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Abstract

In this paper, we propose a family of low-complexity adaptive filtering algorithms based on dichotomous

coordinate descent (DCD) iterations for identification of sparse systems. The proposed algorithms are appealing

for practical designs as they operate at the bit level, resulting in stable hardware implementations. We introduce a

general approach for developing adaptive filters with different penalties and specify it for exponential and sliding

window RLS. We then propose low-complexity DCD-based RLS adaptive filters with the lasso, ridge-regression,

elastic net, and `0 penalties that attract sparsity. We also propose a simple recursive reweighting of the penalties and

incorporate the reweighting into the proposed adaptive algorithms to further improve the performance. For general

regressors, the proposed algorithms have a complexity of O(N2) operations per sample, where N is the filter

length. For transversal adaptive filters, the algorithms require only O(N) operations per sample. A unique feature

of the proposed algorithms is that they are well suited for implementation in finite precision, e.g., on FPGAs. We

demonstrate by simulation that the proposed algorithms have performance close to the oracle RLS performance.

Index Terms - Adaptive filter, dichotomous coordinate descent, DCD algorithm, FPGA, penalty function, reweight-

ing, RLS, sparse representation.

I. INTRODUCTION

There is significant interest in developing adaptive filtering algorithms that can deal with sparse recovery problems

(see [1]–[6] and references therein). They are often associated with adaptive identification of linear systems with

sparse impulse responses [7]–[11], but can also be useful for other applications. Sparse adaptive filters often solve

least squares (LS) optimization problems with sparsity-attracting penalties. E.g., adaptive algorithms in [1], [2], [5]

use different techniques for solving LS problems with the `1-norm (lasso [12]) penalty. In [5], [13], an approximation

to the `0-norm penalty is used.
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There is also interest in real-time implementation of sparse recovery techniques, particularly on FPGAs [14]–

[18]. However, many algorithms capable of providing a high recovery performance are not well suited to such

implementation due to high complexity and high numerical-precision requirements [18]. Therefore, only a few (non-

adaptive) algorithms that mostly belong to the greedy family have been implemented in hardware on FPGAs [14],

[16]–[19].

The coordinate descent (CD) search has an inherent property of having low complexity when used for sparse

recovery [12], [20]–[23]. The CD search is used in [1] for sparse RLS adaptive filtering. The dichotomous CD (DCD)

search is especially well suited to real-time implementation, e.g., using FPGAs [24]–[27], and it was intensively

used for adaptive filtering [24], [27]–[30]. In [24], a general approach was proposed for developing RLS adaptive

filters with exponential and sliding windows; when combined with DCD iterations, it resulted in algorithms with

a performance close to the RLS performance and yet having as low complexity as O(N) operations per sample.

Since the algorithms do not directly propagate the inverse of the regressor autocorrelation matrix, they are stable

and well suited to implementation in finite precision [29], [31]. However, this approach has only been exploited

in application to purely-RLS adaptive filters [24] or RLS with diagonal loading [29]; that is, algorithms based

on the standard LS cost function with at most quadratic regularization. In this paper, we extend these results

to include sparsity-promoting penalties, thereby obtaining fast, stable, and low-cost adaptive filters suitable for

hardware implementation.

When dealing with sparse recovery, a priori information on the support can significantly improve the recovery

performance. If the support is perfectly known, an algorithm achieves the so-called oracle performance. However,

such knowledge is most often unavailable. Techniques have been previously proposed for estimating and further

refining the information on the support in a set of reweighting iterations and incorporating these estimates in the

cost function in the form of a weight vector for the penalty [32]–[35]. The penalty reweighting has also been used in

sparse adaptive filtering [4], [36]. Proportionate adaptive filters are also based on reweighting and they demonstrate

improved performance when identifying sparse systems [37]. We also take advantage of reweighting techniques to

improve the performance of our algorithms.

The contributions of this paper are as follows:

1. We present a general framework for developing adaptive filtering algorithms with different LS criteria and

different penalty functions, in particular, sparsity-attracting penalties, such as lasso, elastic net, and `0 penalties.

2. We specify this framework for the exponential and rectangular sliding windows. These two adaptive filter

structures have previously been proposed for the RLS algorithm without regularization [24] and the exponential

RLS with `2-regularization [29]. Here we extend these schemes to arbitrary separable penalty functions.

3. We propose a simple and yet efficient reweighting recursion for updating penalties in adaptive filtering.
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4. We propose the use of DCD iterations for solving the LS problems with penalties and arrive at a universal

DCD-solver that can efficiently exploit a solution found for the previous sample as a warm-start for the current

sample. As a result, we arrive at numerically stable adaptive filters with as low complexity as O(N2) operations

per sample for general regressors and O(N) operations per sample for (transversal) regressors with time-shifted

structure.

5. We investigate the proposed algorithms by simulation and present results that show that the algorithms outperform

advanced sparse adaptive algorithms and perform close to the oracle RLS algorithm.

The paper is organized as follows. Section II presents the adaptive filtering setup. In Section III, we present

the general framework for developing adaptive filters with different penalty functions and describe exponential and

sliding window cases. In Section IV, we describe the DCD algorithm for solving LS problems with penalties.

Section V introduces the ridge-regression, lasso, modified lasso, elastic-net, and `0 penalty functions. Section VI

presents simulation results and Section VII gives conclusions.

Notations: We use capital and small bold fonts to denote matrices and vectors, respectively; e.g., X is a matrix

and x a vector. Elements of the matrix and vector are denoted as Xn,p and xn, respectively. We also denote: R(q)

the qth column of R; XH , Hermitian transpose of X; IM , M ×M identity matrix; 0P×Q, P ×Q matrix with zero

entries; 0N and 1N are N -length vectors of zeros and ones, respectively; <{·} and ={·}, the real and imaginary

part of a complex number, respectively; (·)∗ denotes the complex conjugate.

II. REGULARIZED ADAPTIVE FILTERING SETUP

We will consider adaptive filters with the task of finding a complex-valued N ×1 vector h(n) that, at every time

instant n, minimizes the cost function

J [h(n)] = fLS[h(n)] + fp[h(n)]. (1)

The first term in (1) is the LS error of the solution h(n) and the second term is a penalty function that incorporates

a priori information on the true solution. These two terms will be different for different scenarios. E.g., if the true

solution is sparse, we may want to use the second term in the form fp[h(n)] = τ ||h(n)||1 for some positive τ .

Let complex-valued x(n) and d(n) be an N × 1 regressor vector and desired signal, respectively, at time instant

n. We denote

X =




xH(1)

· · ·
xH(n)




and d =




d∗(1)

· · ·
d∗(n)




(2)

the n×N matrix of the regressor data and n×1 vector of the desired signal, respectively. In many adaptive filtering
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scenarios, the first term of the cost function in (1) can be expressed in the following form [2], [4]:

fLS[h(n)] =
1
2

∣∣∣
∣∣∣D1/2(n) [d(n)−X(n)h(n)]

∣∣∣
∣∣∣
2

2
, (3)

where D1/2(n) is an n× n matrix. We define D(n) = [D1/2(n)]HD1/2(n) and obtain

fLS[h(n)] =
1
2

[d(n)−X(n)h(n)]H D(n) [d(n)−X(n)h(n)] ,

which can be represented as

fLS[h(n)] =
1
2
dH(n)D(n)d(n) + fLS[h(n)], (4)

where fLS[h(n)] = 1
2h

H(n)R(n)h(n)−<{
hH(n)b(n)

}
, R(n) = XH(n)D(n)X(n) and b(n) = XH(n)D(n)d(n).

As the first term in (4) does not depend on the unknown vector h(n), we will obtain the same result if minimizing

the cost function

J [h(n)] = fLS[h(n)] + fp[h(n)]. (5)

There are two important cases of the matrix D(n). The first one is when an exponential window is used for

computing the matrix R(n) and vector b(n), similarly to what is done in the classical RLS algorithm [38], [39].

In this case, we have

D(n) = diag
[
λn−1, λn−2, . . . , λ, 1

]
, (6)

where λ is the forgetting factor, λ ∈ (0, 1]. The other one is when a sliding window is used, in which case we have

D(n) =


 0(n−M)×(n−M) 0(n−M)×M

0M×(n−M) IM


 , (7)

where M is the length of the sliding window.

III. FRAMEWORK FOR DEVELOPING ADAPTIVE FILTERS WITH GENERAL PENALTY FUNCTIONS

We are dealing with a sequence of optimization problems described as

min
h(n)

J [h(n)], n > 0. (8)

We can use a straightforward approach for solving this sequence of problems by treating each of them independently.

This, however, would result in high complexity. Instead, we want to solve the n-th optimization problem using as

much information from the (n− 1)-th solution as possible to reduce the complexity. Let at time instant n a system
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of equations R(n)h(n) = b(n) be approximately solved and the approximate solution be ĥ(n). Denote

c(n|m) = b(n)−R(n)ĥ(m) (9)

a residual vector for this solution. The notation c(n|m) indicates that the residual vector in (9) corresponds to the

system matrix R(n) and the right-hand vector b(n) at time instant n, whereas the solution ĥ(m) corresponds to the

system R(m)h(m) = b(m) at time instant m. In iterative methods, such as line search methods [40], the residual

vector c(n− 1|n− 1) is often available. We introduce the following notation:




∆R(n) = R(n)−R(n− 1)

∆b(n) = b(n)− b(n− 1)

∆h(n) = h(n)− ĥ(n− 1)

(10)

Note that the last line in (10) shows the increment of the n-th solution, which we want to find, with respect to the

solution obtained for the (n− 1)-th problem.

For solving the n-th problem, it is possible to use the (n− 1)-th solution as a warm-start. In order to exploit the

previous solution ĥ(n− 1) as a warm-start, it turns out that we also need to obtain a new residual vector, taking

into account the variation of the matrix R(n) and vector b(n) (see Section IV and Table III). More specifically,

we need the following residual vector

c(n|n− 1) = b(n)−R(n)ĥ(n− 1). (11)

Using the notation from (10), we can rewrite (11) as

c(n|n− 1) = [b(n− 1) + ∆b(n)]− [R(n− 1) + ∆R(n)]ĥ(n− 1)

and obtain

c(n|n− 1) = c(n− 1|n− 1)

+ ∆b(n)−∆R(n)ĥ(n− 1). (12)

If computation in (12) can be done with low complexity, we would obtain a good warm-start for solving the n-th

problem, for which we need to find ∆h(n).

Thus, we need to transform the cost function in (5) in another cost function that should be minimized at instant

n:

min
∆h(n)

J∆[∆h(n)]. (13)
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As a result, we will obtain an (approximate) solution ∆ĥ(n) to (13), and the final solution to (5) will be given by

ĥ(n) = ĥ(n− 1) + ∆ĥ(n). The cost function in (13) can be obtained from

J [h(n)] = fLS[ĥ(n− 1) + ∆h(n)]

+ fp[ĥ(n− 1) + ∆h(n)] (14)

that follows from (5) and (10). We assume that ĥ(n−1) is fixed and consider the cost function in (14) as a function

of ∆h(n). The first term in (14) can be written as

fLS[ĥ(n− 1) + ∆h(n)] =

1
2
ĥH(n− 1)R(n)ĥ(n− 1)−<{ĥH(n− 1)b(n)} (15)

+
1
2
∆hH(n)R(n)∆h(n)

− <{∆hH(n)[b(n)−R(n)ĥ(n− 1)]}. (16)

Note that the two terms in (15) do not depend on ∆hH(n) and therefore they can be excluded from the minimization

of the cost function over ∆h(n). The term in (16), using (11), can be expressed as <{∆hH(n)c(n|n−1)}. Therefore,

for the cost function in (13) we obtain

J∆[∆h(n)] =
1
2
∆hH(n)R(n)∆h(n)

−<{∆hH(n)c(n|n− 1)}+ fp[ĥ(n− 1) + ∆h(n)], (17)

where c(n|n− 1) is given by (12).

We now show how c(n|n−1) in (12) can be computed with low complexity in two important cases, the exponential

window and sliding window, and present two general structures for developing adaptive filters. Although this is

similar to the derivation in [24], for completeness we briefly show the derivation here.

A. Adaptive filters with exponential window

In the case of the exponential window, we have the following recursions for updating the matrix R(n) and vector

b(n) [38], [39]:

R(n) = λR(n− 1) + x(n)xH(n), (18)

b(n) = λb(n− 1) + d∗(n)x(n). (19)



7

With these recursions, we have

∆R(n) = (λ− 1)R(n− 1) + x(n)xH(n), (20)

∆b(n) = (λ− 1)b(n− 1) + d∗(n)x(n). (21)

From (20) and using (9), we obtain

∆R(n)ĥ(n− 1) =

(λ− 1)[b(n− 1)− c(n− 1|n− 1)] + x(n)y∗(n), (22)

where y(n) = ĥH(n− 1)x(n) is the adaptive filter output at time instant n. Using (12), (21), and (22), we obtain

c(n|n− 1) = λc(n− 1|n− 1) + e∗(n)x(n), (23)

where e(n) = d(n)− y(n).

With zero initialization of the solution, i.e., ĥ(0) = 0N and b(0) = 0N , from (9) we obtain c(0|0) = 0N . The

matrix R(n) is initialized as R(0) = ηIN , where η > 0 is a small number.

In the case of general (unstructured) regressors, the complexity of updating the matrix R(n) is O(N2) operations

per time instant. For shift-structured regressors x(n) = [x(n) x(n−1) . . . x(n−N +1)]T , where x(n) is a discrete-

time signal, updating R(n) is simplified. The lower-right (N − 1) × (N − 1) block of R(n) can be obtained by

copying the upper-left (N − 1) × (N − 1) block of R(n − 1). The only part of the matrix R(n) that should be

updated is the first row and first column. Due to the Hermitian symmetry of the matrix, it is enough to calculate

the first column. The updating for the exponential window is then given by

R(1)(n) = λR(1)(n− 1) + x∗(n)x(n). (24)

As a result, for transversal adaptive filters, the complexity is reduced down to O(N) operations per time instant.

Note that fast RLS transversal adaptive filtering algorithms, such as the fixed order and lattice algorithms, also have

the complexity O(N) operations per time instant [39].

An adaptive filter with exponential window can be implemented as shown in Table I, which also shows the

complexity of the algorithm steps in terms of real-valued multiplications and additions. The complexity of step 5

depends on the method used for solving the optimization problem, which we present in Section IV; we denote Pm

the number of multiplications and Pa the number of additions required by the method. Note that the complexity

of calculating c(n|n) is involved in step 5. The complexity of updating the weight vector w(n) at step 6 depends

on the reweighting method, which is discussed in Section V; Pm,w and Pa,w are numbers of multiplications and
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TABLE I
ADAPTIVE FILTERS WITH EXPONENTIAL WINDOW

Step Equation × +

Initialization:
ĥ(0) = 0N , c(0|0) = 0N , R(0) = ηIN

for n = 1, 2, . . .

1 R(n) = λR(n− 1)+x(n)xH(n) or 3N2 2N2

R(1)(n) = λR(1)(n−1)+x∗(n)x(n) [6N ] [4N ]

2 y(n) = ĥH(n− 1)x(n) 4N 4N

3 e(n) = d(n)− y(n) − 2

4 c(n|n− 1) = λc(n− 1|n− 1) 6N 4N

+ e∗(n)x(n)

5 Solve: min∆h J∆(∆h) → ∆ĥ, c(n|n) Pm Pa

and update ĥ(n) = ĥ(n−1)+∆ĥ

6 Update the weight vector w(n) Pm,w Pa,w

additions, respectively, in the method. E.g., the DCD-`0 algorithm introduced below does not require reweighting,

thus Pm,w = 0 and Pa,w = 0.

B. Adaptive filters with sliding window

In the case of the sliding window, the matrix R(n) and vector b(n) can be recursively updated as

R(n) = R(n− 1)

+ x(n)xH(n)− x(n−M)xH(n−M) (25)

and

b(n) = b(n− 1)

+ d∗(n)x(n)− d∗(n−M)x(n−M). (26)

To find the vector c(n|n− 1), we notice that

∆b(n) = d∗(n)x(n)− d∗(n−M)x(n−M) (27)

and

∆R(n)ĥ(n− 1) = y∗(n)x(n)− y∗M (n)x(n−M), (28)
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TABLE II
ADAPTIVE FILTERS WITH SLIDING WINDOW

Step Equation × +

Initialization: for n ≤ 0: x(n) = 0N ,
ĥ(0) = 0N , c(0|0) = 0N , R(0) = ηIN

for n = 1, 2, . . .

1 R(n) = R(n− 1) + x(n)xH(n) 4N2 4N2

− x(n−M)xH(n−M)

or R(1)(n) = R(1)(n−1)+x∗(n)x(n) [8N ] [8N ]

− x∗(n−M)x(n−M)

2 y(n) = ĥH(n− 1)x(n) 4N 4N

3 e(n) = d(n)− y(n) − 2

4 yM (n) = ĥH(n− 1)x(n−M) 4N 4N

5 eM (n) = d(n−M)− yM (n) − 2

6 c(n|n− 1) = c(n− 1|n− 1) 8N 8N

+ e∗(n)x(n)− e∗M (n)x(n−M)

7 Solve: min∆h J∆(∆h) → ∆ĥ, c(n|n) Pm Pa

and update ĥ(n) = ĥ(n−1)+∆ĥ

8 Update the weight vector w(n) Pm,w Pa,w

where yM (n) = ĥH(n− 1)x(n−M). From (27) and (28), we obtain

c(n|n− 1) = c(n− 1|n− 1)

+ e∗(n)x(n)− e∗M (n)x(n−M), (29)

where eM (n) = d(n−M)− yM (n).

For shift-structured input data and the sliding window, we obtain the following recursion for updating the matrix

R:

R(1)(n) = R(1)(n− 1)

+ x∗(n)x(n)− x∗(n−M)x(n−M). (30)

Again, for arbitrary regressors, the complexity is O(N2), and, for regressors with the time-shifted structure, the

complexity is reduced to O(N) operations per time instant. Adaptive filters with the sliding window can be

summarized as shown in Table II.

The complexity of exponential window algorithms is lower than the complexity of sliding window algorithms [24].

However, for some applications, the finite memory of sliding window adaptive filters can be attractive.
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IV. DCD ALGORITHM FOR LS OPTIMIZATION WITH PENALTY

We now consider minimization of the cost function given by (17). Omitting the time index n and denoting

c = c(n|n− 1) and h = ĥ(n− 1), the function can be rewritten as

J∆[∆h] =
1
2
∆hHR∆h−<{∆hHc}+ fp(h + ∆h). (31)

In order to minimize it, we use a low-complexity version of CD algorithm, the DCD algorithm. In standard CD,

at every iteration, only the p-th element of the solution vector ∆h may be updated as ∆h ← ∆h + αep, where α

is a complex-valued scalar and ep is the p-th column of the identity matrix IN . The update should only be done

if the cost function is reduced, i.e., if

∆J = J∆(∆h + αep)− J∆(∆h) < 0.

After some algebra, we obtain

∆J =
1
2
|α|2Rp,p −<{α∗cp}+ fp(h + ∆h)− fp(h). (32)

When using DCD iterations, elements of the solution vector are represented in a fixed-point format with Mb bits

within an amplitude interval [−H, H]; H may be chosen as H ≥ maxq{|<[hq]|, |=[hq]|}. However, the choice is

not very critical as soon as H is chosen as a power-of-two number. This allows multiplications and divisions in

the DCD algorithm to be replaced by bit-shift operations; see discussion on the choice of H in [25]. The DCD

iterations start updating the most significant bits of the solution, proceeding towards less significant bits. This is

controlled by a step-size δ > 0 that starts with δ = H and is reduced as δ ← δ/2 for less significant bits.

In CD iterations, there can be different strategies for selecting coordinates for updates. The most often used are

cyclic and leading [24] (also called greedy [41]) selections. We will concentrate on this second option.

As the solution vector is complex-valued, we need to consider four possible directions on the complex plane

for updating every coordinate: 1, −1, j and −j, where j =
√−1. For every δ, there are four values by which a

coordinate can be updated: α = [δ, −δ, jδ, −jδ].

In the leading DCD iterations, we need to compute ∆J for all s = 1, . . . , N and q = 1, . . . , 4 and find the

minimum

[p, k] = arg min
s,q

[
(δ2/2)Rs,s −<{α∗qcs}

+ fp(h + αqes)− fp(h)] . (33)

This will provide us with both the coordinate p to update and direction k in which the update should be done. The
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TABLE III
DCD ALGORITHM FOR LS OPTIMIZATION WITH PENALTY

Step Equation

Input: c = c(n|n−1), R = R(n), h = ĥ(n−1), H , Mb, Nu

Output: ĥ(n) = h, c(n|n) = c

Initialization: δ = H , α = δ[1,−1, j,−j], m = 0, u = 0

1 While m < Mb and u < Nu, repeat:
2 Compute ∆f(s, q) = fp(h+αqes)−fp(h)

3 Find [p, k] = arg mins,q[(δ
2/2)Rs,s−<{α∗qcs}+∆f(s, q)]

for s = 1, . . . , N and q = 1, . . . , 4

4 ∆Jmin = (δ2/2)Rp,p−<{α∗kcp}+∆f(p, k)

5 If ∆Jmin < 0

6 hp ← hp+αk, c ← c−αkR
(p), u ← u+1

else
7 δ ← δ/2, α ← α/2, m = m+1

minimum is given by

∆Jmin =
δ2

2
Rp,p −<{α∗kcp}+ fp(h + αkep)− fp(h). (34)

If ∆Jmin < 0, then the iteration is successful, that is the p-th element of the solution h and the residual vector c are

updated. Note that the update ĥ(n) = ĥ(n−1)+∆ĥ in line 5 of Table I and in line 7 of Table II is incorporated in

the DCD algorithm. If ∆Jmin ≥ 0, no update is necessary and the step size is halved (δ ← δ/2). The procedure is

then repeated until the desired precision (number of bits in the solution) is obtained, or until the maximum number

of successful iterations is met. This way, the complexity of the algorithm can be controlled. The DCD algorithm is

shown in Table III. Here, Mb is the number of bits used for representation of entries in the solution vector and Nu

is the limit to the number of the successful iterations. The parameter Mb defines the accuracy of the fixed-point

representation, whereas the parameter Nu limits the complexity.

The complexity of the DCD algorithm has two main contributions. The first contribution is due to updating the

residual vector c in the successful iterations (step 6). In general, this would involve 4N real multiplications and 4N

real additions. However, choosing H as a power-of-two number and taking into account the structure of vector α, it

follows that this step does not require multiplications and it only requires 2N real additions. The other contribution

is due to computing the penalty function at step 2 and finding the maximum at step 3. Without the penalty term,

i.e., for purely LS optimization, the minimization at step 3 becomes especially simple [25]:

[p, k] = arg min
s,q

[
(δ2/2)Rs,s −<{α∗qcs}

]
. (35)

For finding the minimum, we only need to compare magnitudes of the real and imaginary parts of cs with (δ2/2)Rs,s;

this costs only two real-valued additions. However, in the general case, complexity of this part significantly depends
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on the penalty used and may contribute heavily to the whole algorithm complexity. We present the penalty functions

and corresponding complexity in the next section.

It is important to note that, even though the DCD-RLS is a fast algorithm, with O(N) complexity, it is very

stable even in finite-precision arithmetic, since the algorithm does not update R−1(n) as other fast versions of

RLS [38].

V. PENALTY FUNCTIONS

We will consider the lasso, modified lasso, ridge-regression, elastic net, and `0 penalty functions. All the penalties

are separable, i.e., they can be represented in the form

fp(h) =
N∑

k=1

f(hk).

The separability makes the implementation of the adaptive filters with coordinate descent iterations especially

simple.

A. Elastic-net, lasso and ridge-regression penalties

The elastic-net penalty is given by [42]

fp(h) = τ

[
1
2
(1− β)||h||22 + β||h||1

]
, (36)

where τ > 0 is a regularization parameter. This penalty is a compromise between the ridge-regression penalty

(β = 0) and the lasso penalty (β = 1) [12]. The complexity of using such penalty is approximately the sum of

complexities for the lasso and ridge-regression penalties. More detailed analysis shows that this is 22N additions,

10N multiplications and 5N square root operations.

For the ridge regression, the regularization parameter τ is often chosen related to the noise variance. This is a

very useful regularization as it can make finite-precision implementation of adaptive filters stable. The classical

RLS algorithm does have such a regularization that, however, quickly decays in time with the time constant defined

by the forgetting factor λ: τ = τ(n) = λn and, consequently, τ(n) → 0 as n → ∞. This is one of the causes

of instability of classical RLS adaptive filters when implemented in finite precision. Note that this regularization

can be equally incorporated into the filters either using the fp(h) function or using the diagonal loading of the

matrix R(n) with the parameter τ : R(n) ← R(n)+ τIN . The latter, however, may require redesigning the general

algorithm structures in Table I and Table II [29]. We will be using the general scheme of introducing the penalty

(regularization) via the function fp(h). In Appendix II, we show that the complexity of using the ridge regression

penalty is only 4N real-valued additions and 2N real-valued multiplications.
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With the lasso penalty, the adaptive filter solves the basis pursuit denoising [43] at every time instant n. The lasso

penalty in one DCD iteration (see steps 2 to 5 in Table III) can be computed using 18N additions, 6N multiplications,

and 5N square-root operations (see Appendix I). This is a significant computational load (compared to 2N additions

for updating the residual vector in the DCD iteration at step 6). To reduce the complexity, we will also be using

the modified lasso penalty as described below.

The penalties can be generalized using a weight vector w:

fp(h) = τ
N∑

k=1

wk

[
1
2
(1− β)|hk|2 + β|hk|

]
. (37)

If τ in (37) is very high and wk = 0 for k within the true support of the unknown vector, and wk = 1 for k outside

the support, we arrive at an LS oracle algorithm providing the best LS solution. We will be using the performance

of the oracle RLS adaptive filter as a benchmark when analyzing the proposed adaptive filters.

Of course, in practice, the true support is usually unknown. A practical algorithm for choosing the weights is

discussed next. The weight vector can be updated in reweighting iterations [33], [44]. We will be using the following

updating mechanism. At every time instant n, a weight support Γ(n) is identified using the thresholding operation:

Γ(n) =
{

p : |hp| > µd max
k
{|hk|}

}
, (38)

where µd is an adjusted parameter. Starting from w(0) = 1N , the weight vector is updated using the recursion:

w(n) = (1− µw)w(n− 1) + µwg(n), (39)

where µw ∈ [0, 1] is another adjusted parameter, defining the memory of the recursion, and

gk(n) =





0, k ∈ Γ(n)

1, otherwise
(40)

Other recursions can also be used for updating the weight vector, e.g., see [4], [36]. The proposed weight updating

recursion is simple for practical implementation. It does not use division operations that are often involved in

reweighting. Moreover, choosing µw as a power-of-two number, all multiplications are replaced by bit-shifts that

are simple for hardware implementation. For algorithms that automatically adjust τ , the reader is referred to [45],

[46].

The modified lasso penalty is given by [2]

fp(h) = τ (||<{h}||1 + ||={h}||1) . (41)
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It can also be generalized by introducing the weighting:

fp(h) = τ

N∑

k=1

wk (|<{hk}|+ |={hk}|) . (42)

In this case, for computation of ∆Jmin, 10N additions and 4N multiplications are required, which is about twice

fewer than for the lasso penalty. Besides, most of the operations are additions. What is also important for practical

implementation is that the modified lasso penalty does not require square root operations (as does the lasso penalty),

that are more complicated for implementation than multiplications and additions.

B. `0 penalty

The `0 penalty is given by

fp(h) = τ ||h||0. (43)

This penalty results in a non-convex optimization problem that is NP-hard. When using CD iterations for solving

this problem, there is no guarantee that we will arrive at the optimal solution. However, as can be seen from

the numerical results in Section VI below, this penalty function provides high performance, close to the oracle

performance. Besides, this is the simplest function for computing and is very well suited to implementation on

hardware design platforms such as FPGAs.

From (43), we have

∆f(p, k) = τup,k, (44)

where, as explained below,

up,k =





−1, hp = −αk

+1, hp = 0

0, otherwise

(45)

The first equality implies that the p-th element is currently within the support, but after the update hp ← hp +αk it

will be removed from the support, i.e., the support size will decrease by one, thus up,k = −1. The second equality

implies that the element is currently outside the support, but after the update it will enter the support, i.e., the

support will increase by one, thus up,k = +1. The third equality implies that the element is within the support and

after the update it will still stay in the support, i.e., the support size does not change and thus up,k = 0.

Note that the equalities in (45) are exactly achievable when using DCD iterations as they use the fixed-point

representation of the vector h and the values 0 and αk are within the feasible set of the solution. This would be
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more difficult to achieve with other versions of CD iterations or non-CD iterations that are not based on fixed-point

representation of the solution.

It is seen that all operations for computing up,k are logical (hp = −αk can be identified by checking that the

bit corresponding to the step-size δ in the word representing hp is set) which is very well suited to FPGA design.

Apart from the logical operations, for computing ∆Jmin, 8N real-valued additions are necessary. Thus this penalty

allows especially simple implementation of the whole DCD algorithm as the algorithm now is multiplication-free.

VI. NUMERICAL RESULTS AND COMPLEXITY ANALYSIS

In this section, we present results of computer simulations. We compare the Mean Square Deviation (MSD)

performance of the proposed algorithms against the classical RLS algorithm, oracle RLS algorithm, and advanced

sparse adaptive filters. Only scenarios with the time-shifted structure of input data, corresponding to transversal

adaptive filters, are considered. We consider two cases of the input data: random signals and a speech signal.

The random input signals are generated as

d(n) = hH(n)x(n) + ν(n), (46)

where ν(n) is the additive zero-mean complex-valued Gaussian random noise with variance σ2; two cases are

considered: σ = 0.01 (low-noise case) and σ = 0.5 (high-noise case). The vector x(n) = [x(n) x(n−1) . . . x(n−
N + 1)]T contains zero-mean complex-valued Gaussian random numbers of unit variance. In each simulation trial,

new realizations of the input signal, impulse response h(n), and noise are generated. The impulse response h(n)

is kept constant in the first half of each trial and then abruptly changed at the beginning of the second half. The

change is in both positions and values of the non-zero taps. Positions of the K non-zero elements in h(n) are chosen

randomly. In most of our simulations, we use K = 5 and N = 100. When investigating the MSD performance

against the sparsity level, K varies from K = 1 to K = N = 100. The non-zero elements of h(n) are generated

as independent complex-valued Gaussian zero-mean random numbers of unit variance and then h(n) is normalized

to have unity norm. The MSD in a simulation trial is calculated as

MSD(n) = ||h(n)− ĥΓ(n)||22, (47)

where

ĥΓ,k(n) =





ĥk(n), if k ∈ Γ(n)

0, otherwise
(48)

The MSDs obtained in 100 trials are averaged and plotted against the time index n.

Parameters of the proposed algorithms are chosen as follows. DCD parameters are set to H = 1 and Mb = 15,
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Fig. 1. MSD performance of the exponential-window DCD-lasso adaptive filter for different values of Nu. Parameters of the scenario:
N = 100, K = 5, σ = 0.01. Parameters of the algorithms: λ = 0.975, µτ = 0.001, µw = 0 (no reweighting), µd = 0, η = 3, Mb = 15,
H = 1.

whereas Nu varies. The regularization parameter τ for every time instant is computed as [47], [48]

τ = µτ max
s=1,...,N

|bs|,

where µτ > 0 and bs are elements of the vector b(n) from (19) and (26) for the exponential and sliding window

adaptive filters, respectively. If µτ = 0, we arrive at the LS optimization. For the lasso penalty without reweighting,

the choice of µτ is limited to the interval µτ ∈ [0, 1]; if µτ ≥ 1, no new element could enter the support and the

solution is a zero vector [48]. The choice of µτ is defined by the noise variance σ2. The higher is the noise variance

the closer µτ should be to unity and typically µτ is chosen proportional to σ [1], [49]. For the ridge-regression

penalty without reweighting, the regularization parameter µτ is typically chosen proportional to σ2. In the adaptive

algorithms with reweighting, the optimal choice of µτ is more complicated and investigated below by simulation.

A. Performance of the exponential-window DCD-lasso algorithm

Fig. 1 presents the MSD performance of the exponential-window DCD-lasso algorithm against the limit Nu

to the number of successful DCD iterations. With a large Nu, the DCD-lasso algorithm provides a faster initial

convergence and a lower steady-state MSD than the classical RLS algorithm. However, in practice, the initial

convergence is not the most important feature. More important is the reaction of the adaptive filter to the variation

of the impulse response h(n) to be estimated. This is characterized by the second part of the curves for n > 500

after the abrupt change of the impulse response. We can see that one successful update (Nu = 1) is already enough

to outperform the classical RLS algorithm. Below, we will only show the performance curves for n > 500. Note

however that even for small Nu, the initial convergence speed of the DCD-lasso algorithm in not much slower than

that of RLS. This observation remains valid for all the other simulations presented here.
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Fig. 2. MSD performance of the exponential-window DCD-lasso adaptive filter for different values of the regularization parameter µτ .
Parameters of the scenario: N = 100, K = 5, σ = 0.01. Parameters of the algorithms: λ = 0.975, µw = 0 (no reweighting), µd = 0,
η = 3, Nu = 1, Mb = 15, H = 1.

Fig. 2 shows the MSD performance of the DCD-lasso adaptive filter with different values of the regularization

parameter µτ . It is seen that, when compared to the DCD adaptive filter without regularization, the use of the lasso

penalty allows significant reduction in the steady-state MSD as well as speeding-up the convergence after the abrupt

change of the impulse response of the identified system. The adaptive DCD-lasso algorithm also outperforms the

classical RLS algorithm. It is seen that there is an optimal value of the regularization parameter µτ ; at µτ = 10−3

we obtain the lowest steady-state MSD. Note that the results in Fig. 2 are obtained for Nu = 1, i.e., for the lowest

complexity of the DCD-lasso algorithm. Thus, with the lasso penalty, we need only one DCD iteration per sample

in order to, in this scenario, achieve performance better than that of the classical RLS algorithm. However, even

for the optimum value of µτ , there is a gap between the DCD-lasso performance and the performance of the oracle

RLS algorithm; in this case, the difference in the steady-state MSD is about 6 dB. Fig. 3 shows that increasing Nu

does not improve the steady-state performance.

Fig. 3 studies the dependence of the steady-state MSD performance of the exponential-window DCD-lasso

algorithm against the regularization parameter µτ . This graph shows that indeed the MSD achieves a minimum at

µτ = 10−3. When µτ is reduced, the performance approaches that of the DCD adaptive algorithm without penalty,

which is close to that of the classical RLS algorithm. However, when µτ is increased too much, the performance

starts to deteriorate and becomes significantly inferior to that of the classical RLS algorithm. This is due to the fact

that a large µτ prevents new elements entering the support of the solution. At µτ = 1, any element entering the

support would increase the cost function, and therefore the optimal solution will be zero, implying that the MSD will

be 0 dB. It is seen that the increase in Nu does not improve much the steady-state performance of the DCD-lasso

algorithm; thus, in this case, only Nu = 1 DCD iteration per sample is enough for the high performance. However,

there is a gap of about 6 dB between the best DCD-lasso MSD performance and the oracle RLS performance (see
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Fig. 4. MSD performance of the exponential-window DCD-lasso algorithm for different values of the reweighting parameter µw. Parameters
of the scenario: N = 100, K = 5, σ = 0.01. Parameters of the algorithms: λ = 0.975, η = 3, µτ = 0.01, µd = 0.005, Nu = 1, Mb = 15,
H = 1.

Fig. 3) that cannot be improved with the pure lasso penalty.

Fig. 3 also shows the performance of the DCD-lasso algorithm with the reweighting described by equations (38),

(39), and (40). It can be seen that the reweighting greatly improves the performance which now closely approaches

the oracle performance. It also significantly widens the range of µτ values for which the algorithm shows high

performance and outperforms the classical RLS algorithm. This fact is useful in practice as it allows more freedom

in choosing the regularization parameter.

Fig. 4 demonstrates that not only the steady-state performance is improved due to the reweighting, but the

convergence speed also increases and the transition MSD curve becomes close to that of the oracle RLS algorithm.

This figure also shows how the performance varies with the reweighting step size µw. Clearly, reducing µw, the

time constant of the reweighting recursion increases and it takes longer to achieve the steady-state performance,
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Fig. 5. MSD performance of the exponential-window DCD-lasso algorithm with reweighting for different levels of sparsity K. Parameters
of the scenario: N = 100, σ = 0.01. Parameters of the algorithms: λ = 0.975, µw = 0.1, µd = 0.005, η = 3, Mb = 15, H = 1.

which is however the same for all the values of µw. We have found that, in most cases, choosing µw in the interval

[0.03, 0.5] resulted in good performance. This choice is not affected by other parameters of the algorithm.

Fig. 5 shows the MSD performance of the exponential-window DCD-lasso algorithm for different sparsity levels

K. The parameters of the algorithm for each K are adjusted to guarantee the best performance with a minimum

Nu. It can be seen that, as K increases, the steady-state MSD and the convergence time also increase. However,

for all K, the DCD-lasso algorithm provides a steady-state MSD close to that of the oracle RLS. Since in one

DCD iteration only one element of the solution vector can be updated, higher values of K require a higher Nu to

approach the oracle RLS performance. Smaller Nu than that shown in Fig. 5 result in (not shown here) a slower

convergence speed, but the steady-state MSD reached after the convergence will still be close to that of the oracle

RLS. Note that the forgetting factor λ = 0.975 chosen for our simulation is considered to be very low; typically,

λ is chosen to satisfy λ > 1 − 2/N [39], i.e., in our case, it should be λ > 0.98. The small λ is a worst case

situation for assessment of our algorithms as the convergence speed depends on Nu, i.e., with higher λ the DCD

based algorithms require smaller Nu to match the oracle performance. For sparser systems (e.g., K = 1), the

regularization parameter µτ can be chosen higher (e.g., µτ = 0.05); for a constant K, a smaller µτ results in

somewhat slower convergence.

Fig. 6 compares the performance of the exponential-window DCD adaptive filtering with the lasso and modified

lasso penalties. It is seen that the modified lasso penalty results in somewhat inferior performance compared to the

lasso penalty. Note that the small reweighting forgetting factor µw = 0.003 slows down the convergence of both

the algorithms, but the steady-state MSD reached by the algorithms is the same as for the higher µw. Taking into

account that the difference in the performance of the two algorithms is small and that, with the modified lasso

penalty, the complexity of the algorithm is reduced, it can be a good candidate for implementation.
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Fig. 6. MSD performance of the exponential-window algorithms with lasso and modified lasso penalty functions for different reweighting
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Fig. 7. MSD performance of the sliding-window DCD-lasso algorithm. Parameters of the scenario: N = 100, K = 5, σ = 0.01. Parameters
of the algorithms: M = 150, µd = 0.001, Mb = 15, H = 1.

B. Performance of the sliding-window DCD-lasso algorithm

We now investigate the behavior of the adaptive DCD-lasso algorithm with the sliding window. The length of

the sliding window M is chosen equal to M = 150 to make the steady-state MSD performance of the sliding

window RLS algorithm close to that of the earlier considered exponential window RLS algorithm. Comparing

the convergence of the two RLS algorithms, it is seen that the sliding window provides a faster convergence to

the steady-state (compare Fig. 4 and Fig. 7); the convergence time for the sliding window version is about twice

smaller. The fact that sliding-window adaptive algorithms are not often considered in the literature and used in

practice is probably due to the fact that until recently there was not computationally efficient implementation of

such algorithms [24].

Fig. 7 shows that the DCD-lasso algorithm with reweighting and the sliding window approaches the steady-state
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Fig. 8. MSD performance of the exponential-window DCD-ridge algorithm for different regularization µτ and reweighting µw parameters.
Parameters of the scenario: N = 100, K = 5, σ = 0.01. Parameters of the algorithms: λ = 0.975, µd = 0.001, η = 3, Nu = 1, Mb = 15,
H = 1

MSD of the oracle sliding-window RLS algorithm and significantly outperforms the sliding-window RLS algorithm.

However, the transition part of the MSD curve for Nu = 1 is almost twice longer than that of the oracle RLS. This

can be reduced by using extra DCD iterations. With Nu = 4, the convergence time is only 30% longer than that

of the oracle RLS.

C. Performance of the exponential-window DCD-ridge algorithm

We now investigate the performance of the exponential-window DCD adaptive filter with the ridge-regression

penalty. Fig. 8 presents simulation results for the case of a low noise variance, σ = 0.01 (as was the case in the

previous simulation scenarios). With µτ = 0, the DCD-ridge algorithm is equivalent to the DCD-RLS algorithm with

no penalty. When µτ increases (µτ = 0.01), without the reweighting (µw = 0), the steady-state MSD increases, i.e.,

the regularization makes the MSD performance worse. However, the reweighting greatly improves the performance

and, with µτ = 10 and µw = 0.1, the MSD performance is very close to that of the oracle RLS. Thus, the

use of the ridge-regression penalty, similarly to the lasso penalty (see Fig. 7), together with the reweighting has

allowed achieving a close-to-oracle performance. Note that the ridge-regression penalty, as we mentioned before, is

equivalent to applying regularization (diagonal loading) to R(n) and as such is useful to avoid numerical instability.

What is surprising is that, with the use of reweighting, this penalty also turns out to provide good performance for

sparse estimation.

Fig. 9 shows the MSD performance for the case of a significantly higher noise variance, σ = 0.5. It can be seen

that, without the reweighting, the performance cannot approach the oracle RLS performance. However, with the

reweighting, the steady-state MSD is quite close to the oracle performance with a gap of about 2 dB. The elastic-net

penalty gives an extra opportunity to fill the gap. With the parameter β = 0.05, the DCD-elastic algorithm has
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reduced this gap by about 0.5 dB, but, more significantly, it reduced the convergence time.

D. Performance of the exponential-window DCD-`0 algorithm

Fig. 10 shows the dependence of the steady-state MSD provided by the exponential-window DCD-`0 algorithm

on the regularization parameter µτ for different values of µd and µw. The case µw = 0 implies that there is no

reweighting, and it can be seen that, for this penalty, the reweighting does not make any impact on the performance.

However, the threshold µd does influence the performance at low µτ . The main conclusion here is that the `0-penalty

achieves the oracle performance. Recall that, among the considered penalties, the `0-penalty results in the simplest

implementation of the DCD adaptive filter. Combined with the good steady-state performance as indicated by

Fig. 10, this variant of the adaptive filter is very attractive for practical implementation.



23

500 600 700 800 900 1000
−70

−60

−50

−40

−30

−20

−10

0

10

time index

M
S

D
, d

B
 

 

DCD−L0
Oracle RLS

K=1

K=5

K=20

K=100

N
u
=1, µτ=10−5

N
u
=4, µτ=10−5

N
u
=16, µτ=10−5

N
u
=1, µτ=10−1

Fig. 11. MSD performance of the exponential-window DCD-`0 algorithm with reweighting for different levels of sparsity K. Parameters
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Fig. 12. Comparison of MSD performance of the exponential-window DCD adaptive filters with all the penalties. Parameters of the scenario:
N = 100, K = 5, σ = 0.5. Parameters of the algorithms: λ = 0.975, η = 3, Nu = 1, Mb = 15, H = 1, µd = 0.1, µw = 0.1 (except
for the DCD-`0 algorithm that does not use reweighting). Regularization parameters: µτ = 0.1 (lasso and modified lasso), µτ = 1 (ridge),
µτ = 1 and β = 0.05 (elastic net), µτ = 0.01 (`0).

Fig. 11 shows the MSD performance of the exponential-window DCD-`0 algorithm for different sparsity levels

K. The parameters of the algorithm for each K are adjusted to guarantee the best performance with a minimum Nu.

The performance of the DCD-`0 algorithm is close to that of the oracle RLS algorithm for all K, similarly to the

performance of the DCD-lasso algorithm (see Fig. 5). It is interesting that for both the algorithms, the same number

of DCD iterations is required. The regularization parameter can vary considerably without significant influence on

the performance. E.g., for K = 1, choosing µτ in the interval between 10−6 to 10−1 results in a steady-state MSD

close to that of the oracle RLS. Smaller µτ somewhat increases the convergence time, which however in all the

cases remains smaller than 300 samples after the change of the impulse response.

Fig. 12 compares the MSD performance of the exponential-window DCD adaptive filters with all the penalties.

It is seen that all the penalties allow achieving a performance close to that of the oracle RLS. The ridge-regression
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Fig. 13. Comparison of MSD performance of the sliding-window DCD adaptive filters with all the penalties. Parameters of the scenario:
N = 100, K = 5, σ = 0.5. Parameters of the algorithms: M = 100, η = 3, Nu = 1, Mb = 15, H = 1, µd = 0.1, µw = 0.1 (except
for the DCD-`0 algorithm that does not use reweighting). Regularization parameters: µτ = 0.1 (lasso and modified lasso), µτ = 2 (ridge),
µτ = 1 and β = 0.05 (elastic net), µτ = 0.01 (`0).

penalty provides a slightly slower convergence speed than the other penalties.

E. Performance of the sliding-window DCD-`0 algorithms

Fig. 13 compares the MSD performance of the sliding-window DCD adaptive filters with all the penalties. The

window length M = 100 is chosen to match the steady-state performance of the sliding-window adaptive filters to

the exponential-window adaptive filters (Fig. 12). It is seen again that all the penalties allow achieving a performance

close to that of the oracle RLS. Similarly to the exponential case, the ridge-regression penalty provides a slightly

worse performance than the other penalties. It is also seen that both the families of adaptive filters significantly

outperform the classical RLS algorithms.

F. Comparison with other sparse adaptive filtering algorithms

We now compare the proposed algorithms with other adaptive filtering algorithms. Note that the weight vector

that we are using relates to the power delay profile of the unknown system. A similar idea of reweighting is exploited

in proportionate adaptive filters for controlling step sizes involved in updating the filter taps [37]. Therefore, for

comparison we consider the µ-law proportionate NLMS (MPNLMS) algorithm, which is an advanced version of

the PNLMS algorithm, and the proportionate affine projection algorithm (PAPA) [37]. In the literature, there have

also been proposed RLS-like sparse adaptive filtering algorithms [1], [2], [5], [6]; for comparison, we will be

using the `1-RLS and `0-RLS algorithms from [5], the OSCD-TWL and OSCD-TNWL algorithms from [1] and

the SPARLS algorithm from [2]. We will also be using the `0 LMS algorithm from [13] which is based on using

an approximation to the `0 penalty (the same approximation is used in the `0-RLS algorithm [5]). Finally, we
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Fig. 14. Comparison of MSD performance of different adaptive filters: MPNLMS, PAPA, `1-RLS, and exponential-window DCD-lasso
with and without reweighting. Parameters of the scenario: N = 100, K = 5, σ = 0.5.
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Fig. 15. Comparison of MSD performance of different adaptive filters: MPNLMS, PAPA, `1-RLS, and exponential-window DCD-lasso
with and without reweighting. Parameters of the scenario: N = 100, K = 5, σ = 0.01.

will compare our algorithms with the OSCD-TWL and OSCD-TNWL algorithms from [1] and SPARLS algorithm

from [2]. For all the algorithms, parameters have been adjusted to achieve the best possible performance.

Fig. 14 compares the MSD performance of the algorithms for a high level of noise, σ = 0.5. It is seen that

with the same forgetting factor λ = 0.975, the proposed DCD-lasso algorithm without reweighting outperforms

the `1-RLS algorithm from [5], although both algorithms use the same lasso penalty. This can be explained by

the approximations used in [5] for derivation of the `1-RLS algorithm (based on the assumption that the impulse

response estimates do not change significantly from one sample to another). Reweighting significantly reduces

the steady-state MSD of the DCD-lasso algorithm without compromising the convergence speed. For the `1-RLS

algorithm, to achieve the same steady-state MSD, the forgetting factor has to be increased to λ = 0.996, significantly

slowing down the convergence.

Similar behavior is observed for a lower level of noise, σ = 0.01 (see Fig. 15). Here, the `1-RLS algorithm
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Fig. 16. Comparison of MSD performance of different adaptive filters: MPNLMS, PAPA, `1-RLS, and exponential-window DCD-lasso
with and without reweighting for a system with an impulse response varying in time according to the autoregressive model with αh = 10−4.
Parameters of the scenario: N = 100, K = 5, σ = 0.5.

with λ = 0.996 provides a steady-state MSD the same as that of the DCD-lasso algorithm with reweighting and

λ = 0.975. It is seen that, to achieve the same steady-state MSD level, the DCD-lasso algorithm with reweighting

converges faster than the `1-RLS algorithm. Parameters of the MPNLMS and PAPA algorithms are chosen to match

the steady-state MSD of the DCD-lasso algorithm without reweighting; as it is seen, the DCD-lasso algorithm

provides faster convergence.

Fig. 16 shows the MSD performance of the adaptive filters with the same parameters as in Fig. 14 for a scenario

where the system impulse response varies in time according to the autoregressive model:

h(n) = (1− αh)h(n− 1) + χ(n),

where h(n) at n = 0 and n = 1500 are generated as described above, and χ(n) is a vector whose elements are

zero outside of the support of h(n) and non-zero within the support. Non-zero elements (K elements) of χ(n) are

independent zero-mean complex-valued random Gaussian numbers of variance αh(2 − αh)/K that results in the

variance of non-zero elements in h equal to 1/K. The parameter αh defines the speed of the h(n) time variation;

for the simulation results shown in Fig. 16, we used αh = 10−4. It is seen that, compared to the time-invariant

impulse response (see Fig. 14), the steady-state MSD of the adaptive algorithms increases; however, the DCD-lasso

algorithm still outperforms the other algorithms. It is seen that the `1-RLS algorithm with λ = 0.996 experiences the

largest increase in the steady-state MSD. This is due to the large forgetting factor λ = 0.996, which corresponds to

an efficient average time tav = 1/(1−λ) = 250 for computation of R(n) and b(n), comparing to the significantly

smaller tav = 40 for λ = 0.975 used in the other algorithms. The high tav provides an excessive smoothing of the

time variations and results in a higher MSD.

Fig. 17 compares the OSCD-TWL and OSCD-TNWL algorithms from [1], SPARLS algorithm from [2], and
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Fig. 17. Comparison of MSD performance of different adaptive filters: SPARLS, OSCD-TWL, OSCD-TNWL, and exponential-window
DCD-lasso with and without reweighting. Parameters of the scenario: N = 100, K = 5, σ = 0.01. Parameters of the DCD-lasso algorithm:
λ = 0.975, η = 3, Nu = 1, Mb = 15, H = 1, µd = 0.01, µτ = 0.001, µw = 0.1 (for the DCD-lasso algorithm with reweighting).

DCD-lasso algorithm in a scenario with real-valued signals (note that the OSCD-TWL and OSCD-TNWL algorithms

are only available for the case of real-valued signals [1]). When implementing the DCD-lasso algorithm for the real-

valued case, in the DCD algorithm (see Table III), the step-size vector α contains only two elements, α = [δ, −δ],

and the index q at step 3 takes the values q = 1, 2. The SPARLS algorithm approximately solves the lasso problem

with the modified penalty function. Parameters of the SPARLS algorithm (see details in [2]) are tuned to provide

the oracle steady-state performance for λ = 0.975 and minimize the convergence time. The OSCD-TWL algorithm

approximately solves the lasso problem using the coordinate descent iterations with the exact line search (we use

one iteration per sample to match the DCD-lasso algorithm). The OSCD-TNWL algorithm exploits reweighting with

a specific weight function (see more details in [1]). Parameters of the OSCD-TWL and OSCD-TNWL algorithms

are tuned to provide the best possible performance for the forgetting factor λ = 0.975. It is seen that the DCD-lasso

algorithm with reweighting shows faster convergence than the SPARLS algorithm; besides, the DCD-lasso algorithm

has a lower complexity (O(N) against O(N2) for the SPARLS algorithm). The OSCD-TWL and OSCD-TNWL

algorithms have a complexity comparable to that of the DCD-lasso algorithm. However, as seen from Fig. 17,

the performance of OSCD-TWL and OSCD-TNWL algorithms is inferior to that of the DCD-lasso algorithm and

DCD-lasso algorithm with reweighting, respectively.

The adaptive algorithms with the `0 penalty (or its approximation, in the case of the `0-RLS [5] and `0-LMS [13]

algorithms) show, as seen in Fig. 18 and Fig. 19, better performance than the algorithms based on the `1 penalty.

In both the cases of high and low noise levels, the proposed DCD-`0 algorithm demonstrates superior performance

compared to the other algorithms.

Finally, Fig. 20 shows the MSD performance of the exponential-window DCD-lasso and DCD-ridge adaptive

filters with reweighting against that of the MPNLMS, PAPA, RLS and oracle RLS adaptive filters in a scenario with
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Fig. 18. Comparison of MSD performance of different adaptive filters: `0-LMS, `0-RLS, and exponential-window DCD-`0. Parameters of
the scenario: N = 100, K = 5, σ = 0.5.
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Fig. 19. Comparison of MSD performance of different adaptive filters: `0-LMS, `0-RLS, and exponential-window DCD-`0. Parameters of
the scenario: N = 100, K = 5, σ = 0.01.

2000 4000 6000 8000 10000 12000 14000 16000
−60

−50

−40

−30

−20

−10

0

10

time index

M
S

D
, d

B PAPA

Oracle
 RLS

Speech signal

MPNLMS

RLS

DCD−ridge
N

u
 = 64

DCD−lasso
N

u
 = 64

DCD−lasso
 N

u
 = 16

DCD−lasso
 N

u
 = 8
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speech as the input signal. Parameters of the scenario: N = 512, K = 100, σ = 10. Speech samples are obtained at a rate of 8 kHz and
represented as 14-bit fixed-point numbers; the maximum signal magnitude is equal to 16260 at time instant 9933.
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TABLE IV
COMPLEXITY OF DIFFERENT STRUCTURES OF RLS ADAPTIVE FILTERS

Algorithm structure: + ×
Exponential 2N2 + 8N 3N2 + 10N
Exponential transversal 12N 16N
Sliding window 4N2 + 16N 4N2 + 16N
Sliding window transversal 24N 24N

TABLE V
COMPLEXITY OF FINDING THE LEADING ELEMENT IN DCD ITERATIONS WITH DIFFERENT PENALTIES

Penalty: + × √·
Lasso 18N 6N 5N
Modified lasso 10N 4N -
Ridge regression 4N 2N -
Elastic net 22N 10N 5N
`0 8N - -

a speech signal as the input to the adaptive filter. The filter length is N = 512, whereas only K = 100 filter taps are

non-zero and generated as independent zero-mean real-valued random Gaussian numbers of unit variance and then

h(n) is normalized to have unity norm. The impulse response h(n) is kept constant during the first 2000 samples

and then changed in both positions and values of the non-zero taps. The proposed DCD based adaptive filters with

lasso and ridge penalties significantly outperform the MPNLMS, PAPA, and RLS algorithms. The affine projection

order in the PAPA algorithm was set to 32, which is considered to be a high projection order [50] (typically, a

projection order 8 or lower is used) resulting in a high complexity; for lower projection orders, the performance

of the PAPA algorithm quickly degrades. The other parameters of the algorithms are chosen to guarantee the best

performance. For the DCD-lasso algorithm, the parameters are: λ = 0.998, η = 106, µτ = 0.001, µw = 0.3,

µd = 0.05. It is seen that with increase in Nu in the DCD-lasso algorithm, the convergence speeds up; however,

the steady state performance (the tracking part of the curves) is almost the same irrespectively of Nu. Moreover, it

is almost the same as that of the oracle RLS algorithm. With Nu = 64, the DCD-lasso adaptive algorithm is only

about twice slower in convergence than the oracle RLS algorithm. For the DCD-ridge algorithm, the parameters

are: λ = 0.998, η = 106, µτ = 0.1, µw = 0.1, µd = 0.03, Nu = 64. The DCD-ridge adaptive algorithm with

Nu = 64 also significantly outperforms the MPNLMS, PAPA, and RLS algorithms in the steady-state performance.

However, it is somewhat inferior to the DCD-lasso algorithm in both the convergence speed and the steady-state

performance.

G. Complexity of proposed algorithms

Table IV and Table V summarize numbers of real-valued additions, multiplications and square-root operations

required for implementation of the proposed adaptive filtering algorithms. For computing the complexity of a
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particular adaptive filter with a particular penalty function, we need to take the complexity in Table IV for the

structure of the filter (exponential or sliding window, transversal or not) and add, for every DCD update, the

complexity for a specific penalty from Table V, plus 2N additions for step 6 of the DCD algorithm in Table III,

and the complexity of updating the weight vector w(n). When using the proposed reweighting method, described

by (38) to (40), the complexity of the weight update can be made as low as 2N additions for all the penalties

except the `0 penalty. For the latter case, 2N multiplications and 2N additions are required. However, as is seen

from the simulation results in Section VI, the `0-DCD algorithm does not require the reweighting to achieve

a high performance. Thus, the transversal version of all the proposed adaptive algorithms has a complexity of

O(N) operations per sample. E.g., for the DCD-`0 transversal adaptive filter with exponential window and without

reweighting, we obtain 14N real-valued multiplications; the number of additions can vary. In the worst-case scenario,

when all successful updates are performed at the least significant bit m = Mb and the number of successful updates

is exactly equal to the upper limit Nu, the algorithm requires 8NMb + 10NNu real-valued additions.

VII. CONCLUSIONS

In this paper, we have proposed a general approach for developing low complexity adaptive algorithms for

identification of sparse complex-valued systems and specified it for exponential and sliding window RLS. The

proposed algorithms are based on DCD iterations. Using this approach, we have proposed DCD-based RLS adaptive

filters with the lasso, modified lasso, ridge-regression, elastic net, and `0 penalties that attract sparsity of signals.

We have proposed a simple recursive reweighting of the penalties to further improve the performance. For general

regressors, the proposed algorithms have a complexity of O(N2) operations per sample, where N is the filter

length. For transversal adaptive filters, the algorithms have a low complexity, of O(N) operations per sample.

The core of the proposed algorithms are DCD iterations that are known to be very well suited to implementation

on FPGA platforms as was reported in [25], [51], [52]. Importantly, the proposed algorithms structurally and in

the number and type of operations required are very close to the DCD-based RLS adaptive algorithms proposed

in [24]. As indicated in [29], [31], [53], [54], the algorithms in [24] have been proved to be very well suited to

implementation on FPGA platforms, providing a low chip area, high throughput, and numerical stability. Moreover,

this approach has also been used to make other adaptive filters well suited to implementation on FPGAs [27], [55],

[56]. Our proposed algorithms differ from the algorithm in [24] only in the computation of the penalty functions and

reweighting, which do not represent a significant challenge for hardware implementation. Therefore, the adaptive

algorithms proposed in this paper can be expected to be also well suited to implementation in finite precision, e.g.,

on FPGA platforms. We have demonstrated by simulation that the proposed adaptive algorithms outperform known

advanced adaptive filtering algorithms in sparse identification scenarios and possess performance close to the oracle

RLS performance with perfect knowledge of the support.
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An important problem not addressed in this paper is the development of algorithms for online selection of

the regularization parameters; for this purpose, the approaches from [5] and [57] can be used. Another important

problem is the investigation of the convergence of the proposed algorithms. These will be directions for our further

research.
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IX. APPENDIX I: COMPLEXITY OF COMPUTING THE LASSO PENALTY

We need to find the minimum:

[p, k] = min
s=1...N,q=1...4

[
δ2

2
Rs,s −<{α∗qcs}+ ∆f(s, q)

]
, (49)

where ∆f(s, q) = fp(h + αqes)− fp(h). For the lasso penalty, we have

∆f(s, q) = τws (|hs + αq| − |hs|) . (50)

Then, a direct (naive) computation of [p, k] would require 76N real operations, including additions, multiplications,

and square roots. We will show how this can be reduced based on the specific properties of the operations.

We will be doing computations separately in N groups, each one dealing with one (s-th) coordinate.

First, we notice that |hs| is the same for all 4 terms within the group, and therefore it is computed only once;

this requires 2 multiplications (squaring), 1 addition, and 1 square root operation. When computing |hs|, we also

have |hs|2 as a by-pass product.

We now notice that αq takes one of the four values: [δ,−δ, jδ,−jδ] and δ is a power-of-two number, thus

multiplications by δ are just bit-shifts. We need to compute |hs + αq| for all the four values of αq. For αq = δ, we

have

|hs + αq| = |hs + δ|

=
√

(<{hs}+ δ)2 + (={hs})2

=
√
|hs|2 + δ2 + 2δ<{hs}. (51)
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Similarly, for the other three values, we obtain

|hs − δ| =
√
|hs|2 + δ2 − 2δ<{hs},

|hs + jδ| =
√
|hs|2 + δ2 + 2δ={hs},

|hs − jδ| =
√
|hs|2 + δ2 − 2δ={hs}. (52)

As |hs|2 is available, we only need 1 addition to compute |hs|2 +δ2, 4 other additions, and 4 square root operations

to obtain all the four quantities in (51) and (52). To obtain the four values in (50) for one s, we also need 4 additions

and 4 multiplications. In total, computing (50) for all s and q results in 10N additions, 6N multiplications, and

5N square root operations.

For finding the maximum in (49), we take into account that <{α∗qcs} involves only selecting the real or imaginary

part and a bit-shift. Then, with ∆f(s, q) available, we need 8N additions to find the maximum.

Thus, the use of the lasso penalty in the DCD algorithm requires in total 18N additions, 6N multiplications,

and 5N square root operations, or 29N real-valued operations. This is almost three times fewer than when using

the direct computations.

X. APPENDIX II: COMPLEXITY OF COMPUTING THE RIDGE-REGRESSION PENALTY

For applying the DCD algorithm, we need to find the minimum:

[p, k] = min
s=1...N,q=1...4

[
δ2

2
Rs,s −<{α∗qcs}+ ∆f(s, q)

]
, (53)

where, for the ridge-regression penalty, we have

∆f(s, q) = τws

(|hs + αq|2 − |hs|2
)
. (54)

This maximization is the main contribution to the algorithm complexity. Although it has a complexity O(N), i.e.,

linear in the filter length N , the factor multiplying N can be quite large. E.g., a direct (naive) implementation

of (53) would require 21 real-valued operations for every s and q and, thus, the total complexity would be 84N

real-valued multiplications and additions. Below we show that this can be reduced down to as few as 6N real-valued

operations.

We can write

|hs + αq|2 − |hs|2 = 2<{α∗qhs}+ δ2,

where we use the fact that |αq|2 = δ2 for any q. Then (53) can be rewritten as

[p, k] = arg min
s,q

[
δ2

2
Rs,s −<{α∗qvs}

]
, (55)



33

where vs = cs − 2τwshs. Computation of the vector v with elements vs requires 2N additions and 2N multipli-

cations. Denoting αq = aqδ, where aq ∈ [1, −1, j, −j], we can rewrite (55) as

[p, k] = arg min
s,q

[
δ2

2
Rs,s −<{a∗qvs}

]
. (56)

The operation maxq <{a∗qvs} requires searching for max[|<{vs}|, |={vs}|] and checking for the sign of the maxi-

mum; thus, computations in (56) require 2N additions, which together with computing v results in 4N additions

and 2N multiplications.
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