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Transient and steady-state analysis of the affine
combination of two adaptive filters
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Abstract—In this paper, we propose an approach to the the new update rule preserves the good features of therexisti
transient and steady-state analysis of the affine combination of scheme and is more robust to changes in the filtering scenario
one fast and one slow adaptive filters. The theoretical models Using a similar approach to that of [8], the authors of

are based on expressions for the excess mean-square error . L
(EMSE) and cross-EMSE of the component filters, which allows 2] Proposed an affine combination of two least mean-square

their application to different combinations of algorithms, such (LMS) algorithms, where the condition on the mixing parame-
as least mean-squares (LMS), normalized LMS (NLMS), and ter is relaxed, allowing it to be negative. Thus, this scheare

constant modulus algorithm (CMA), considering white or colored  pe interpreted as a generalization of the convex combimatio
inputs and stationary or nonstationary environments. Since the - gjnce the mixing parameter is not restricted to the interval

desired universal behavior of the combination depends on the . .
correct estimation of the mixing parameter at every instant, its [0, 1]. This approach allows for smaller EMSE in theory,

adaptation is also taken into account in the transient analysis. but suffers from larger gradient noise in some situations.
Furthermore, we propose normalized algorithms for the adapta- Under certain conditions, the optimum mixing parameter was
tion of the mixing parameter that exhibit good performance. proved to be negative in steady-state. Although the optimal
Good agreement between analysis and simulation results is|inear combiner is unrealizable, two realizable algorishwere
always observed. . . ' . )

introduced. One is based on a stochastic gradient search and

Index Terms—Adaptive filters, affine combination, tracking, s referred to here ag-LMS algorithm. The other is based on

transient analysis, least mean square methods, unsupervisedine ratio of the average error powers from each individual
learning. ) . . .

adaptive filter. Under some circumstances, both algorithms

present performance close to the optimum. In the analysis

. INTRODUCTION of [12], white Gaussian inputs and stationary environments

OMBINATION schemes constitute an interesting wad'e assumed. Furthermore, the behavior of the mean-square

. S Yeviation is studied only after the fast filter has converyetd
to improve adaptive filter performance [3]-[15]. Amon )
L . he slow filter has not yet converged.
these schemes, the convex combination of two fixed step-_.." - o .
. S . . o Similarly to the convex combination, the correct adjustmen
size adaptive filters has received attention due to itsivelat

simplicity, and the proof that it is universal in steadytsta .Of the step-size for the updating of the mixing parameter

i.e., the combined estimate is at least as good as the bestno¥he afﬁ_ne_ combmaﬂqn, (_:Ienoted b% depends on some
! characteristics of the filtering scenario. Hence, the ddsir
the component filters [8].

o . lfl]niversal behavior of the affine combination cannot alwags b
Convex combination schemes were proposed to improve the

ensured. To illustrate, Fig. 1 shows the EMSE as a function of
fundamental tradeoff between convergence rate and steatd%- . . .

. . - time for two LMS filters with step-sizeg; =0.01 (u1-LMS)
state excess mean-square error (EMSE) in adaptive f||t%rﬁc,d — 0.001 (15-LMS), and their affine combination. In
[16]-[19]. Furthermore, such schemes have been explaited, | piz = . H2 ' '

X : ; . this scenario, it is necessary to use a high value for the step
nonstationary environments to improve tracking perforcean _. . ;
L . . . size of then-LMS algorithm (e.g.,, = 3) in order to enable
considering, e.g, the algorithm proposed in [8] or the carabi the switching from the slow filter to the fast one. A large
tion of algorithms with different tracking capabilities ff0]. 9 : 9

The correct adjustment of the step-size for the updating \(/)?Iue Of iy may, howe"ef* cause instability d“”T‘g the initial
the mixing parameter depends on some characteristics of favergence of the algorithm, thus [12] cons_tram_ﬁ) to_be
Jess than or equal to 1. Unfortunately, even with this camsty

filtering scenario, such as the input signal and addmveselnmthe higher the step-sizg,, the higher the variance of the

powers, or the step-sizes of the adaptive filters ConS'dmedmixing parameter during the initial iterations. Therefotiee

the combination. This problem was addressed in [9], where > " . .
a novel normalized scheme was proposed. It was shown t g[nblnatlon performance deviates from universal, as shown
' IN"Fig. 1-(a). On the other hand, if the step-size is small
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(2. how thaty, depend 2E ’}, wh
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Corresponding author: Renato Candido. filters. Thus, a transient analysis and alternative algorithms to
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adapt the mixing parameter are two important key issues fon the algorithm used to adapt the mixing parameter. We

the practical application of the affine combination of adegpt
filters.
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Fig. 1. EMSE for p1-LMS, p2-LMS and their affine combination a)
wy = 3.0; b) u, = 0.1; c) ensemble average dii(n) — y2(n)]?;
p1 = 0.01, pe = 0.001, M = 7, identification of the systenw, =
[0.9003 —0.5377 0.2137 —0.0280 0.7826 0.5242 —0.0871]T, 03 = 0.01, white input
with variances? = 1/7; 500 independent runs.

A. Contributions and organization of the paper

summarize results for the transient analysis of LMS, NLMS,
and CMA. Then, in Section V-A, we present the transient anal-
ysis of then-LMS algorithm. The resulting analysis suggests
the normalization procedure presented in Section V-B and an
algorithm with partial instantaneous normalization, eed
and analyzed in Section V-C. Comparisons between andlytica
and experimental results are shown through simulations in
Section VI. Section VII provides a summary of the main
conclusions of the paper.

II. PROBLEM FORMULATION

This section is divided into three parts. We first descritee th
affine combination of one fast and one slow supervised algo-
rithms. In the sequel, the combination of two CMA equalizers
is presented. Then, we propose a common formulation for the
affine combination of supervised (LMS and NLMS) or blind
(CMA) algorithms.

A. Combination of supervised algorithms

The linear combination of two supervised adaptive filters
is depicted in Fig. 2, where the filter weights are adjusted
to minimize the mean-square error cost function, obtairihg
the output an estimate of the given “desired sigr#li). The
output of the overall filter is given by

The present paper extends previous results in four ways: y(n) = n(n)y(n) +[1 —n(n)]y2(n), @

1) providing a steady-state analysis for the optimum affineherer(n) is the mixing parameter ang(n), ¢ = 1, 2 are the
combination of adaptive filters, which is valid for whiteoutputs of two transversal filters, i.g;(n) = u” (n)w;(n—1).
or colored inputs, stationary or nonstationary envirorfhe superscripf’ denotes transpositiony;(n — 1), i = 1,2
ments, and combinations based on different algorithmgpresent the lengthf coefficient column-vectors character-
such as LMS, normalized LMS (NLMS), and the conizing the component filters, and(n) is their common input

stant modulus algorithm (CMA);

regressor column-vector.

2) proposing a simple geometrical interpretation to explai

the behavior of the affine combination; v(n d(n)
3) providing a transient analysis of the combination, tgkin wo(n —1) &
into account the adaptation of the component filters and

also the adaptation of the mixing parameter with the 'w(n —1)

n-LMS algorithm;
4) using the results of the transient analysis to facilithee

adjustment of the free parameters of the scheme and to
propose two normalized algorithms to update the mixing u(n)

parameter.
To the best of our knowledge, all these are novel contristio

The paper is organized as follows. In the next section, we
describe the affine combination of two adaptive filters fathbo
supervised (LMS and NLMS) and blind (CMA) algorithms.

In Section lll, analytical expressions for the optimum mixi

parameter and the optimum EMSE of the combination are

obtained. In the steady-state analysis of Section IV, tkalte
of Section Il are particularized for optimum combinatioofs
two LMS filters, two NLMS filters, and two CMA equaliz-
ers, considering stationary and nonstationary envirotsndm

Section V, transient analyses taking into account redkzab
schemes are presented. Initially, we obtain an analytikal e

_______________________________

Fig. 2. Linear combination of two supervised adaptive filters

We focus on the affine combination of two algorithms of
the following general class

wi(n) = wi(n — 1) + pi(n)u(n)e;(n), 2

pression for the EMSE of the combination, which dependghere p;(n) is a step-size and;(n) is the estimation error.
on the transient models of the combined algorithms and alstany algorithms can be written as in (2), by proper choices
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of p;(n) ande;(n). For some algorithmg;(n) can even be a  a(n)
matrix, as is the case of the recursive-least squares (Rg&) a
rithm, wherep; (n) is an estimate of the inverse autocorrelation |Cha
matrix of the input signal. In supervised adaptive filteriag
“desired signal"d(n) is available such that

ei(n) = d(n) — yi(n) 3)
and a linear regression model holds, i.e.,
d(n) =u" (n)we(n —1) +v(n) (4)

with w,(n — 1) being the time-variant optimal solution and

v(n) a zero-mean random process uncorrelated with),

whose variance is denoted by2 — E{UQ(’H,)} In order Fig.3. Simplified communications system with a linear comboratf two
v blind equalizers.

to make performance analyses more tractable, the sequences

{u(n)} and {v(n)} are assumed stationary and we will use

the corlnmon asslumgtion thatn) is2 indepefnd_ent r?fu(n)' hwherer = E{a*(n)}/E{a®(n)}. Using (7), CMA can also
(not only uncorrelated) [17, Sec. 6.2.1]. Defining the weig be written as in (2). However, given the nonlinear nature of

error VeCtorTSWi(f) = Wo(n) — W".(")’ the a priori errors CMA, additional assumptions are necessary to obtain a model

¢a,i(n) = u"(n)wi(n — 1), and using the linear model (4), 55 simple as (5): essentially, large signal-to-noise safiou-

we find that lar symmetry of the transmitted constellation, and an ahiti

ei(n) = eai(n) +v(n). () condition close to the zero-forcing solution (see Appentlix

An important consequence of this model is thék) will be  These assumptions were used in [10] and [26] to obtain simple

independent of alv;(j), w;(j), ande, ;(k), i = 1,2, j < k, linear models that capture the behavior of CMA close to an

for any particular time instant [17, Lemma 6.2.1]. optimum solution. Thus, (7) was approximated by
Considering the combination of two LMS filters and N

the minimization of the overall instantaneous square error ¢i(n) & y(n)eai(n) + B(n), ®)

e?(n) = [d(n) — y(n)]?, [12] proposed the following gradient-

based algorithm

n(n+1) = 1(n) + pye(n) [y1(n) —y2(n)]. (6) v(n) £ 3a*(n —7a) =7 ©)

To obtain a tradeoff between stability of this recursion angnd

the algorithm’s tracking capability in the initial phase of

adaptation,n(n) in (6) must be constrained to be less than B(n) 2 ra(n —14) — a®(n — 14). (10)
or equal tol for all n. We should remark that this kind of
constraint is not needed in the normalized algorithms pedo
in Sections V-B and V-C.

where

The variableg(n) is identically zero for constant-modulus
constellations, so the variability in the modulus «afr) (as
measured by3(n)) plays the role of measurement noise for
B. Combination of blind algorithms ponstant—modulus based algor?thms. Model (8) was proposed
. o o _in [10] to study convex combinations of constant-modulus-

Fig. 3 shows a simplified communications system with gased algorithms and extended in [26] to obtain explicit
combination of two blind equalizers. In this case, the signgapility conditions for CMA. The main assumptions and the
a(n), assumed i.i.d. (independent and identically distributedarivation of this model are summarized in Appendix A.
and non Gaussian, is transmitted through an unknown channek, update the mixing parameter in order to combine two
whose model is constituted by an FIR (finite impulse resppnsgma equalizers, we could use a gradient rule to minimize the
filter and additive white Gaussian noise. From the receivggkiantaneous constant-modulus cdsh (n) = [r — y2(n))%,
signalu(n) and the known statistical properties of the trangss considered in the convex combination of [27]. However,
mitted signal, the blind equalizer must mitigate the ch&nnge opserved through simulations that the resulting algorit
effects and recover the signaln) for some delayrs. We goes not always ensure the desired universal behavior of
also assume that the equalization algorithms are implesdeniy,o combination, specially for nonconstant modulus signal
in T'/2-fractionally spaced form, due to its inherent ad_vantagqq;]us, we propose a stochastic gradient algorithm to mirgmiz
(see, e.g., [20]-[23] and the references therein). Thi® B9 the instantaneous square decision etgiin) = e2(n), where
|mplementat|(_)n is Wl_dely us_ed in the Ilte_rature since itens ea(n) £ a(n—74)—y(n) anda(n—7,) is the estimate of the
perfect equalization in a noise-free environment, undelge  ansmitted signal at the output of the decision devices Thi
well-known conditions. The output of the overall equalibér (agyits in the following update equation
Fig. 3 is also given by (1).

Algorithms based on the constant modulus cost function n(n+1) =n(n) + pyea(n) [y1(n) —ya(n)]. (1)

[24], [25] define the “estimation error” as We observed through simulations that the decision-erased

ei(n) = [r —y2(n)]yi(n), (7) adaptation ensures a more adequate behavior than that of the
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constant-modulus-based adaptation, even in presenceisg nalgorithms. In both casegyn) is constrained to be less than
and/or when both component filters are far from convergena®. equal tol for all n [12]. Algorithm (14) is denoted here
Assuming thata(n —74) = a(n—74) and that the optimal by 5-LMS.

solution achieves perfect equalization (see AssumptionnB1 To close this section, it is important to observe that:

Appendix A), the minimization of/y(n) is equivalent to the 1) |n order to simplify the arguments, we assume that all

minimization of the square priori error, since under these the quantities are real. In the case of blind equalization
assumptions.q(n) ~ eq(n). of complex constellations, complex extensions may be
developed, provided signal circularity conditions are
C. A common formulation satisfied [28];
Comparing (8) to (5), we can write the following general 2) The analyses prpvided hgre can be extended. straightfor-
expression wardly to the affine combination of two RLS filters [1],

of two Shalvi-Weinstein equalizers [10], [29], and also
e;(n) = k(n)eqi(n) + ¢(n), i=1,2, (12) to the combination of algorithms of different families,
as is the case of the combination of one LMS with one
RLS or of the combination of one CMA with one Shalvi-
Weinstein algorithm [10];
3) Besides the)-LMS algorithm, [12] proposed a scheme
based on error powers to update the mixing parameter.

wherex = 1 and p(n) = v(n) for a supervised algorithm or
k(n) =~(n) andp(n) = B(n) for a blind one. In both cases
E{¢(n)} = 0. This model also holds for the overall scheme,
ie.,

e(n) = K(n)ea(n) + o (n), (13) Although this scheme also presents performance close to
where e(n) represents the error of the combined the optimum under certain circumstances, its structure is
filter: e(n) =d(n) —y(n) for supervised algorithms significantly different from that of)-LMS, so we leave
or e(n)=[r—y%*n)y(n) for constant-modulus-based its analysis for a future work.
algorithms, ande,(n) is the a priori error of the overall
scheme. It should be noticed that (12) and (13) are ||| THE OPTIMUM MIXING PARAMETER AND EMSE

approximations in the blind case. For the sake of simplicity ) ) ) o
we use the equality sign here and in the expressions derived\n @nalytical expression for the optimum mixing parameter

from (12) and (13). 7,(n) can be obtained equating to zero the expected value of
The supervised LMS and NLMS algorithms and the blinfe gradient used to updatgn) in (14), i.e.,
CMA employ the step-sizep,;(n) and the estimation errors E {e, (1n)[y1(n) — y2(n)]} = 0. (16)

ei(n) as in Table |, wherey is a regularization factor and

|| - || represents the Euclidean norm. The models for the errdrse errore,(n) in (16) can be rewritten as a function of the
e;(n) of these algorithms are also shown in this table fa priori errorse, ;(n), i = 1,2, as follows.

convenient reference. The step-size interval which esstine  Using (1), (12), and (13), the priori error e,(n) of the
convergence and stability is different for each algoritifar overall scheme can be written as

the LMS and NLMS algorithms, the step-size intervals are

well-known in the literature [16], [17], whereas for CMA gh ea(n) =n(n)eq1(n) + [1 = n(n)les2(n)
derivation of this interval was shown recently in [26]. = eq2(n) +n(n) [eq1(n) — €q,2(n)]. a7
TABLE | Replacing (17) in (15), and remarking that(n) — y2(n) =
PARAMETERS OF THE CONSIDERED ALGORITHMS AND ERROR MODELS €a 2(71) — e, l(n), (16) can be rewritten as
Alg. p(n) ei(n) Model for e;(n) E {63’2 (n) — eqa(n)eq2(n)}
LMS i —E{n.(n)leq2(n) — e, n)]?
s | | ) o(n) +o(n) + Eib](rg)[)e[ (275) )_ e ’(175)])}} :} 0 (18)
en + [[u(n)]? a,2 a1 :
CMA i [r —y2(n)]yi(n) | v(n)ea:(n)+B(n) | In the blind caseb(n) = 0 and in the supervised case,
b(n) = wv(n), which is assumed independent ef ;(n),

Using model (5) in the supervised case, and the fact tffﬁf 1,2. Hence, in both cases the third term on the l.h.s.

eq(n) =~ eq(n) in the blind case, we can write a genera 'I('18) IS qual to zero.k hat the EMSE of th il
expression for updating the mixing parameter, i.e., 0 proceed, we remark that the of the component fil-

ters and the cross-EMSE can be calculated [8], respectagely
n(n+1) =nn) + pneg(n)yr(n) —y2(n)], (14

Gii(n) = Bfeg,(n)}, i=1,2, and (19)
where Gi2(n) = Efeq1(n)eq o)} (20)
eg(n) = ea(n) +b(n) (19) Introducing the differences

andb(n) = v(n) for the combination of supervised algorithms N )
or b(n) = 0 for the combination of constant-modulus-based AGi(n) = Gi(n) — Giz(n), i=1,2, (21)
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and using (19)-(21) in (18), we arrive at for all [ [17, Sec. 7.4]. In supervised filteringy(n) is also
Aloa(n) assumed independent of the desired respdnke} for all
No(n) 22 (22) 1 < n. In blind equalizationw, (n) represents the zero-forcing

Al (n) + Ac(n) solution andq(n) models the channel variation.
A similar expression was also obtained in [8, Eq.(29)] fa th Table Il lists analytical expressions @fs(cc) for some
convex combination of two LMS filters at the steady-state. Weairs of filters. Expressions faj;; (co) can be obtained from
should notice that (22) is more general: it holds forralk 0 Table Il makingu; = .. Details about the derivation of these
(not only at the steady-state) and the mixing parameter tis Rexpressions can be found in [8], [10], [13] for the crossrer

restricted to the intervaD, 1]. and in [16], [17], [23], [28], [30]-[34] for the case; = p2. In
Defining the EMSE of the overall combined scheme as this table, R = E{u(n)u”(n)} is the autocorrelation matrix of
the input signalTr(A) stands for the trace of matriA, and
((n) = B{e2 ()}, (23) !he nPut stonalica)

vy = E{|lu(n)||72}. For Gaussian inputs and large number
we now obtain an analytical expression for its optimum valuef coefficients,», can be approximated by/[c2(M — 2)]
By squaring both sides of (17) with(n) = 7,(n) and taking with o2 = E{u*(n)} [13], [35]. The constants3, 7, and

expectations, we arrive at &, which appear in the expression for the EMSE of CMA,
depend on statistics of the transmitted signal and are dkfine
E{ei(n)}zng(n)E{ng(n)}—l—[l—no(n)]QE{ei}Q(n)} in Appendix A.
+ 210 (n)[1=70(n)[E{ea (n)ea2(n)}.  (24)
TABLE II
Using (19)-(22) in (24), we obtain ANALYTICAL EXPRESSIONS FOR THE STEADYSTATE CROSSEMSE OF
THE CONSIDERED COMBINATIONS
o(n) = —no(n)A . 25
Co(n) = C22(n) — 0o (n)Ala2(n) (25) S — ()
After some algebraic manipulations, (25) can be rewritten a LS and g LMS (1 202 Tr(R) + Tr(Q)
C ( ) ( ( ) ACII(H)AC22 (n) (26) 1t - MllQTr(R)
oln) = n) —+ .
. A1 (n) + Aza(n) J1-NLMS and jo-NLMs | R [’“f”%”“ +Tr(Q)]
This expression was obtained in [8, Eq. (33)] for the convex u12Tu(2R)uJ1ruT2 @
combination of two LMS filters at the steady-state, but again p1-CMA and p2-CMA _’““20" . .
it also holds for alln > 0. T + p2) = e Te(R)E

As already mentioned in [8], (22) and (26) hold for the
combination of any two algorithms that satisfy (12) The, Stationary environments

vaLuels Olf A%‘(”)’ té t: 1’2b however bc_Jo (;Je[_)rerzlnd on thg Replacing the expressions of Table Il wi@) = 0 in (22)
actual aigorithms that are being compined. 1hus, provi %ﬁj]d (26), we obtain analytical expressions for the steady-
approximations fow;;(n), 1, j = 1,2 are available, (22) and 0" 5timum mixing parametey,(cc) and for the steady-

(2|6) _csn bg alp;()jl_led to tg.e afﬁne (?on:bln_art]lon OI gggrenﬁate optimum EMSE,(c0) in stationary environments. The
algorithms, including combinations of algorithms o t resulting expressions are shown in Table Ill, where we ddfine

families. § £ po/py wWith 0 < 6 < 1. It is worth to notice that the
second filter of the combination is always assumed to be the
IV. STEADY-STATE ANALYSIS OF THE OPTIMUM COMBINER  glower filter (1, < 1) which consequently presents the lower
In this section, the optimum mixing parameter and the optteady-state EMSE in a stationary environment.
mum EMSE of the combination, given respectively by expres-
sions (22) and (26), are particularized for the combinatbn
two LMS filters, two NLMS filters, and two CMA equalizers

TABLE Il
ANALYTICAL EXPRESSIONS FOR1)o(00) AND (o (00).

in steady-state for stationary and nonstationary enviems Combination 76 (00) Co(00)
We do not rederive the steady-state expressionsfdro), 8[2 — i Tr(R)] 1[ peo?Tr(R)
i,j = 1,2 here, only use the best approximations from the| (1 39#2)LMS T26-1) 2 {m}
literature. As i.n.[12], we assume that the glgorithm Which 512 — 1 [Te(R)p202va
updates the mixing parameter is able to achieve the optimurpf#: andz2)-NLMS 26-1) 2 [m}
value in steady-state. Realizable schemes for adaptafion ¢ . TR
n(n) are taken into account in Section V. (1 andpz)-oma [L2ZHITERIEG T LY H27h (B) }
We assume that in a nonstationary environment, the varia- 20-1) 2[ O+ DF—paTr(R)E
tion in the optimal solutionw,, follows a random-walk model
[17, p. 359], that is, The expressions of Table Il show two interesting propsrtie
B B i) mo(c0) is negative for all considered combinations,
Wo(n) =wo(n —1) +q(n). 27) which can be verified through the stability conditions of
In this model,q(n) is an i.i.d. vector with positive-definite the algorithms. To ensure the stability pf-LMS and
autocorrelation matrixQ = E{q(n)q”(n)}, independent of 11-NLMS, the step-sizes should be chosen respectively

the initial conditions{w,(—1), w(—1),n(—1)} and of{u(l)} in the following ranges0 < u; < 2/Tr(R) and
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0 < p1 < 21[19]. In the case ofu;-CMA, assuming i) when the step-sizes are not close to one another and
model (8), it was shown in [26, Eq. (14)] that the range Tr(Q) = qi12, Whereq, is the value oflr(Q) for which

of step-sized) < py < 25/[3Tr(R)&] guarantees good ¢11(00) & (a2(0);

performance. Choosing the step-sizes in these rangesi) when the component filters are adapted with close step-
we can verify from the expressions of Table Il that sizes § ~ 1). However, whem ~ 1 and Tr(Q) =~ ¢,

7o(00) < 0. the gain is small.

§ ~ 1 yields (o(00) ~ (2(00)/2. Since(z(o0) < (i(¢)  Replacing the expressions of Table Il under the small step-
for all c_ombmatl(_)ns, the affine comblnatlon_prowdes_giZe approximatioh in (22) and (26), we obtain analytical
3dB gain in relation to the best component filter. In th'%xpressions fog1, and(, (co) shown in Table IV. From these
case,no(00) — —o0. expressions, we can observe that the EMSE reduction in all

Property i) was observed in [12] for the combination ofases is limited by 3 dB. A reduction close to 3 dB will occur

two

LMS filters, assuming Gaussian and white inputs, anthen§ — 0 in case (i) or when the environment tends to

additional assumptions equivalent to choosing the LMge stationary Tr(Q) =~ 0) in case (ii). It is relevant to notice
step-size for maximum convergence speed. If we considaat case (i) also occurs in the convex combination of adepti
w1 = 1/Tr(R) in the expression of Table Ill, we recover thefilters since in this cas8 < 7,(co) < 1. On the other hand,
result of [12, Eq.(26)]. The same property was observed3h [1case (ii) occurs only in the affine combination singgoc)
for the affine combination of two NLMS filters, also assumindoes not lie in the intervaD, 1].

white and Gaussian inputs.

The 3 dB gain is an interesting property inherent to the

An intuitive explanation for Property ii) can be found affine combination. However, we should emphasize that using

follows. Using (12), the overall steady-state error is tertas

From the point of view of the computation of(n), d,(n)
represents the signal which has to be estimated, w&yfd)
plays the role of input signal. Assuming that(n), i = 1,2

the affine combination with the filters adapted with différen
step-sizes is more worthwhile than using it with close step-
sizes. In the stationary case f@s < 11, the closerss (o) to
¢11(oc0) the closer the EMSE gain to 3 dB. Although a gain in-
crease can be obtained with close step-sizes, the EMSE of the
combination is higher in absolute terms @s(co) becomes
closer to(;1 (c0). On the other hand, for a single adaptive filter

e(n)=e2(n) +n(n) £(n)[wa(n)—wi(n)|"u(n).
——

dn (n)

(28)

—up(n)

vary slowly compared tay(n), (28) has a simple geometricin nonstationary environments there is an optimal valuéef t
interpretation as shown in Fig. 4. The affine combinatiorkseeStep-size for which the steady-state EMSE is minimum [16],

the
Fig.

[17]. The EMSE of the combination achieves its smallestealu

best weight vector in the linevy + n(w; — ws). In : . : S SMe .
when one of its component filters is adapted with this optimum

4-(a), the best linear combination of; and wo is w.

In the case of close step-sizes, we also have close coefficigigP-size. In this case, the combined estimate is as good as
vectors in steady-statei.e., w; ~ w, (Fig. 4-(b)), andy has that of the optimum component, and there is no EMSE gain,
to assume a large value to take the combined vector clgeis illustrated in a simulation of Section VI-D (see Fig).17

to w, since the input signal, (n) depends on the differenceMoreover, it was shown analytically in [36] that a combioati

betweenw; andws. Thus, if (w; — wsy) — 0, || — occ.

of two filters from the same family (i.e., two LMS or two RLS
filters) cannot improve the performance over that of a single
filter of the same type with optimal selection of the stegsiz
(or forgetting factor).

TABLE IV
ANALYTICAL EXPRESSIONS FORg12 AND (,(00) FOR CASES(i) AND (ii)
IN A NONSTATIONARY ENVIRONMENT.

. o ) ) _— Combination 0] (i)
Fig. 4. Geometric interpretation of the affine combination.
q12 Co(0) Co(0)
p1-LMS oo ¢22(00)/2 (22(00)/2
. . 2
B. Nonstationary environments anda-LMS | xTi(R) 28412;32) UUTZrC(R()Tr)(Q)
In a nonstationary environment, the largest EMSE reduction 5 22
of the affine combination in relation to its components oscur ~ #1-NLMS pipzoy | Ca2(00)/2 C22(00)/2
when {11 (00) & (22(00). This can happen in two situations and 1s-NLMS . 28¢aa(00) o2[Tr(R)]?Tr(Q)va
(see Table IV): H2 " (1+4)2 2C22(00)
- 2
1t is possible to prove using the results of Tables Il and M thawo p1-CMA Hip20p C22(00)/2 C22(00)/2
stable adaptive filters are initialized with the same vectmt adapted with 2T (R)T
close step-sizes the following limit holds and us-CMA | xTr(R 20¢22(00) 75 Tr(R)TH(Q)
12 R) 3 -
(1+9) 2%G22(00)

e B —Sem)?) )
éal{nloo (% (|2} }0‘

In other words, close step-sizes imply close coefficientarsdn steady-state.

2The small step-size approximation was assumed in order tonogitapler

expressions.
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TABLE V
V. TRANSIENT ANALYSIS OF REALIZABLE SCHEMES RECURRENT EXPRESSIONS FOR CROS#ARIANCE MATRIX Si2(n).
In this section, we take into account the adaptation(ef) _

in the analysis. Our focus will be on how much a realizable=°mpination S12(n)

estimate forn,(n) deviates from the optimum, and how thig #1-LMS | Si2(n) & S12(n—1)—p1RS12(n—1)

affects the combination’s overall performance. and —p2812(n—1)R+p1p2[2RS12(n — 1)R
By squaring both sides of (17) and taking expectations, we ,,, | us YRTr (RS12(n — 1)) +02R] + Q
obtain
f1-NLMS | S12(n) ~ S1a(n—1) — — 1 RS15(n—1)
Bz (1)} =Bl a(m} + B () [ear (1) —ea2(n)]} N G e
+ 2E{77(n) [ea’g(n)ea’l(n)—ezﬁz(n)}} . (29) o2(M—2)"" " o (M—2)(M—4)

-NLMS | x [2RS12(n—1)R+RTr (RS12(n—1))+02R]+
To proceed, we assume that: 1 [2RS12(n—1) (RS12(n—1)) J+Q

Al. The adaptation of)(n) is slow so that the correlation| #1-CMA | Sia(n) = Sia(n—1)—p17RS12(n—1)
b_etween it ande, ;(n)eq ;(n), 4,7 = 1,2 can be and —1127S12(n— 1R+ 1 p2[26RS12(n—1)R
disregarded. 112-CMA +ERTY (RS12(n—1))+02R] + Q

This assumption follows from observations: simulationevgh

thatn(n) converges slowly compared to variations in the input

u(n) and thus to variations on tre priori errors. i,j = 1,2. However, this procedure leads to more complex
Using Al, (19)-(21) and (23), we can rewrite (29) as expressions than those of Table IIl.

~ LR ? _9E A . (30 Expressions forE{n(n)} and E{n*(n)} depend on the
¢(n)~Czz(n) {Ti (n)} aln) {n(m)} Az (n), (30) mixing parameter adaptation. In the next section, we assume
where we defined thatn(n) is updated with the)-LMS algorithm.

a(n) £ E{ly1(n) = y2(n)]*} = A (n) + Alaz(n). (31)

To estimate the EMSE of the combination for all> 0 using
(30), analytical expressions fay;(n), i = 1,2, E{n(n)}, and
E{n?(n)} should be obtained.

It is common in the literature to evaluate the EMSE as

A. Adaptation of the mixing parameter using-MS
Replacing (17) in (15), we get
eg(n) = €az(n) —n(n)lea2(n) —ea1(n)] +b(n).  (34)

N Using (34) and remarking thaj; (n) — y2(n) = eq2(n) —
Gi(n) = Bleai(n)ea;(n)} = Tr(RSy;(n — 1)), (32) eq.1(n), the update equation @fLMS, given by (14), can be

where rewritten as

Sij(n) £ E{W;(n)%} (n)}, i=12 (33) A
is the covariancei(= j) or the cross-variance ¢ j) matrix n(n+1) :77(”)(1 — pinl€a2(n) — ea,l(n)]Q)
of the weight-error vector. This approach is based on the B

independence assumption between the regressor vettor
and weight-error vector&;(n—1), ¢ = 1,2 and is justified for
small step-sizes due to the different time-scales for tiaria
in u(n) andw;(n — 1). This condition is a part of the widely + pinb(n)[ea,2(n) — eq 1 (n)]. (39)
used independence assumptions in adaptive filter theoiy [1
[19], [37]. Recursions forS;;(n), ¢ = 1,2 are generally

obtained in the transient analysis of adaptive filters (seg, 1) First-order analysis:Using the same arguments of Sec-

[16], [;8]’ [25]’ [35] and_ ”‘?'r references). In _the lramsie o, I, we remark thatE{C} = 0. Assuming Al and taking
analysis of linear combinations of two adaptive filters, an

estimate ofS;;(n), ¢ # j should also be obtained, Whlchexpectatlons in (35), we get
is a straightforward extension from the case- j [10]. In
Table V, we show the recursions for the cross-variance matri
S12(n). Expressions for the covariance matfix(n), i = 1,2
can be obtained from this table, making = pus. Using
the expressions of Table V in conjunction with (32),(n),
i,j7 = 1,2 can be estimated for alt > 0. The expression
for S12(n) considering the combination of two NLMS was
derived using the approach from [35], under the assumptions lim E{n(n)} = no(c0). (37)

of Gaussian inputs and large number of coefficients. We shoul oo

notice that steady-state approximations for the EMSE aiithus, as observed in [12], theLMS algorithm converges in
cross-EMSE of the component filters can be obtained frotine average to the optimum mixing parameter at the steady-
the expressions of Table V, i.eg;(c0) ~ Tr(RS;;(c0)), state.

+ tigleq 2(n) — ea,1(n)ea(n)]
C

?Jsing (35), we can obtain recursions for the first and the
second moments af(n).

E{n(n+1)}=E{n(n)}1-pya(n)] + pyAaa(n). (36)

Since the constraingy(n) < 1 is imposed in then-LMS

algorithm, we truncate at each iteration the theoretictleva

of E{n(n+1)} estimated by (36), so that{n(n+1)} < 1.
Taking the limit forn — oo on both sides of (36), we obtain
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A sufficient condition for the exponential stability of (36)Replacing the approximations (44)-(47) in (40), we finally

is given by [38, p. 73] arrive at

1 —ppa(n)| <1—¢, Vn, (38) E{n*(n+1)} # E{n*(n)} [1—2p,a(n) + 3,u727042(n)]
where ¢ is a small positive constant. In particular, for a + 2pnE{n(n)} [C22(n) =31y ACaa (n)a(n)]
constant step-size, a sufficient condition is + 115 (Co2(n) + 03) a(n) + 22 AC3,(n). (48)

_ (39) Using (48) and (36) in conjunction with the expressions
max{a(n)} of Table V, the EMSE of the combination for al > 0
considering the)-LMS algorithm can be estimated via (30).

From (48), the range of step-sizes to ensure the mean-square
stability of n-LMS is given by [38]

0<py<

2) Second-order analysissquaring (35) and taking expec-
tations, we obtain

E{n’(n+1)} = E{A*} +E{B*} +E{C*} +E{2A4B}
+ E{2AC} + E{2BC} . (40) 0<m< 3max{a(n)}’

To evaluate the terms of (40), we assume that which is more restrictive than (39).
The stability ofn-LMS depends orx(n). From Fig. 1, we

can see that(n) = E{[y1(n) —y2(n)]?} is large at first when
the fast filter has almost converged but the slow filter id stil
E{e? (n)eq;(n)} = 3¢i(n)¢j(n), i,5=1,2, (41) far from the optimum solution. At this poinj, should be
E{le, e, 4y _ o 2 42 small, as required by (49)_. However, when the EMSE.of the
{le ’2(7;) ‘ ”;(n)] } =30%(n), ) (42) slow and fast filters are similaty(n) is small. At this point,
E{e 1 (n)el 5(n)} = Cu(n)Caa(n) +2¢7(n).  (43) 4 large i, is required so the combination will switch to the

Although this condition is violated in general, it is freauly slow Eltfr'TTh'S is the reﬁsorlll\xvgy [;Z]h needs_ It<clj conitraln
used to make the transient analysis of adaptive filters mcﬁgl) < 1. To guarantee thaj- switches quickly to the

: : filter at the proper timeyu, must be chosen so large
tractable [16]-[19]. This assumption tends to be reascenal?llow . m . )
for small step-sizes and long filters [17]. that »-LMS will be unstable at the beginning, wher(n) is

Now, using A1 and A2 we can evaluate the terms of (4Oiarge. '_I'hergfore, some sort of normghzaﬂon IS hecessary f
he estimation of). Thus, we propose in the following sections

E{A?}: Using Al and (42), we obtain two normalized algorithms to update the mixing parameter.
E{A?} = E{n*(n) (1=ptylea.o(n) —eq 1 (n)]?)" |
~ E{n’(n)} [1-2pma(n) + 3507 (n)] . (44)

(49)

A2. The a priori errors e, 1(n) and e, 2(n) are jointly
Gaussian with zero-mean, which implies [39]

B. Adaptation of the mixing parameter usingPN-LMS
Using an instantaneous normalization, i.e., replacing the

E{B?}: Using (41) and (43), we have step-size byu,(n)=ji,/[y1(n)—y2(n)]?, can also lead to
) ) ) ) divergence (see, e.g, [40]). One possible solution is te nor
E{B"} = 1, B {[eq2(n) — €a1(n)ea2(n)] } malize the algorithm using an estimate @fn), as in [9].
R~ ,LL?ICQQ(TL)O[(TL)+2,LL3]A<222(TL). (45) The resulting normalized algorithm is called power normedi
) ) . , ) least mean-squarenPN-LMS) algorithm and updates the
E{C?}: Sinceb(n) is assumed independent @f ;(n), i = mixing parameter via the recursion
1,2, E{b(n)} = 0, andE{b?(n)} = o}, we get
n(n +1) =n(n) + py(n)eg(n)yi(n) — y2(n)] (50)
E{C?} = E{120*(n)[ean(n) — ear(n)]*} e
~ ,u%oga(n). (46) Where
For the combination of two CMA equalizers this term is null, p (10) s _ Hn , (51)
sinceb(n) = 0. €+ p(n) )
E{2AB) : Using AL, (41) and (43), we obtain p(n) =Ap(n — 1) + (1 = A)[p(n) —y2(n)]”  (52)
E{24B} = 2MnE{77(n)}E{(1—Mn leaa(n)—eq1(n)]?) is a low-pass filtered estimate for the powenefn) —y2(n),
e is a small positive constant used to avoid large step-sizes
X [ein(n)—eaJ(n)eayz(n)]} when p(n) becomes small, and < A < 1 is a forgetting

factor. The stability of (50) is ensured for< 1, < 2 [38
~ 2 E{n(n)} [Ga(n) =3 A2 (m)a(n)]. (47) 5474, constraint):)n(n() is)necessary. " =

E{2AC} andE{2BC}: Sinceb(n) is assumed independent In the analysis of thg-PN-LMS algorithm, we assume that
of eqi(n), i+ = 1,2 and E{b(n)} = 0, these terms A3. The forgetting factor\ is sufficiently close to one, so
are null. Again, for the combination of two CMA that the variance gf(n) is small and the step-size,(n)
equalizers these terms are null by definition, since  is weakly correlated with tha priori errorse, ;(n), i =
b(n) =0. 1,2 and the mixing parametey(n).
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Using A3, the analysis of)j-LMS can be directly extended Using (34) and remarking that signz] = |«| and that
to n-PN-LMS, replacing;ﬁ; by [E{Mn(n)}]k, kE=1,2inthe yi(n)—y2(n)=eq2(n)—eq1(n), (58) can be rewritten as
expressions of Section V-A. Hence, we only need to estimate
E{p,(n)}, as shown in the sequel.

Expanding ., (n) as a Taylor series, around the expected n(n+1) =n(n) (1 — pysleq2(n) —eq1(n)|)

D

value E{p(n)} £ p(n), we obtain £
oy BP0 =p(0)] i )P Pt
T etp(n)  [etp(n) e+5(m))>

+ /’Lnsb(n>5ign[ea,2(n)_ea,l(n)] . (60)

Taking expectations on both sides of (53), we arrive at Using (60), we can obtain recursions for the first and second

i fi,02(n) moments ofy(n).
E{py(n)}~ +f7( ) A (54) 1) First-order analysis:Assuming Al, taking expectations
e+pn) - le+p(n)] in (60), and remarking that{F} = 0, we obtain

where we denotedg(n) =E{[p(n) — ﬁ(n)]2}. Assuming A3, E{n(n+1)}=E {n(n)}(1—p,sE {|eq,2(n) —€q,1(n)|})
the second term on the r.h.s. of (54) can be disregardedhwhic 1o E {ea 2 (n)Sign[eas(n) —ear(n)]}.  (61)
ns a, a, a, :

leads to
E {11,(n)} ~ Fin (55) Assuming A2 and using a special case of Price’s theorem (see,
K e+p(n) e.g, [39], [17, p. 306]), the following approximations hold
Using the same arguments, the second moment of the step-size 2a(n)
f1n(n) can be approximated bg{u2(n)} ~ [E{u,(n)}]°. E{lea2(n)—ear(n)]} = T (62)
Now, we obtain a recursion fgs(n). Taking expectations
on both sides of (52), we get and
_ _ . A
pn)=Ap(n—1)+(1=NE {[y1(n)—y2(n)]*} . (56) E{eq2(n)signleq,2(n) —eq1(n)]} = m (63)
s

Remarking thay, (n)—y2(n) =ea,2(n)—€a,1(n), the following - papiacing (62) and (63) in (61), we arrive at
recursion holds

B(n) = Ap(n—1)+(1-Na(n). (57) E{n(nﬂ)}%E{n(N)}[l—uns 2‘“(”)]+ ) m
At steady-state, we havoo) = a(c0). (64)

Taking the limit forn — oo on both sides of (64), we obtain

lim,, . E{n(n)} = n,(c0). Hence, the)-SR-LMS algorithm

also converges in the average to the optimum mixing paramete
Althoughn-PN-LMS circumvents the problem encounteredt the steady-state.

in the convergence of)-LMS, three parameters must be The range of step-sizes that guarantees stability of (64) is

adjusted:i,,, A, ande. The forgetting factorA is relatively given by [38]

easy to be adjusted (e.g\,= 0.99). However, the choice of

the step-sizg:, and of the regularization facterneeds some 0 21

care, as we show through the simulations of Section VI. In < Hns <

order to avoid these extra adjustments and since a normal-

ization is necessary, we can employ a partial instantaneou) Second-order analysisSquaring (60) and taking expec-

normalization usingu, (n) = p,s/|y1(n) — y2(n)| as step- tations, we obtain

size. With this choice, the update rule (50) reduces to
P (0) E{n’(n+1)} = E{D*} +E{£*} +E{F*} +E{2D&}

C. Adaptation of the mixing parameter usingSR-LMS

max{a(n)} (65)

n(n+1) =n(n) + pyseq(n)signly. (n) —ya(n)],  (58) + E{2DF} + E{26F} . (66)
where sigf] is the sign function defined as Using Al and A2, we can evaluate the terms of (66):
E{D?}: Using Al and (62), we obtain
+1, >0 )
signz] = 0, z=0 . (59) E{DQ} —E {772(71) [1—uns|ea,2(n)—ea71(n)ﬂ }
-1, =<0

~ E{n*(n)} {1—un5\/8a(n)/7r + u%sa(n)} . (67)
We call this algorithm sign regressor least mean-square alg

rithm (n-SR-LMS). E{£?} andE{F?}: Using the fact that sigtiz] = 1 almost
everywhere on the real line, we get
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A. Recalling the introductory simulation
To verify the validity of the transient analysis in the

2\ 2 2 H
B{E7} = B{ug.eqa(n)sig [eas(n) = eai(n)] } supervised case, we consider the identification of a time-
~ M%sCm(n), (68) invariant system. The optimum solution is formed with= 7
and independent random values between -1 an 1, and is given by
E{F?} = E{p; b (n)sig’ [eq 2(n) — eq1(n)] } Wo = [40.90 —0.54 —0.03 +0.78 +0.52 —0.09]. (73)
~ 1,2 2
~ HnsTb- (69) We assume white Gaussian input with variaig@/ so that

Tr(R) = 1, and an average of 500 runs. Moreover, i.i.d. noise

E{2D¢&}: Using Al and (63), we obtain i ; . )
v(n) with varianceo? = 0.01 is added to form the desired

B{2DE} =201, B{n(n) (1= finelea2(n) — e () signal.
. Figures 5 and 6 show the results of the EMSE and the
X €q,2(n)signfeq 2(n) —eq,1(n)] } mixing parameter for the affine combination of two LMS filters

A in the same situations considered in Figures 1-(a) and (b),
A MnsAC22(n)]- (70) in which the mixing parameter is updated with the.MS
Ta(n)/2 algorithm. In Fig. 5, whergu, = 3, the analysis can predict
) ) . ) that the performance of the combination is far from universa
Sinceb(n) is assumed independent of ;(n), i = 1,2 and iy the initial iterations. Similarly, with, = 0.1, the analysis
E{b(n)} = 0, we haveE{2DF} ~ 0 and E{26F} ~ 0. an predict that the combination is not able to switch to the
Replacing the approximations (67)-(70) in (66), we finall gy filter, as shown in Fig. 6. We should notice that, due to
arrive at the constraint imposed in the:LMS algorithm ¢(n) < 1),
these situations become difficult to model and there is alsmal
+N%sa(n)1 gap between the experimental and theoretical EMSE during
the initial iterations. Moreover, the mixing parameter sloet

~ 2 E{n(n)}

8a(n)

E{n2(n+1)}%E{n2(n)}[1—uns

achieve the optimum value obtained in the analysis, which is

+ 2pysE{n(n)} - MnsAsz(n)l higher than one in the initial iterations.

ma(n)/2

+ /1’7275 [Uz? + (2(n)] . (71) 0 11-LMS
e 19-LMS
Ci)mbination

The range of step-sizes that guarantees stability of (71) is—=
given by [38]

— % -((n) (Theoretical)
— © -(o(n) from (26)

8
mmax{a(n)}’

-60 —
0 < pns < (72) o 1 2 3 4 5 6 7 8

Experimental
— % — Theoretical

It should be noticed that this range is more restrictive than =
— © — no(n) from (22)

(65). Although the step sizg,, still depends on an estimate = 0 X
of a(n), this dependence is weaker than that of theMS - ‘ ‘ S8 e ke ot
algorithm due to the square-root in (72). Furthermesg, can 0 1 2 3 4 5 6 7 8
be adjusted based on the analytical EMSE of the combination iterations x10*
(see Fig. 11). Thus, thg-SR-LMS algorithm can perform ., .y £\ise for.,-LMS, 12-LMS and their affine combination: b)
better than)-LMS, following quickly the variations om,(n)  ensemble average i) adapted with the}-LMS algorithm and theoretical

with a small EMSE and with only one free parameter to adjusk(n); x1 = 0.01, pz = 0.001, uy = 3, M = 7; identification of the

as shown in the simulations of Section VI-A system given by (73)¢2 = 0.01, white input with variancer2 = 1/7; 500
’ independent runs.

In the same scenario, the algorithm$?N-LMS or -SR-
LMS can circumvent the problem, as shown in Figures 7 and 8
The simulations are divided into four parts. First, we verifrespectively. These two algorithms have a similar perforcea
the accuracy of the transient analysis for the introductowhich is predicted by the analysis with a good accuracy in
simulations shown in Fig. 1. We also verify the behavior @& thboth cases. In addition, the experimental mixing parameter
proposed algorithmg-PN-LMS and#n-SR-LMS in the same is higher than one in the initial iterations, being far from
simulation scenario. In the second part, we show some sesii theoretical optimum value during the very first iteragp
concerning the analysis of combinations of NLMS filters anas shown in Figures 7-(c) and 8-(c). However, this does not
CMA equalizers. In the third part, we verify the validity dfe represent an issue since the combination presents a close to
analysis of combinations of LMS filters with close step-sizeuniversal performance.
Finally, we focus on the tracking analysis and compare theTo illustrate the influence of the parameterandy,, in the
performances of the affine and convex combinations. performance of the)-PN-LMS algorithm, Figures 9 and 10

VI. SIMULATION RESULTS
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0 . ~ L
10 TTNS obserye thf':\t the optimum valqe qun,'or s 1 different fpr '
5 5 LS each time instant considered in the simulations. Howeveés, i
= 30 - :g(%(glggr(e?tégal) possible to choose an intermediate value to obtain a trhdeof
@ - in these three situations.
S 40
M50 0
-60 210 — 1 -LMS
0 1 2 3 4 5 6 71 8 o = LMS
< -20 —— Combination
. - —%-((n) (Theoretical)
— 1 coriocy . 2 -30 —0-C,(n) from (26)
= R m—— = 40
_v:_, 0.5 . - g -Th(Ie)o)reftical (22) = -50
jea ~ - - 1o(n) from
0+ (b R -60
( ) L R L R S ~——O0— 6 ——=0— © 0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
iterations x10% —_ 1 —— Fxporimontal
) ) ) o = —¥— Theoretical
Fig. 6. a) EMSE foru1-LMS, p2-LMS and their affine combination; b) = 05 R —O- 1o(n) from (22)
ensemble average @f(n) adapted with the)-LMS algorithm and theoretical g AN
No(n); p1 = 0.01, pp = 0.001, py = 0.1, M = 7; identification of the 0p(b) ; Rt Her Ok -
system given by (7372 = 0.01, white input with variancer? = 1/7; 500 0 1 2 3 4 5 6 7 ]
independent runs. iterations %104
10
0 —_~ @ = Experimental
— 11 -LMS = |‘| —%*— Theoretical
= — 1>-LMS = 5 —O- 10(n) from (22)
= —— Combination —
- —%—((n) (Theoretical) = (c)
<3 -0-4y(n) from (26) 0 i s : A = : : :
E 0 005 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
= iterations x10*
Fig. 8. a) EMSE foru;-LMS, u2-LMS and their affine combination;

b) ensemble average of(n) adapted with then-SR-LMS algorithm and
theoreticaln, (n); u1 = 0.01, p2 = 0.001, puys = 2.5 x 1072, M =T,

-~ 1 === Experimental identification of the system given by (73)%2 = 0.01, white input with
£ 05 :g Tlﬁ??ﬁéﬁil(m) variances2 = 1/7; 500 independent runs; c) detail of b) from= 0 until
Y U n = 0.5x10* (note the different x-scaling)
/= L
0p(b) ‘
0 1 2 3 4 5 6 7 8
iterations x10* = = ((n) (Theoretical)
41 ' ' ' " O ¢(n) (Experimental) []
10 % sYolo) n = 15000 —— (o(n) from (26)
. # e Experimental ~ A2~ [0} O b
g —%— Theoretical <2 e e e o .~ _O_ |
= o P —O- 1)o(n) from (22) E 3
B 0 © %% . - A et - 0‘5 1 1.5 2 2‘5 3 3‘5 4 4.5 5 5.5
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 ) : :
iterations x10% — 44 ‘ ‘ ‘ ! ]
% 46} n—4000(_)_'e ___.O—-——'"'O—,
Fig. 7. a) EMSE foru;-LMS, u2-LMS and their affine combination; ;:4/ 48 PP |
b) ensemble average of(n) adapted with then-PN-LMS algorithm and %) 5@0 _o-
theoreticahy, (n); p1 = 0.01, po = 0.001, fi, = 3x 1073, ¢ = 5 x 10~4, 5 -50 i
A = 0.99, M = 7; identification of the system given by (732 = 0.01, -52 : : : : : : : : : .
white input with variancer2 = 1/7; 500 independent runs; c) detail of b) 05 1 15 2 25 3 35 4 45 5 55
from n = 0 until n = 0.5x10* (note the different x-scaling) —~ 48 . . . T
g n = 65000 -0~
= 50k e =0 1
. , , & selog o2 |
show the theoretical, experimental, and optimal EMSE of the = . ~O—--~
combination at three time instants as a functior: @Fig. 9) ) 05 1 15 2 25 3 35 4 45 5 55

and of i, (Fig. 10). The time instants were chosen in order to € x1073

check the aCCL;racy of the an.aIySIS in three different sauat Fig. 9. Theoretical, experimental and optimal EMSE at thréferdint time
atn = 15x10° the S|KOWEI’ filter has not converged yet, thgstants for the affine combination pf-LMS and u2-LMS using the-PN-
time instantn = 40x103 is close to the switching between the_Ms for different values of; u1 = 0.01, 2 = 0.001, fiy, = 3, A = 0.99,
faster to the slower filter, and at= 65x10° both filters have » = 7 identification of the system given by (73)7 = 0.01, white input

! . . . . . with variances2 = 1/7; 500 independent runs; each experimental value
converged. The same simulation setting of Fig. 7 is conetler yas calculated by the mean EMSE of 50 samples around the coetitime
Similarly, Fig. 11 shows the results on the influenceugf instant.

for the n-SR-LMS algorithm, considering the same simulation o _ _

of the EMSE in all cases, which enables the adjustment ofTo verify that the transient analysis is also accurate for
the parameters through the analytical results. We can atbe affine combination of the other algorithms, Fig. 12 and
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— — ((n) (Theoretical)
404 O ((n) (Experimental) | ‘ i i .
E.g —— Go(n) from (26) S —O'_ Q- - 0= -7
o -42r o O O~ e~ n =-15000-
0 L =- "
=
-44 : ‘ :
1 2 3 4 5 6 7 8 9 10
a -46 o] T T T T T ' " ! ! i
= \
= 48 F - Q N n = 400_00_:
Z s0¢ o0 -e—0-0—0-0" O "]
= -52 L i i i i i L L L
1 2 3 4 5 6 7 8 9 10
= -50 T ‘ ‘
2 p - O—O--"
= 50 7\\ oG- o~ 0 n =-65000-
[ﬁ G -0
L S B
1 2 3 4 5 6 7 8 9 10
i x1073
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channelsh; = [+0.1 +0.3 +1.0 —0.1 +0.5 +0.2]" and

hy, = [40.25 +0.64 40.80 —0.55]" [27], [33] in the absence
of noise and the transmission of a 4-PAM (pulse amplitude
modulation) signal, i.e.a(n) = £1 or a(n) = +£3, with
statisticsr = 8.2, ag = 28.8, andy = 6.8. In the combination,
each component filter ha®/ =4 coefficients implemented as
a T/2-fractionally spaced equalizer (FSE) and is initiadiz
with only one non-null and unitary element in the second
position. Fig. 13 shows the results for the EMSE and the
mixing parameter considering the chanheluntil n = 4x10*

and the channeh, after that. To smooth the EMSE curves,
they were filtered by a moving-average filter3af coefficients.
Although there is no exact agreement between analysis and
simulation, the predicted values model the overall behavio
the combination, considering that a difference of a few dB
is common in models of blind algorithms due to the strong
assumptions necessary for the analysis.

-10 = ;;-NLMS

Fig. 10. Theoretical, experimental and optimal EMSE at thiiéferént time
instants for the affine combination pfi -LMS and pi2-LMS using then-PN-

= /1-NLMS

: — o binati
LMS for different values ofi,; 11 = 0.01, ug = 0.001, e = 5x 104, A = g 20 *_S(‘;g’ [Theoretical)
0.99, M = 7; identification of the system given by (73)2 = 0.01, white ~ 30 -O—(,(n) from (26)
input with variancer2 = 1/7; 500 independent runs; each experimental value E}J) B
was calculated by the mean EMSE of 50 samples around the coetbitime = 10
instant. Mo (a)
-50 i i i i i i
— = ((n) (Theoretical) 0 0.5 1 1.5 2 2.5 3
40 O ¢(n) (Experimental) ‘ ‘ ‘
) — Go(n) from (26) o o__Q- O - - . 3 (b) e ixperimental
= Q Q-7 = 9 —%- Theoretical
m -42f o 0=~ n = 15000 4 = 4 —0-1)5(n) from (22)
[op] -
< &) 5 1
= ‘ 0 e O
1 2 3 4 5 6 7 8 9 10 0.5 1 1.5 2 2.5 3
%\ 46 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ i iterations x10*
= Q = 40000 . s N
] A oS ° 071 1 Fig. 12. a) EMSE foru;-NLMS, u2-NLMS and their affine combination;
Z 5ol --@_-0_0_0-- -G -7 b) ensemble average of(n) adapted with then-PN-LMS algorithm and
= theoreticaln, (n); u1 = 0.1, p2 = 0.01, fi, =3 x 1073, ¢ = 5 x 1074,
-52 2 3 4 5 6 7 3 9 10 A = 0.99, M = 32; identification of the system considered in [12}2 =
0.01, white input with variancer2 = 1/32, Q = 0; 500 independent runs.
—~ -50 : ‘
g 0_0.-0--6--
= —52\@_0___@,11 -G =7 n = 65000 0 —m-CMﬁ
2 ) —_— 15-CM
E 54 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ m 0 —— Combination _
1 2 3 4 5 6 7 8 9 10 = -10¢ %= ¢lw), (Theoretical)
5 15 - (o(n) from (26)
s x10 =
= -20
Fig. 11. Theoretical, experimental and optimal EMSE at thriéferdnt M -25
time instants for the affine combination pfi-LMS and p2-LMS using the 30
1n-SR-LMS for different values ofu,s; p1 = 0.01, puz = 0.001, M = 7; 0 1 2 3 4 5 6
identification of the system given by (73)%2 = 0.01, white input with 15
variances2 = 1/7; 500 independent runs; each experimental value was : — Exporimental
calculated by the mean EMSE of 50 samples around the considiened =~ 1 —%- Theoretical
instant. £ -O-1,(n) from (22)
= 05
= 0
Fig. 13 show the results for combination of two NLMS filters 1 2 3 4 5 6
with the n-PN-LMS algorithm and two CMA equalizers with iterations x10*

the n-SR-LMS algorithm, respectively. For the NLMS case

Fig. 13. a) EMSE fop1-CMA, p2-CMA and their affine combination; b) en-

to obtain a better estimate for the EMSE of the comp@emble average of(n) adapted with the)-SR-LMS algorithm and theoretical
nent filters using the expression of Table V, we consides(n); p1 = 1x107%, ps = 1x10~%, iy = 0.5; Equalizers withM = 4

M = 32 coefficients and the optimum solutiow{) from [12,

as T/2-FSE, initialized witho 1 0 0]7; channelh; =[0.1 0.3 1.0 —0.1 0.5 0.2]T
until n = 4x10% andha =[0.25 0.64 0.80 —0.55]T aftern =4 x10%; Q = 0;

Fig. 2]. Again, we can observe a good agreement betwegpam transmitted signals00 independent runs; EMSE curves filtered by a
analysis and simulation. In the CMA case, we assume thgving-average filter of 32 coefficients.
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C. Affine combination of filters with close step-sizes — TS

= = 5-LMS

=== Combination

—%— ((n) (Theoretical)
—O- (o(n) from (26)

We now consider an affine combination of two LMS filters
with close step-sizes in a stationary environment. We agsum
that the optimum solution is given by (73) and the inp(t)
is generated using a first-order autoregressive model, avhos
transfer function is\/1—02/(1—0271), with o = 0.8. This -50
model is fed with and i.i.d. Gaussian random process, whose 30
variance isl/M, such thatTr(R) = 1. Again, to form the =~ 9
desired signal, white noise(n) with variances? = 0.01 < 10
is added. Fig. 14 shows the EMSE and the mixing param- &y 0
eter along the iterations for two LMS filters with step-sizes -10
u1 = 0.01 and g2 = 0.009, using then-LMS algorithm iterations %10%
with 4, = 600. This high value ofy, is needed in order

to ensure a high convergence rate for the combination sirfteé 15
9 9 b) ensemble average of(n) adapted with then-PN-LMS algorithm and

[y1(n) —y2(n)] is small. In this situation, the performanceseoreticaln, (n); yy = 0.01, us = 0.009, iy = 0.4, ¢ = 9 x 10—4,
of the component filters are very close and the combinatian= 0.99, M = 7, identification of the system given by (732 = 0.01,
provides a3 dB EMSE gain in steady.stale, as shown ISP iy, (OF Mol £ o bos S0 i veiest L
Fig. 14-(a) and predicted by the analysis. To smooth the EMé&% coefﬁciemsl ’ Y g-averas
curves, they were filtered by a moving-average filter with

256 coefficients. We can observe that, due to the constraint 9,
(n(n) < 1) imposed in then-LMS algorithm, the mixing —
parameter does not achieve its optimum value, which may%/ -30
be close to 25 in some time instants, as shown in Fig. 14-(b). =

Consequently, the EMSE of the combination is far from the = -40

-30

EMSE (dB)

s Foxperimental
—%— Theoretical
—O- 1o(n) from (22)

[en)
—
[\]
wW
S
t
(=2}
-~
(o)

a) EMSE foru;-LMS, u2-LMS and their affine combination;

— 11-LMS

= = 113-LMS

=== Combination

—%— ((n) (Theoretical)
—0- (o(n) from (26)

. . . . €| L ale )
optimum EMSE in some time instants. = Ot
_FO 1 1 1 1
2 7 5 6 7 8
- — 1 -LMS 30
—~ = = 1p-LMS —~ —— Experimental
i% -30 === Combination E 20 —%— Tﬁggileri;igla
= —%— ((n) (Theoretical) = 10 —O- 1o(n) from (22)
w0 —O- (o(n) from (26) E;f 0
= -40 10
= e % o 1 2 3 4 5 6 T 38
-50 : L : ) iterations x10*
5 6 7 8
30 Fig. 16. a) EMSE forui-LMS, u2-LMS and their affine combination;
- 9 i : . [——=Experimental b) ensemble average of(n) adapted with then-SR-LMS algorithm and
< by —%— Theoretical theoretical o (n); u1 = 0.01, uo = 0.009, pys = 05, M = T,
= & sl —O- 1o(n) from (22) identification of the system given by (73);2 = 0.01, colored input (AR
= 0 (b) model, F* order, pole at0.8) with variancec2 = 1/7; 500 independent
_100 1 2 3 h B *6 * . % :8) runs; EMSE curves filtered by a moving-average filter with 266fficients.
iterations x10*

Fig. 14, a) EMSE foru-LMS, us-LMS and their aff bination: b) e = dpy. Fig. 17-(a) shows the theoretical and experimental

1g. .oa ory - , H2- and their affine combination; B . .

ensemble average of(n) adapted with the)-LMS algorithm and theoretical values of C“(OO)’ i =12 fo_r the component f"te,rs "fmd

no(n); g1 = 0.01, gz = 0.009, 1, = 600, M = 7; identification of the the values of¢(co) for the affine and convex combinations

Syste;n gi;]/en by (73)g7 = (/3.01, CQIO(;ed inzut (AR modelésf order, ?lole s functions ofd, considering a nonstationary environment

at 0.8) with varianceo;, = 1/7; 500 independent runs; EMSE curves filtered, , - _ -7 ; . B ;

by a moving-average filter with 256 coefficients. with Q o 4*10 L The ratIOC(oo)/H_un{(:”(oo)} IS also
shown in Fig. 17-(b). It can be noticed that there is an

EMSE reduction for both the affine and convex combinations

when Tr(Q) = q12 = pip202Tr(R), which corresponds to

necessarily used, as show respectively in Figures 15 ana 167 = 0-025 in this case. An EMSE reduction for the affine
3 dB EMSE gain can be observed in steady-state and ther&@nbination also occurs whep; ~ o, i.e, o ~ 1. In

also an EMSE gain in the transient, being both well predictd@iS case, the convex combination can only perform as its
by the analysis. best component filter, since the mixing parameter needs to be

negative to cause the EMSE reduction, as shown in Fig. 17-
) ] (c). In both cases, the reduction is limited to 3 dB, which
D. Accuracy of tracking analysis agrees with the results of Table IV. The theoretical redioits

To verify the validity of the tracking analysis, the affinethe convex combination were obtained truncating the value
combination is compared to the convex combination assumiafjthe optimal mixing parameter to the intervil, 1]. It is
two LMS filters with different step-sizes. The same simwlati important to remark, though, that both points at which the
setting of Fig. 14 is considered, but with fixed = 0.1 and largest EMSE reduction happens do not represent optimal

In the same scenario, thePN-LMS and»n-SR-LMS algo-
rithms circumvent the problem since no constraingm) is
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situations, as can be seen in Fig. 17-(a). For a single LMS filt APPENDIXA

in a nonstationary environment, there is an optimum value of ASSUMPTIONS FOR THECMA ANALYSIS
the step-size that minimizes the EMSE. The minimum EMSE \odel (8) is based on the following assumption:
value for the affine and convex combinations (-38 dB)
occurs exactly whem, assumes this optimum value, which
happens for§ = 0.17 in this example. In this case, both
combinations perform as their best component filterlLMS.
Therefore, using the affine combination of filters of the same
family updated with different step-sizes is more worthwhil
than using it with close step-sizes.

B1l. The channel noise power is small enough for the zero-
forcing solutionw,, to be one of the global minimizers
of the constant-modulus cost function. In other words,
the optimal solution achieves perfect equalization, i.e.,
a(n —74) = u”(n)w,(n — 1) [10], [23], [26], [33].

Using B1, the filter output can be approximated by

yi(n) = a(n —1q4) —eqi(n), i=1,2. (74)

= 5 Equation (8) is obtained replacing (74) in (7) and assuming
—Ac [1;-LMS . S
=== ji5-LMS that terms depending off ;(n), k > 2 are sufficiently small
—5% ffine comb. to be disregarded for at > 0. In other words, we assume
RMOVAA AL AL AL NN A g that the deviation between the component equalizers and the
s zero-forcing solution is always small.
E To calculate the first and second moments of the random
(2) i.i.d. variablesy(n) and 5(n), we assume that
B2. The constellation used to generate #ie) has circular
symmetry, so thaE{a”"(n)} = 0 for all odd integers
k > 0. This assumption is not restrictive, since this
condition is true for practical constellations.

Using B2, we find thaE{g(n)} = 0,

ii(00) and ((o0) (dB)

2 A 2 6 2 2
op = E{6°(n)} = E{a”(n) — r"a”(n)}, (75)
_ A 2
7= E{y(n)} = 3E{a"(n)} —r, (76)
and
¢ £ B{v*(n)} = 3rE{a’(n)} + 1% 77
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