.||~ is necessary. This
shown in Fig. 8. bound could be obtained from approximations for the statistics
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Fig. 8. ||zx||s for LMS and circular-leaky, with\ = 100, pag = 0.1. Only one out of every 20 samples is plotted.

of the signals involved. For example, if we know that the trug.yapunov) stability theory. They essentially established that
covarianceR = Expzi and cross-correlatiop = Ey(k)z, for small enough step sizes, the two problems of bias and drift
are inside balls, say are solved by circular-leaky and by switching-
~ . A point that deserves further investigation is the choice
R=R+0R, p=p+op of the leakage functiom.(-). Our choice of a differentiable
with |[6R]c0 < 718, [16p]lcc < 7, @ bound for||w, ||, could @.(-) was motivated by the fact that the averaging results of

be computed from Theorem 1 are not applicable to discontinugiy, wy ). The
. . L stability results of Section V, however, are still valid if instead
[welloo = [R7Plloc = [[(R+ 6R)™ (D + 6p)||- of (7) we choose a hard-limiting., say, one of the form
The matrix |n\~/er5|on I~emma can be ap?lled to f)btam oua) = {ao’ ?f la| >
llwslloo <||R™*p— R™*(I 4+ 6R)*6RR™p + R~6p|| ‘ 0, if[af < Cr.
+ O(nrnp).-

This is, of course, a simpler function to implement than (7). In
Assuming that)r < 1 so that(J + 6R)™! ~ I, we obtain the related work [19], we used a deterministic argument (rather
. . . than one based on averaging theory) and provided simulation

[wlloo < 1B Blloo + 1B?Dloonr + [|B |oop- results, showing that if this alternative leakage function is used,

Assuming that a bound fdfw, || is available, the design circular-leaky still computes unbiased estimates.

is made in the following way. Begin by choosing adequate
values forp and o satisfying0 < o < 1, and use (18) to APPENDIX A

find the smallest possible.. The paramete€’; is then chosen FINITE PRECISION UPDATE LAWS
from C; > (1 4+ n.)W. If the resultingC; is too large, we

can reduce or 4 or both to allow for a smallen, in (18) We assume, as explained in Section IlI-B, that all algorithms

and repeat the above procedure. are implemented using fixed-point arithmetic, where all vari-

This procedure guarantees that circular-leaky is unbiasetjﬁ.les are stored with bits plus sign, and that rounding is used

_—_ 9—B-1 .
the step-size used is small enough (unfortunately, as alw pith € = 2 )- We also assume thaj, andy(k) represent

aﬁrsead -quantized variables [i.e., there are exact fixed-point
with the use of averaging results, we cannot tell how sma y-a T P

must be) representations fog(k) and z].
“ Lo - : In fixed-point arithmetic, additions are performed without
Although it is not a necessary condition, (18) is not ex-

. . . grror if the variables are scaled so that overflow does not
cessively conservative. We also proved that circular-lea

is stable if (23) is satisfied. This condition, however, i(s%cur' On the other hand, there is an error when performing a

conservative; the filter may be stable even if the conditionﬁ]umpllcatlon'.Say’ Pab] = abJ.ré’ whgre|6| = e We. us_uall_y

is not satisfied. assume thaf is a random varlable Wl.th uniform distribution

and zero mean [so that its variancesi$ = (2728 /12)] and

that ¢ is independent of botlh andb. It is also common to

assume that errors in two different operations are independent.
We proposed a leakage-based LMS algorithm, callédbte that none of these assumptions is exactly true—in

circular-leaky, that avoids the drift problem of LMS withoutparticular, there are systems in whicla,E&lthough small, is

the drawbacks of leaky LMS, namely, the introduction afionzero (see the discussion in Section III-B).

bias and the higher computational cost. In addition, circular- To differentiate between the infinite and finite-precision ver-

leaky is cheaper to implement than leaky LMS (for largsions of the various algorithms, the weight estimates computed

filter lengths, the computational cost of circular-leaky is onlipy the fixed-point algorithms are denotedy(for LMS), 2,

slightly larger than that of standard LMS). The argumen($or circular-leaky), andz; (for switching<). Similarly, the

in this paper relied on results from averaging theory angleight error vectors aré;, z5,, and Zsy.

VIIl. CONCLUDING REMARKS
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Circular-Leaky: In fixed-point, the update law of circular- Modified Switchings: The update law for the switching-
leaky is given by algorithm is obtained by following a similar procedure. The

. result is
25 = X[ — poo(z, Deres V25| + X[ uxfx[ef(k A.l
k41 [( preve( k,k) k k) %l (nenfX[e“(R)]] (A1) ZZ-H :((1 —Nas(zi))f—lwkiﬂ;‘f)zi

wherec®(k) = 2} z;. We now expand the terms|[iin (A.1), + pxpxr w, + papo(k) + 6. (A.6)

. . c é c . .
starting witheg, (k) = fx[e“(k)]. Following [29], we obtain o o difference is in the ter;, which satisfies

ey (k) = X [zF zi] = zF mi + 0(k) 1621 < (VM + (1 4+ pv'M)||zi|| + 1, # 0)VM)e
E8;8;" =Y + poiR+ 1(as # 0)02l

where the error (k) satisfie§ |n(k)] < Me and
165,51 < (1 + (1 + w)l|lzrlloc + 1{cs # 0))e.

En(k)? 2 02 = Moj. Similarly, define the erro, by

A < < 1
£ = fx[_u:ckeQ(k)] — pxreg (k). Expanding the term fX, APPENDIX B
we obtain AVERAGED SYSTEM FOR CIRCULAR-LEAKY ALGORITHM
fx[pzrcd (k)] = IX[IX e (B)lzr] = (ueh (k) + &)z + & As mentioned in Section. IV-B, in orQer to apply Theorem 1,
we need to show that the fixed-point circular-leaky error equa-
where|¢] < e, Eg;f = o2, &1l < VMe, and BLET = _tio_r_l_ (16_), an_d its averaged counterparts, satisfy the C(_Jnditions
o3I. We conclude that i)—iii) given in the statement of the theorem. Dropping the
superscript: from the averaged variables for ease of notation,
€Ll < VMe + ||z, E£.£L 2 S = o2(I + R). the averaged error equation is [cf. (17)]

. 2 = — poe(w, ¢ — 7%%)ezel — Rz
The last term we need to evaluate i§(f— pocezel )zg]. ey = = palw, g = Zp)ere, — nR)Z,

If (2§ ;) =0, 2§ is not modified, and there is no error. On + pee(w, ; — 7% Jere; ws. (B.1)

the other hand, ifz; ;| > €, we have Conditions ii) and iii) follow from the above recursion and
. e from the definition ofa.(-). In fact
X[(L — pocerer )zi] = (I — poaoere; )i + ((Key

sav

fa'v(ézv) = - REZ'U - aC(wnl_ng:JlZ)el_&e%zk
where|¢(k)| < ¢, E¢(k)? = o2, and

sat T
+ aclw, ; — 21 )erer, we.

171 if [zx,5] = C2 From the definition ofu,(-), we obtain
P — & Dl if C Bl <C
poe(z 2], i O < |z 1| < Cs. - .
jiZe’y) [ (k7k)] | k7k| %(CLD 1), if Cir<a<Ci+D
da(a)
In general, it can be shown thatsatisfies0 < p <1 + 3e. ga ) %o Co—a O LD <a<C
However, it turns out that the error incurred in computjmg 2 D ’ ! T 2
does not affect our analysis in an important way; therefore, in 0, otherwise
the following, we will assume that this error is zero. and thus, the gradient of,,, is
The combination of all finite-precision errors is denoted by P
o e, Vifowr = —R—aw, 5 — 7 *)CTCT—iéc‘CT.
av AAWx, k,EJCRCE 82;,; ECE
c A ’
by = & + C(Keg + pn(k)zs.- From this relation, we conclude that condition ii) is satisfied.
. . - We now computeV;
From our assumptions, it follows thé&f satisfies P 2 5
. Vif = —muxi — ac(w, i — 75 L)eper — _~C¥c Zer .
163 < (VM + (1 + pv M)|lzx|| + Lo # 0))e (A2) ’ : 9z} ¢

B8 =% + poi R+ ae # 0)oderey, (A-3) " Condition iii) follows from this relation and the fact that both
67,41 <24 (1 + p)llzrll)e (A4)  «.() and its derivative are continuous and bounded functions.
] ] We still need to check condition i) before we can use
where 1(a. # 0) = 1if . # 0 and zero otherwise. In Theorem 1, i.e., we need to prove that the origff = 0
addition, the last equation provides bounds for the individug! g, exponentially stable equilibrium point of (17). Note first

elements ofé;. _ o ~that 0 is an equilibrium point of (17) since, by definition,
With these definitions, we can write the finite-precision, (,, . 0) = 0. To prove that it is exponentially stable, we
update law for circular leaky as shall proceed by showing thigs" || < ~||z*|| for all k > 0

and for somey < 1.
Before we evaluate the norm 8f" ,, we need to relate the
_ sav Y H >
8If the multiplications are computed in double precision and only the finé?rm. “O‘C(w*,k - z":’%)eke’; w, 1N (B'l) to z;. We do so by
result is rounded td bits, then|n(k)| < e ando? = 2. relating w.. to z; as follows.

2511 = 2k + pxret (k) — pocerer zy + 5. (A.5)
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Let the constant). > 0 be such that’; satisfies With this result, we can apply Theorem 1 and conclude that
o= (1 5.2 the steady state of circular-leaky can be obtained from the
1= (1) [weloo- (B-2) partially averaged recursion

Recall that the leakage term is nonzero if and onlydi - pav pav ] -
Zptl > C1. Therefore, ifw, 5 - 2% 2 0, ae(w, 1 — 70%) %0 Zeyr = (= pR)Z" = papv(k) = 8.
|mpI|es that For the MSE, we use the fact from Theorem 1 that

C = 1 e ® o<>< « K ~ab * ~ ~pav

1 ( =+, )HHJ || |w N |w k| sup Esz _zi ||2 =0 (BS)
k>0

and thusa. # 0 implies that| 27| > (1 +77c)||w*||oo (it 27
and w, E have the same 3'9”) Repeating the argument f&,, — 0. The computation of the MSE will be performed in
w, i - 757 <0, we conclude that several steps. First, note thetk) = =1 5, + v(k), and from

ac(w*7k ) #£0 the independence dfv(k)} and {zx}, we obtain

1 . =
= lw, ] < 1 B if w5590 <0 (B.3) To compute Ex;z5)?, we show that (in steady state) this
SR e TRAD wk R S expectation is equal to(k 2 )?, wherezy, is the weight error

This allows us to express, ; as ;2% for somee in the obtained from the LMS algorithm with the same input and
K .
noise sequences.
interval —(1/1 » 1/n. Usm this result in (17 T . .
. —(A/T 4 ne) < e <(1/ne)- g (27), This is shown as follows. Notice that the above recursion
we obtain o L . : X
for 22", which is obtained for circular-leaky, is the same
Zph = = p(l+en)ac(w,  — ' Veper — pR)ZL. partlally averaged recursion that would be obtained for LMS.
’ Therefore, Theorem 1 also implies that

Introduce the coefficient matrixA(ex) = 1 — p(l +

en)ac(-)egel — pR. We now show thatd(e) is uniformly sup E||zi — 22*"|° — 0
contractive, i.e.||A(ex)|| < v<1 for all k& (note that since k=20

A is symmetric,||A|| = |Amax(4)|, and we can thus show

as ;i — 0, where now,z;, is the weight error computed by

instead that the eigenvalues dfi(c;.) are uniformly upper | \is From this relation and (B.5), we conclude that

bounded by 1).

Therefore, lety be a vector with unit norm, and compute sup E|jzr —25]|2 — 0
T T T, \2 k20
v Ay =y (I — pR)y — p(1+ e )oe()(y ex)”
. . aspu — 0.
If a. =0, A(ex) =1 — pR, and|A(4)| <1 if and only if Next, it can be verified that
/J)\min(R) >0 and /J)\max(R) <2 (1_{2(’; 2 (.’L'{Z{ab)Q
which are the usual conditions for the mean-square stability of < |\Ezd — 2| B,,
H — < < ~pav ~pav ~pav
LMS. On the other hand, It)éc pog, for some0 <p<1, < (sz p ||2 +2|| P || || 35— z{ ||)Bac
we have
1 T Now, sincez;, andv(k) are bounded|z;*"|| is also a bounded
1= pdwmax(B) — pop| 1+ )0 <y Ala)y <1 sequence for smalt. This fact and the general inequality for
random variablegEa)? < Ea? imply that
- N)\min(R) — Hp <1 - )ao
L Jim sup B[l %) - (a2 < 0
Therefore,|\[A(e)]| <1 if =
1 as i — 0. Similar arguments show that
HAmin(R) + u<1 ~ 1 )ao >0
o lim sup —E[(a] %)? — (af ") <0.
and T k20
1 We conclude that, for smafl and in steady-state (&% 2} )? ~
u<1 + m)aO <2 = pAmax(R). (B.4) E(;c{éf‘”) We can repeat this argument, replacifgwith

The first of these conditions is always satisfied since, bﬁ to conclude that, in the steady state

assu_mptlon,nc>0 and A\pin(R) > 0. Th_e second co_ndmon E(:v;‘fék) ~ E(x] T pau) ~ E(zf%k)Q. (B.7)
provides an upper bound ety as a function of our choices for

w andn. (or C1). In this case, we obtaifiA(e; )| 2 y<1. It The quantity on the right-hand side is the value obtained
then follows that|z; ., || <[|A(ex)ll [IZ51l < ~[|Z5], and thus, from the LMS algorithm. We can use the following argument
23 = 0 is an exponentially stable equilibrium point of (17).to obtain the MSE formula in (19) [23].
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Let the covariance of;, be Z; = Eziz: . We know from the From (C.3) and (C.2), we obtain
above arguments that this covariance reaches a steady state so

that we can write khln u Z oy RY? H [ — uR] | RY?y
Tr(Zoo) = lim {THE — para )2z} (I — panat )] T =0 j=it1
k
+ 02E||$k||2 +Tr(Xe + pPoiMR)} 24 y'By=1 (C.4)
where we already ignored the cross-terms. Expanding the first =0
term in the right-hand side, we obtain where we have defined the matricd$;,. Assuming that
S 0<puR< I, all the B; are positive-definite, and thus, all
i E(z 2) the terms in the above sum are positive. We shall use this
1 1 result soon.
= E{u(ag + Mo2)Tr(R) + ﬂTr(Ef)}. Returning to the switching- algorithm, we have
k
Combining this result with (B.6) and (B.7), we obtain the MSE 2 = H [(1— por)I — Rz
formula (19) in the statement of the theorem. i—o
ko k
APPENDIX C + z% 'Hl (1 = pos)I = pR]pfw,.
=0 j=14

AVERAGED SYSTEM FOR SWITCHING-o

We need to show that in the steady state, the averadéd-1<1— pag — Ai(R) <1, the term inzg*” will tend to
variablez;’*" has norm less thafi; so that the leakage termzero, and therefore
remains equal to zero. To do so, we compare the averaged

recursion (21) with the averaged LMS recursion hm 2 = hm Z H [(1—a,)I—pR]puRw,. (C.5)

=0 j=i41
zihy = (I — pR)2;" + pRw,.
Taking norms on both sides, we obtain
Note that if [A(I — pR)| < 1, this recursion satisfies

Jim 25 = w,. (C.1) 251 < Z H [(1 — )] — pRIpR|| |lw]].
k—oo =0 j=i+1
On the other hand, expanding’,, we obtain We will now use (C.4) to show that the above matrix norm
X X X is not greater than one, from which we can conclude that
av av 27| < ||lw.|| < Sy for large enought.
2y = [ - uRlz + [ U~ nRluRw,. 12571 < .|l < S1 rge g

pin prr ) Similarly to what we did in (C.3), we can write
. . . . k
Since the first term in the above relation tends to zero, (C.1) H [(1 — pas)] — pRJuR

implies that j=i+1

im (S [[ E-uR|uR=1 =puRY? | ] (1= pen)I — uR] | RV2.

k )
7% \i=0 j=it1 J=itl

and therefore, the relation below holds for any veatasith ASSUME thatl — pAy.(R)>0, and choosen such that

unit norm 1 — pog — pA(R)| <1 — pAi(R)<1, ie,
I3 I3 O<ap<?2— 2”)\1113X(R). (C6)
li o I- =1. 2 . L .
e, Y Z H [ nE] | ply (€2) If this condition is satisfied, then for ak

i=0 j=i+1
k
We will now rewrite this ex.pression in a more aQequate _B; < uRY/? H [(1 = ps)] — pR] RY2 < B,
form. Let RY/? be a symmetric square-root factor &f i.e.,
(RY%)? = R, (R?)T = R'Y/%. We can rewrite each term in
the above sum as Let ¥ be a unit-norm vector. From the above relations, we
conclude that

j=it1

k k

I Z-npRl|uR=prY?| ] - uR]|RY? k
=i+ j=itL v' By > |uy" R [ (1= pes)I — pR] | RY?y

(C.3) j=itl
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Therefore, we have the bound switchinge recursion (D.1), we can evaluate the worst-
caselz; || (the bound below is not tight)
[(1— pas)] — pR|pR s
z% H ] sup ||zn+1|| S Q2 + U[3||w*|| + N\/vaax
=0 j=i+1 2 CB
max Z v By =1. + (24 pao) + u\//;)\/Me. (D.4)
IIyII 1
] _ 2) If 22 is not inside B at a particular time instant
This relation and (C.5) imply that there isf& such that for (ie., |lz5]l > Q), then |lz5,, |l < |23]|. Repeating this
all b > K argument, we conclude that eithge; || < ||=2 ] for all
hm 125°)| < [l ]| < St Z>n or there exists a time (say) such thatz; , €
completing our proof. The result of the theorem follows from these two observations.
APPENDIX D APPENDIX E

PROOF OF THEOREM 4 PrROOF OF THEOREM 5

I_:ror_n Append_|x A,_ the fixed-point recursion for the The variablex¢ can be shown to satisfy
switchingo algorithm is kM

k+M—-1
2y = (1= po() — paral )z . :
k+1 T : ks Zptm = H (I~ pacere; — pmisi )z}
+ pxrzy w. + pxpv(k) + 67, (D.1) =k

Our goal is to show that the sequenide; ||}, is bounded. i I el T
The first task in the proof is to find a ball (centered at the + Z H U= pecere = i )
origin) outside of which the norrjjz;|| is strictly decreasing, =
ie., - (pxixl w, — paiv(i) — 56)] (E.1)

125 ll = [Iz2]1 <0, if 2} ¢ B.

We do not need to find the smallest ball satisfying the aboveGiven thatag andy satisfy|1 — pag — 3] < 1, we find that
property to prove tha{|z;||}52, is bounded; we only need all matrices in the expression fef,, ,, above are contractive
to find one such ball. With this in mind, our argument igi.€., have 2-induced norms less than or equal to 1). It follows
simplified if we restrict ourselves to ball$,. with radii~ > S, that the second term in (E.1) is bounded from above by
so thatas(z) = «p for any z ¢ B,..

Assume then that; satisfies||z;|| > S» at some instank. M[ppllw.| + v/ 1Bvmax + 1671 (E.2)

Taking norms of both sides of (D.1) and using (22) to upper
bound ||[(1 — pao)I — pzzl]|], we obtain the inequality We also need to bound the norm of the first term of (E.1).

Define
125411l < 11— pevoll|zE || + 1B Jw. ||

R T I
+ 1/ Bmax + ((2+ paw) + py/B)VMe (D.2) Ai =1 - poceze;, By = pai;
where we also used (2) to boundk) andz; and the bound and note thaf| B;|| < p/3. In addition, if |1 — pao — pf| <1,

for ||67]] from Appendix A. Subtractinglz; || from both sides we have
of (D.2), we obtain

A, — By £ 1. E.3
leiall = 2l < —ecallzgl -+ 8o+ /B i =
+ (2 4 peo) + p/B)VMe. With these definitions, the product we want to bound is
From this inequality, and from our assumption thag|| > Sa, ktM—1
it follows that ||z}, || < ||z if we have (D.3), shown at the H (Ai = B;) =
bottom of the page. We therefore can chotse {z: ||z|| < i=k
Q}. To complete our argument, note the following. k+M—1 k+M—1k+M-1 i—1
1) We may have|z;, || > ||z, || only if 2}, € B. However, H Ai— Z H (A;=B;) | B; H(AI—BI)
||lz5,1]] cannot be arbitrarily large. In fact, using the =* =k | g=itl 1=k

(D.3)

230> 2 2 max {Sz, e + e/ B (2 o)+ u/B)V/ e }
0
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Consider the second term. From (E.3), its norm is bounded that

k+M-—1 k+M—1 i—1
> II @-By)|B:|]]A-B)
i=k j=it1 I=k .
k+M-—1 if
< > Bl £ Mpg.
=k

To approximate the first term, note tmgfe; =0if 0<|i —
Jl<M; thus
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|Zli+l,rn| 2 |Zli,rn| - uMﬁHziH - M(uﬁ”“’*”
+ V uﬁvmax + ||6c||) > CQ

lz5llco = |2k, m| > C2 + 1M B 2]
+ M(uﬁ””’*” + V N/3U111ax
+ (VM + (1 + pVM)||z || + 1)e).

Since ||z5|| < VM%), it follows from the above

k+M—1 k+M—1 ) g _ _
H A =] — Z el inequality that the leakage term will be equal dg at time
Pl o k+1 (wherek +1 = m) if

Now, let zf ,, denote the entry okj, that has the largest
absolute valug(zj, ,,| = ||z}ll). Let & + I be such that
k+1 = m, and assume for now that.(z;,; ,,,) = a0, SO
that

ll2&ll =

\/M(CQ + M(NﬁHw*H + \/vaax
(VM + (1 + pV/M)||z ]l + 1)e) a
1— pM3/23 B

Q.

If the above condition holds, using (E.5) and (E.2), we

Kb M—1 conclude that the norz;,_, ,, || will be smaller thanj|z;|| if
c 1| e
I- Z ac(zi,z)eiei 2k pB|we || + VitBrmax + (VM
=k
1 vM . 1
- 125l > max { o¢, — A F eV M+ 1)e
=||25 — Z ac(zfz)egz,‘iﬁ 1_ \/1 _ M +uMp
i=k M
o 1/2 A
M / = €.
2 2 _c2 . . .
< Z Z i+ (1= o) "2 m Therefore, || 25, 5, || Will be strictly smaller than||zj|| if
i lz¢]] > €25. From this point, we can use an argument similar
to that of Theorem 4 to show that the sequefite; ||}, is
<i/1 a2 —ao) | . E.4) bounded &
s M ll23[- (E.4) :

Putting all these results together, we obtain

ket M—1 11
I ai-B
1=k
92— [2]
< l\/l - W + uMﬁ] 2] (E.5)

(3]

Assume that:«g > 15 such that
 po(2 — pao) )

iy
(5]

We still need to show that if|z;|| is large enough, then
12540, m| > C2, and ac(2fy; ,,,) = ao. The expression for

+ uMp<1.

(6]
(7]

c _ I ¢ H
il m = CmZpqr 1S

k+i—1
T T T
Zli-f—l,rn =€y H (I — pCrer — [UT1T; )Zi 8]
=k
kti—1 |k+i-1

T T T 9
+e, H (I — pocese; — px;x; ) El
i=k j=i [10]

- (pwslw. — (i) - 5) 1

Note thatel e; = 0 for k < i < k+1— 1, and therefore, [12]

using again the decomposition fdl{(A; — B;), we conclude
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