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Transient and steady-state analysis of the affine
combination of two adaptive filters

Renato Candido, Magno T. M. Silva,Member, IEEE,and V́ıtor H. Nascimento,Member, IEEE

Abstract—In this paper, we propose an approach to the
transient and steady-state analysis of the affine combination of
one fast and one slow adaptive filters. The theoretical models
are based on expressions for the excess mean-square error
(EMSE) and cross-EMSE of the component filters, which allows
their application to different combinations of algorithms, such
as least mean-squares (LMS), normalized LMS (NLMS), and
constant modulus algorithm (CMA), considering white or colored
inputs and stationary or nonstationary environments. Since the
desired universal behavior of the combination depends on the
correct estimation of the mixing parameter at every instant, its
adaptation is also taken into account in the transient analysis.
Furthermore, we propose normalized algorithms for the adapta-
tion of the mixing parameter that exhibit good performance.
Good agreement between analysis and simulation results is
always observed.

Index Terms—Adaptive filters, affine combination, tracking,
transient analysis, least mean square methods, unsupervised
learning.

I. I NTRODUCTION

COMBINATION schemes constitute an interesting way
to improve adaptive filter performance [3]–[15]. Among

these schemes, the convex combination of two fixed step-
size adaptive filters has received attention due to its relative
simplicity, and the proof that it is universal in steady-state,
i.e., the combined estimate is at least as good as the best of
the component filters [8].

Convex combination schemes were proposed to improve the
fundamental tradeoff between convergence rate and steady-
state excess mean-square error (EMSE) in adaptive filters
[16]–[19]. Furthermore, such schemes have been exploited in
nonstationary environments to improve tracking performance,
considering, e.g, the algorithm proposed in [8] or the combina-
tion of algorithms with different tracking capabilities of[10].
The correct adjustment of the step-size for the updating of
the mixing parameter depends on some characteristics of the
filtering scenario, such as the input signal and additive noise
powers, or the step-sizes of the adaptive filters consideredin
the combination. This problem was addressed in [9], where
a novel normalized scheme was proposed. It was shown that
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the new update rule preserves the good features of the existing
scheme and is more robust to changes in the filtering scenario.

Using a similar approach to that of [8], the authors of
[12] proposed an affine combination of two least mean-square
(LMS) algorithms, where the condition on the mixing parame-
ter is relaxed, allowing it to be negative. Thus, this schemecan
be interpreted as a generalization of the convex combination
since the mixing parameter is not restricted to the interval
[0, 1]. This approach allows for smaller EMSE in theory,
but suffers from larger gradient noise in some situations.
Under certain conditions, the optimum mixing parameter was
proved to be negative in steady-state. Although the optimal
linear combiner is unrealizable, two realizable algorithms were
introduced. One is based on a stochastic gradient search and
is referred to here asη-LMS algorithm. The other is based on
the ratio of the average error powers from each individual
adaptive filter. Under some circumstances, both algorithms
present performance close to the optimum. In the analysis
of [12], white Gaussian inputs and stationary environments
are assumed. Furthermore, the behavior of the mean-square
deviation is studied only after the fast filter has convergedbut
the slow filter has not yet converged.

Similarly to the convex combination, the correct adjustment
of the step-size for the updating of the mixing parameter
in the affine combination, denoted byµη, depends on some
characteristics of the filtering scenario. Hence, the desired
universal behavior of the affine combination cannot always be
ensured. To illustrate, Fig. 1 shows the EMSE as a function of
time for two LMS filters with step-sizesµ1 =0.01 (µ1-LMS)
and µ2 = 0.001 (µ2-LMS), and their affine combination. In
this scenario, it is necessary to use a high value for the step-
size of theη-LMS algorithm (e.g.,µη = 3) in order to enable
the switching from the slow filter to the fast one. A large
value ofµη may, however, cause instability during the initial
convergence of the algorithm, thus [12] constrainsη(n) to be
less than or equal to 1. Unfortunately, even with this constraint,
the higher the step-sizeµη, the higher the variance of the
mixing parameter during the initial iterations. Therefore, the
combination performance deviates from universal, as shown
in Fig. 1-(a). On the other hand, if the step-size is small
(e.g.,µη = 0.1), the combination performs better in the initial
iterations but does not switch as fast as needed from the slow
filter to the fast one, as shown in Fig. 1-(b).In fact, we will
show thatµη depends onα(n) , E{[y1(n)−y2(n)]2}, where
E{·} represents the expectation operation andyi(n), i = 1, 2
are the outputs of the filters. As we can observe in Fig. 1-(c),
α(n) suffers a large variation during the adaptation of the
filters. Thus, a transient analysis and alternative algorithms to
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adapt the mixing parameter are two important key issues for
the practical application of the affine combination of adaptive
filters.
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Fig. 1. EMSE for µ1-LMS, µ2-LMS and their affine combination a)
µη = 3.0; b) µη = 0.1; c) ensemble average of[y1(n) − y2(n)]2;
µ1 = 0.01, µ2 = 0.001, M = 7, identification of the systemwo =
[0.9003 −0.5377 0.2137 −0.0280 0.7826 0.5242 −0.0871]T , σ2

v = 0.01, white input
with varianceσ2

u = 1/7; 500 independent runs.

A. Contributions and organization of the paper

The present paper extends previous results in four ways:
1) providing a steady-state analysis for the optimum affine

combination of adaptive filters, which is valid for white
or colored inputs, stationary or nonstationary environ-
ments, and combinations based on different algorithms,
such as LMS, normalized LMS (NLMS), and the con-
stant modulus algorithm (CMA);

2) proposing a simple geometrical interpretation to explain
the behavior of the affine combination;

3) providing a transient analysis of the combination, taking
into account the adaptation of the component filters and
also the adaptation of the mixing parameter with the
η-LMS algorithm;

4) using the results of the transient analysis to facilitatethe
adjustment of the free parameters of the scheme and to
propose two normalized algorithms to update the mixing
parameter.

To the best of our knowledge, all these are novel contributions.
The paper is organized as follows. In the next section, we

describe the affine combination of two adaptive filters for both
supervised (LMS and NLMS) and blind (CMA) algorithms.
In Section III, analytical expressions for the optimum mixing
parameter and the optimum EMSE of the combination are
obtained. In the steady-state analysis of Section IV, the results
of Section III are particularized for optimum combinationsof
two LMS filters, two NLMS filters, and two CMA equaliz-
ers, considering stationary and nonstationary environments. In
Section V, transient analyses taking into account realizable
schemes are presented. Initially, we obtain an analytical ex-
pression for the EMSE of the combination, which depends
on the transient models of the combined algorithms and also

on the algorithm used to adapt the mixing parameter. We
summarize results for the transient analysis of LMS, NLMS,
and CMA. Then, in Section V-A, we present the transient anal-
ysis of theη-LMS algorithm. The resulting analysis suggests
the normalization procedure presented in Section V-B and an
algorithm with partial instantaneous normalization, proposed
and analyzed in Section V-C. Comparisons between analytical
and experimental results are shown through simulations in
Section VI. Section VII provides a summary of the main
conclusions of the paper.

II. PROBLEM FORMULATION

This section is divided into three parts. We first describe the
affine combination of one fast and one slow supervised algo-
rithms. In the sequel, the combination of two CMA equalizers
is presented. Then, we propose a common formulation for the
affine combination of supervised (LMS and NLMS) or blind
(CMA) algorithms.

A. Combination of supervised algorithms

The linear combination of two supervised adaptive filters
is depicted in Fig. 2, where the filter weights are adjusted
to minimize the mean-square error cost function, obtainingat
the output an estimate of the given “desired signal”d(n). The
output of the overall filter is given by

y(n) = η(n)y1(n) + [1 − η(n)]y2(n), (1)

whereη(n) is the mixing parameter andyi(n), i = 1, 2 are the
outputs of two transversal filters, i.e.,yi(n) = uT (n)wi(n−1).
The superscriptT denotes transposition,wi(n − 1), i = 1, 2
represent the length-M coefficient column-vectors character-
izing the component filters, andu(n) is their common input
regressor column-vector.

Fig. 2. Linear combination of two supervised adaptive filters.

We focus on the affine combination of two algorithms of
the following general class

wi(n) = wi(n − 1) + ρi(n)u(n)ei(n), (2)

whereρi(n) is a step-size andei(n) is the estimation error.
Many algorithms can be written as in (2), by proper choices
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of ρi(n) andei(n). For some algorithmsρi(n) can even be a
matrix, as is the case of the recursive-least squares (RLS) algo-
rithm, whereρi(n) is an estimate of the inverse autocorrelation
matrix of the input signal. In supervised adaptive filtering, a
“desired signal”d(n) is available such that

ei(n) = d(n) − yi(n) (3)

and a linear regression model holds, i.e.,

d(n) = uT (n)wo(n − 1) + v(n) (4)

with wo(n − 1) being the time-variant optimal solution and
v(n) a zero-mean random process uncorrelated withu(n),
whose variance is denoted byσ2

v = E{v2(n)}. In order
to make performance analyses more tractable, the sequences
{u(n)} and {v(n)} are assumed stationary and we will use
the common assumption thatv(n) is independent ofu(n)
(not only uncorrelated) [17, Sec. 6.2.1]. Defining the weight-
error vectorsw̃i(n) = wo(n) − wi(n), the a priori errors
ea,i(n) = uT (n)w̃i(n − 1), and using the linear model (4),
we find that

ei(n) = ea,i(n) + v(n). (5)

An important consequence of this model is thatv(k) will be
independent of allwi(j), w̃i(j), andea,i(k), i = 1, 2, j < k,
for any particular time instantk [17, Lemma 6.2.1].

Considering the combination of two LMS filters and
the minimization of the overall instantaneous square error
e2(n) = [d(n) − y(n)]2, [12] proposed the following gradient-
based algorithm

η(n + 1) = η(n) + µηe(n) [y1(n) − y2(n)] . (6)

To obtain a tradeoff between stability of this recursion and
the algorithm’s tracking capability in the initial phase of
adaptation,η(n) in (6) must be constrained to be less than
or equal to1 for all n. We should remark that this kind of
constraint is not needed in the normalized algorithms proposed
in Sections V-B and V-C.

B. Combination of blind algorithms

Fig. 3 shows a simplified communications system with a
combination of two blind equalizers. In this case, the signal
a(n), assumed i.i.d. (independent and identically distributed)
and non Gaussian, is transmitted through an unknown channel,
whose model is constituted by an FIR (finite impulse response)
filter and additive white Gaussian noise. From the received
signal u(n) and the known statistical properties of the trans-
mitted signal, the blind equalizer must mitigate the channel
effects and recover the signala(n) for some delayτd. We
also assume that the equalization algorithms are implemented
in T/2-fractionally spaced form, due to its inherent advantages
(see, e.g., [20]–[23] and the references therein). This type of
implementation is widely used in the literature since it ensures
perfect equalization in a noise-free environment, under certain
well-known conditions. The output of the overall equalizerof
Fig. 3 is also given by (1).

Algorithms based on the constant modulus cost function
[24], [25] define the “estimation error” as

ei(n) = [r − y2
i (n)]yi(n), (7)

Fig. 3. Simplified communications system with a linear combination of two
blind equalizers.

where r = E{a4(n)}/E{a2(n)}. Using (7), CMA can also
be written as in (2). However, given the nonlinear nature of
CMA, additional assumptions are necessary to obtain a model
as simple as (5): essentially, large signal-to-noise ratio, circu-
lar symmetry of the transmitted constellation, and an initial
condition close to the zero-forcing solution (see AppendixA).
These assumptions were used in [10] and [26] to obtain simple
linear models that capture the behavior of CMA close to an
optimum solution. Thus, (7) was approximated by

ei(n) ≈ γ(n)ea,i(n) + β(n), (8)

where

γ(n) , 3a2(n − τd) − r (9)

and

β(n) , ra(n − τd) − a3(n − τd). (10)

The variableβ(n) is identically zero for constant-modulus
constellations, so the variability in the modulus ofa(n) (as
measured byβ(n)) plays the role of measurement noise for
constant-modulus based algorithms. Model (8) was proposed
in [10] to study convex combinations of constant-modulus-
based algorithms and extended in [26] to obtain explicit
stability conditions for CMA. The main assumptions and the
derivation of this model are summarized in Appendix A.

To update the mixing parameter in order to combine two
CMA equalizers, we could use a gradient rule to minimize the
instantaneous constant-modulus costĴcm(n) = [r − y2(n)]2,
as considered in the convex combination of [27]. However,
we observed through simulations that the resulting algorithm
does not always ensure the desired universal behavior of
the combination, specially for nonconstant modulus signals.
Thus, we propose a stochastic gradient algorithm to minimize
the instantaneous square decision errorĴd(n) = e2

d(n), where
ed(n) , â(n−τd)−y(n) and â(n−τd) is the estimate of the
transmitted signal at the output of the decision device. This
results in the following update equation

η(n + 1) = η(n) + µηed(n) [y1(n) − y2(n)] . (11)

We observed through simulations that the decision-error-based
adaptation ensures a more adequate behavior than that of the
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constant-modulus-based adaptation, even in presence of noise
and/or when both component filters are far from convergence.
Assuming thatâ(n− τd) = a(n− τd) and that the optimal
solution achieves perfect equalization (see Assumption B1in
Appendix A), the minimization ofJd(n) is equivalent to the
minimization of the squarea priori error, since under these
assumptionsed(n) ≈ ea(n).

C. A common formulation

Comparing (8) to (5), we can write the following general
expression

ei(n) = κ(n)ea,i(n) + ϕ(n), i = 1, 2, (12)

whereκ = 1 andϕ(n) = v(n) for a supervised algorithm or
κ(n) = γ(n) andϕ(n) = β(n) for a blind one. In both cases
E{ϕ(n)} = 0. This model also holds for the overall scheme,
i.e.,

e(n) = κ(n)ea(n) + ϕ(n), (13)

where e(n) represents the error of the combined
filter: e(n) = d(n) − y(n) for supervised algorithms
or e(n) = [r − y2(n)]y(n) for constant-modulus-based
algorithms, andea(n) is the a priori error of the overall
scheme. It should be noticed that (12) and (13) are
approximations in the blind case. For the sake of simplicity,
we use the equality sign here and in the expressions derived
from (12) and (13).

The supervised LMS and NLMS algorithms and the blind
CMA employ the step-sizesρi(n) and the estimation errors
ei(n) as in Table I, whereǫN is a regularization factor and
‖ · ‖ represents the Euclidean norm. The models for the errors
ei(n) of these algorithms are also shown in this table for
convenient reference. The step-size interval which ensures the
convergence and stability is different for each algorithm.For
the LMS and NLMS algorithms, the step-size intervals are
well-known in the literature [16], [17], whereas for CMA, the
derivation of this interval was shown recently in [26].

TABLE I
PARAMETERS OF THE CONSIDERED ALGORITHMS AND ERROR MODELS.

Alg. ρ(n) ei(n) Model for ei(n)

LMS µi

NLMS
µi

ǫN + ‖u(n)‖2

d(n) − yi(n) ea,i(n) + v(n)

CMA µi [r − y2
i (n)]yi(n) γ(n)ea,i(n) + β(n)

Using model (5) in the supervised case, and the fact that
ed(n) ≈ ea(n) in the blind case, we can write a general
expression for updating the mixing parameter, i.e.,

η(n + 1) = η(n) + µηeg(n)[y1(n) − y2(n)], (14)

where

eg(n) = ea(n) + b(n) (15)

andb(n) = v(n) for the combination of supervised algorithms
or b(n) = 0 for the combination of constant-modulus-based

algorithms. In both cases,η(n) is constrained to be less than
or equal to1 for all n [12]. Algorithm (14) is denoted here
by η-LMS.

To close this section, it is important to observe that:

1) In order to simplify the arguments, we assume that all
the quantities are real. In the case of blind equalization
of complex constellations, complex extensions may be
developed, provided signal circularity conditions are
satisfied [28];

2) The analyses provided here can be extended straightfor-
wardly to the affine combination of two RLS filters [1],
of two Shalvi-Weinstein equalizers [10], [29], and also
to the combination of algorithms of different families,
as is the case of the combination of one LMS with one
RLS or of the combination of one CMA with one Shalvi-
Weinstein algorithm [10];

3) Besides theη-LMS algorithm, [12] proposed a scheme
based on error powers to update the mixing parameter.
Although this scheme also presents performance close to
the optimum under certain circumstances, its structure is
significantly different from that ofη-LMS, so we leave
its analysis for a future work.

III. T HE OPTIMUM MIXING PARAMETER AND EMSE

An analytical expression for the optimum mixing parameter
ηo(n) can be obtained equating to zero the expected value of
the gradient used to updateη(n) in (14), i.e.,

E {eg(n)[y1(n) − y2(n)]} = 0. (16)

The erroreg(n) in (16) can be rewritten as a function of the
a priori errorsea,i(n), i = 1, 2, as follows.

Using (1), (12), and (13), thea priori error ea(n) of the
overall scheme can be written as

ea(n) = η(n)ea,1(n) + [1 − η(n)]ea,2(n)

= ea,2(n) + η(n) [ea,1(n) − ea,2(n)] . (17)

Replacing (17) in (15), and remarking thaty1(n) − y2(n) =
ea,2(n) − ea,1(n), (16) can be rewritten as

E
{
e2
a,2(n) − ea,1(n)ea,2(n)

}

− E
{
ηo(n)[ea,2(n) − ea,1(n)]2

}

+ E {b(n)[ea,2(n) − ea,1(n)]} = 0. (18)

In the blind case,b(n) = 0 and in the supervised case,
b(n) = v(n), which is assumed independent ofea,i(n),
i = 1, 2. Hence, in both cases the third term on the l.h.s.
of (18) is equal to zero.

To proceed, we remark that the EMSE of the component fil-
ters and the cross-EMSE can be calculated [8], respectivelyas

ζii(n) , E{e2
a,i(n)}, i = 1, 2, and (19)

ζ12(n) , E{ea,1(n)ea,2(n)}. (20)

Introducing the differences

∆ζii(n) , ζii(n) − ζ12(n), i = 1, 2, (21)
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and using (19)-(21) in (18), we arrive at

ηo(n) =
∆ζ22(n)

∆ζ11(n) + ∆ζ22(n)
. (22)

A similar expression was also obtained in [8, Eq.(29)] for the
convex combination of two LMS filters at the steady-state. We
should notice that (22) is more general: it holds for alln ≥ 0
(not only at the steady-state) and the mixing parameter is not
restricted to the interval[0, 1].

Defining the EMSE of the overall combined scheme as

ζ(n) = E{e2
a(n)}, (23)

we now obtain an analytical expression for its optimum value.
By squaring both sides of (17) withη(n) = ηo(n) and taking
expectations, we arrive at

E{e2
a(n)}=η2

o(n)E{e2
a,1(n)}+[1−ηo(n)]2E{e2

a,2(n)}

+ 2ηo(n)[1−ηo(n)]E{ea,1(n)ea,2(n)}. (24)

Using (19)-(22) in (24), we obtain

ζo(n) = ζ22(n) − ηo(n)∆ζ22(n). (25)

After some algebraic manipulations, (25) can be rewritten as

ζo(n) = ζ12(n) +
∆ζ11(n)∆ζ22(n)

∆ζ11(n) + ∆ζ22(n)
. (26)

This expression was obtained in [8, Eq. (33)] for the convex
combination of two LMS filters at the steady-state, but again
it also holds for alln ≥ 0.

As already mentioned in [8], (22) and (26) hold for the
combination of any two algorithms that satisfy (12). The
values of ∆ζii(n), i = 1, 2 however do depend on the
actual algorithms that are being combined. Thus, provided
approximations forζij(n), i, j = 1, 2 are available, (22) and
(26) can be applied to the affine combination of different
algorithms, including combinations of algorithms of different
families.

IV. STEADY-STATE ANALYSIS OF THE OPTIMUM COMBINER

In this section, the optimum mixing parameter and the opti-
mum EMSE of the combination, given respectively by expres-
sions (22) and (26), are particularized for the combinationof
two LMS filters, two NLMS filters, and two CMA equalizers
in steady-state for stationary and nonstationary environments.
We do not rederive the steady-state expressions forζij(∞),
i, j = 1, 2 here, only use the best approximations from the
literature. As in [12], we assume that the algorithm which
updates the mixing parameter is able to achieve the optimum
value in steady-state. Realizable schemes for adaptation of
η(n) are taken into account in Section V.

We assume that in a nonstationary environment, the varia-
tion in the optimal solutionwo follows a random-walk model
[17, p. 359], that is,

wo(n) = wo(n − 1) + q(n). (27)

In this model,q(n) is an i.i.d. vector with positive-definite
autocorrelation matrixQ = E{q(n)qT (n)}, independent of
the initial conditions{wo(−1),w(−1), η(−1)} and of{u(l)}

for all l [17, Sec. 7.4]. In supervised filtering,q(n) is also
assumed independent of the desired response{d(l)} for all
l < n. In blind equalization,wo(n) represents the zero-forcing
solution andq(n) models the channel variation.

Table II lists analytical expressions ofζ12(∞) for some
pairs of filters. Expressions forζii(∞) can be obtained from
Table II makingµ1 = µ2. Details about the derivation of these
expressions can be found in [8], [10], [13] for the cross-terms
and in [16], [17], [23], [28], [30]–[34] for the caseµ1 = µ2. In
this table,R , E{u(n)uT (n)} is the autocorrelation matrix of
the input signal,Tr(A) stands for the trace of matrixA, and
νu , E

{
‖u(n)‖−2

}
. For Gaussian inputs and large number

of coefficients,νu can be approximated by1/[σ2
u(M − 2)]

with σ2
u = E{u2(n)} [13], [35]. The constantsσ2

β , γ̄, and
ξ, which appear in the expression for the EMSE of CMA,
depend on statistics of the transmitted signal and are defined
in Appendix A.

TABLE II
ANALYTICAL EXPRESSIONS FOR THE STEADY-STATE CROSS-EMSE OF

THE CONSIDERED COMBINATIONS.

Combination ζ12(∞)

µ1-LMS andµ2-LMS
µ1µ2σ2

vTr(R) + Tr(Q)

µ1 + µ2 − µ1µ2Tr(R)

µ1-NLMS andµ2-NLMS
Tr(R)

[
µ1µ2σ2

vνu +Tr(Q)
]

µ1+µ2−µ1µ2

µ1-CMA and µ2-CMA
µ1µ2σ2

βTr(R) + Tr(Q)

γ̄(µ1 + µ2) − µ1µ2Tr(R)ξ

A. Stationary environments

Replacing the expressions of Table II withQ = 0 in (22)
and (26), we obtain analytical expressions for the steady-
state optimum mixing parameterηo(∞) and for the steady-
state optimum EMSEζo(∞) in stationary environments. The
resulting expressions are shown in Table III, where we defined
δ , µ2/µ1 with 0 < δ < 1. It is worth to notice that the
second filter of the combination is always assumed to be the
slower filter (µ2 < µ1) which consequently presents the lower
steady-state EMSE in a stationary environment.

TABLE III
ANALYTICAL EXPRESSIONS FORηo(∞) AND ζo(∞).

Combination ηo(∞) ζo(∞)

(µ1 andµ2)-LMS
δ[2 − µ1Tr(R)]

2(δ − 1)

1

2

[
µ2σ2

vTr(R)

δ+1−µ2Tr(R)

]

(µ1 andµ2)-NLMS
δ[2 − µ1]

2(δ − 1)

1

2

[
Tr(R)µ2σ2

vνu

δ + 1 − µ2

]

(µ1 andµ2)-CMA
δ[2−µ1Tr(R)ξ(γ̄)−1]

2(δ − 1)

1

2

[
µ2σ2

βTr(R)

(δ+1)γ̄−µ2Tr(R)ξ

]

The expressions of Table III show two interesting properties:
i) ηo(∞) is negative for all considered combinations,

which can be verified through the stability conditions of
the algorithms. To ensure the stability ofµ1-LMS and
µ1-NLMS, the step-sizes should be chosen respectively
in the following ranges0 < µ1 < 2/Tr(R) and
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0 < µ1 < 2 [19]. In the case ofµ1-CMA, assuming
model (8), it was shown in [26, Eq. (14)] that the range
of step-sizes0 < µ1 < 2γ̄/[3Tr(R)ξ] guarantees good
performance. Choosing the step-sizes in these ranges,
we can verify from the expressions of Table III that
ηo(∞) < 0.

ii) δ ≈ 1 yields ζo(∞) ≈ ζ2(∞)/2. Sinceζ2(∞) < ζ1(∞)
for all combinations, the affine combination provides a
3dB gain in relation to the best component filter. In this
case,ηo(∞)→−∞.

Property i) was observed in [12] for the combination of
two LMS filters, assuming Gaussian and white inputs, and
additional assumptions equivalent to choosing the LMS
step-size for maximum convergence speed. If we consider
µ1 = 1/Tr(R) in the expression of Table III, we recover the
result of [12, Eq.(26)]. The same property was observed in [13]
for the affine combination of two NLMS filters, also assuming
white and Gaussian inputs.

An intuitive explanation for Property ii) can be found as
follows. Using (12), the overall steady-state error is written as

e(n)=e2(n)︸ ︷︷ ︸
dη(n)

+η(n)κ(n)[w2(n)−w1(n)]T u(n)︸ ︷︷ ︸
−uη(n)

. (28)

From the point of view of the computation ofη(n), dη(n)
represents the signal which has to be estimated, anduη(n)
plays the role of input signal. Assuming thatwi(n), i = 1, 2
vary slowly compared toη(n), (28) has a simple geometric
interpretation as shown in Fig. 4. The affine combination seeks
the best weight vector in the linew2 + η(w1 − w2). In
Fig. 4-(a), the best linear combination ofw1 and w2 is w.
In the case of close step-sizes, we also have close coefficient
vectors in steady-state1, i.e., w1 ≈ w2 (Fig. 4-(b)), andη has
to assume a large value to take the combined vector close
to w, since the input signaluη(n) depends on the difference
betweenw1 andw2. Thus, if (w1 − w2) → 0, |η| → ∞.

Fig. 4. Geometric interpretation of the affine combination.

B. Nonstationary environments

In a nonstationary environment, the largest EMSE reduction
of the affine combination in relation to its components occurs
when ζ11(∞) ≈ ζ22(∞). This can happen in two situations
(see Table IV):

1It is possible to prove using the results of Tables II and V that if two
stable adaptive filters are initialized with the same vector and adapted with
close step-sizes the following limit holds

lim
δ→1

{
lim

n→∞

E{‖w̃1(n) − w̃2(n)‖2}

E{‖w̃1(n)‖2}

}
= 0.

In other words, close step-sizes imply close coefficient vectors in steady-state.

i) when the step-sizes are not close to one another and
Tr(Q) = q12, whereq12 is the value ofTr(Q) for which
ζ11(∞) ≈ ζ22(∞);

ii) when the component filters are adapted with close step-
sizes (δ ≈ 1). However, whenδ ≈ 1 andTr(Q) ≈ q12,
the gain is small.

Replacing the expressions of Table II under the small step-
size approximation2 in (22) and (26), we obtain analytical
expressions forq12 andζo(∞) shown in Table IV. From these
expressions, we can observe that the EMSE reduction in all
cases is limited by 3 dB. A reduction close to 3 dB will occur
when δ → 0 in case (i) or when the environment tends to
be stationary (Tr(Q) ≈ 0) in case (ii). It is relevant to notice
that case (i) also occurs in the convex combination of adaptive
filters since in this case0 < ηo(∞) < 1. On the other hand,
case (ii) occurs only in the affine combination sinceηo(∞)
does not lie in the interval[0, 1].

The 3 dB gain is an interesting property inherent to the
affine combination. However, we should emphasize that using
the affine combination with the filters adapted with different
step-sizes is more worthwhile than using it with close step-
sizes. In the stationary case forµ2 < µ1, the closerζ22(∞) to
ζ11(∞) the closer the EMSE gain to 3 dB. Although a gain in-
crease can be obtained with close step-sizes, the EMSE of the
combination is higher in absolute terms asζ22(∞) becomes
closer toζ11(∞). On the other hand, for a single adaptive filter
in nonstationary environments there is an optimal value of the
step-size for which the steady-state EMSE is minimum [16],
[17]. The EMSE of the combination achieves its smallest value
when one of its component filters is adapted with this optimum
step-size. In this case, the combined estimate is as good as
that of the optimum component, and there is no EMSE gain,
as is illustrated in a simulation of Section VI-D (see Fig. 17).
Moreover, it was shown analytically in [36] that a combination
of two filters from the same family (i.e., two LMS or two RLS
filters) cannot improve the performance over that of a single
filter of the same type with optimal selection of the step-size
(or forgetting factor).

TABLE IV
ANALYTICAL EXPRESSIONS FORq12 AND ζo(∞) FOR CASES(i) AND (ii)

IN A NONSTATIONARY ENVIRONMENT.

Combination (i) (ii)

q12 ζo(∞) ζo(∞)

µ1-LMS µ1µ2σ2
v ζ22(∞)/2 ζ22(∞)/2

andµ2-LMS ×Tr(R) +
2δζ22(∞)

(1 + δ)2
+

σ2
vTr(R)Tr(Q)

2ζ22(∞)

µ1-NLMS µ1µ2σ2
v ζ22(∞)/2 ζ22(∞)/2

andµ2-NLMS ×νu +
2δζ22(∞)

(1 + δ)2
+

σ2
v [Tr(R)]2Tr(Q)νu

2ζ22(∞)

µ1-CMA µ1µ2σ2
β ζ22(∞)/2 ζ22(∞)/2

andµ2-CMA ×Tr(R) +
2δζ22(∞)

(1 + δ)2
+

σ2
βTr(R)Tr(Q)

2γ̄ζ22(∞)

2The small step-size approximation was assumed in order to obtain simpler
expressions.
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V. TRANSIENT ANALYSIS OF REALIZABLE SCHEMES

In this section, we take into account the adaptation ofη(n)
in the analysis. Our focus will be on how much a realizable
estimate forηo(n) deviates from the optimum, and how this
affects the combination’s overall performance.

By squaring both sides of (17) and taking expectations, we
obtain

E
{
e2
a(n)

}
=E

{
e2
a,2(n)

}
+E

{
η2(n)[ea,1(n)−ea,2(n)]

2}

+ 2E
{
η(n)

[
ea,2(n)ea,1(n)−e2

a,2(n)
]}

. (29)

To proceed, we assume that:

A1. The adaptation ofη(n) is slow so that the correlation
between it andea,i(n)ea,j(n), i, j = 1, 2 can be
disregarded.

This assumption follows from observations: simulations show
thatη(n) converges slowly compared to variations in the input
u(n) and thus to variations on thea-priori errors.

Using A1, (19)-(21) and (23), we can rewrite (29) as

ζ(n)≈ζ22(n)+E
{
η2(n)

}
α(n)−2E {η(n)}∆ζ22(n), (30)

where we defined

α(n) , E{[y1(n) − y2(n)]2} = ∆ζ11(n) + ∆ζ22(n). (31)

To estimate the EMSE of the combination for alln ≥ 0 using
(30), analytical expressions forζij(n), i = 1, 2, E{η(n)}, and
E{η2(n)} should be obtained.

It is common in the literature to evaluate the EMSE as

ζij(n) , E{ea,i(n)ea,j(n)} ≈ Tr(RSij(n − 1)), (32)

where
Sij(n) , E{w̃i(n)w̃T

j (n)}, i = 1, 2 (33)

is the covariance (i = j) or the cross-variance (i 6= j) matrix
of the weight-error vector. This approach is based on the
independence assumption between the regressor vectoru(n)
and weight-error vectors̃wi(n−1), i = 1, 2 and is justified for
small step-sizes due to the different time-scales for variations
in u(n) andw̃i(n− 1). This condition is a part of the widely
used independence assumptions in adaptive filter theory [16]–
[19], [37]. Recursions forSii(n), i = 1, 2 are generally
obtained in the transient analysis of adaptive filters (see,e.g,
[16], [18], [26], [35] and their references). In the transient
analysis of linear combinations of two adaptive filters, an
estimate ofSij(n), i 6= j should also be obtained, which
is a straightforward extension from the casei = j [10]. In
Table V, we show the recursions for the cross-variance matrix
S12(n). Expressions for the covariance matrixSii(n), i = 1, 2
can be obtained from this table, makingµ1 = µ2. Using
the expressions of Table V in conjunction with (32),ζij(n),
i, j = 1, 2 can be estimated for alln ≥ 0. The expression
for S12(n) considering the combination of two NLMS was
derived using the approach from [35], under the assumptions
of Gaussian inputs and large number of coefficients. We should
notice that steady-state approximations for the EMSE and
cross-EMSE of the component filters can be obtained from
the expressions of Table V, i.e.,ζij(∞) ≈ Tr(RSij(∞)),

TABLE V
RECURRENT EXPRESSIONS FOR CROSS-VARIANCE MATRIX S12(n).

Combination S12(n)

µ1-LMS S12(n) ≈ S12(n−1)−µ1RS12(n−1)

and −µ2S12(n−1)R+µ1µ2[2RS12(n − 1)R

µ2-LMS +RTr (RS12(n − 1))+σ2
vR] + Q

µ1-NLMS S12(n) ≈ S12(n−1) −
µ1

σ2
u(M−2)

RS12(n−1)

and −
µ2

σ2
u(M−2)

S12(n−1)R+
µ1µ2

σ4
u(M−2)(M−4)

µ2-NLMS ×
[
2RS12(n−1)R+RTr (RS12(n−1))+σ2

vR
]
+Q

µ1-CMA S12(n) ≈ S12(n−1)−µ1γ̄RS12(n−1)

and −µ2γ̄S12(n−1)R+µ1µ2[2ξRS12(n−1)R

µ2-CMA +ξRTr (RS12(n−1))+σ2
βR] + Q

i, j = 1, 2. However, this procedure leads to more complex
expressions than those of Table III.

Expressions forE{η(n)} and E{η2(n)} depend on the
mixing parameter adaptation. In the next section, we assume
that η(n) is updated with theη-LMS algorithm.

A. Adaptation of the mixing parameter usingη-LMS

Replacing (17) in (15), we get

eg(n) = ea,2(n) − η(n)[ea,2(n) − ea,1(n)] + b(n). (34)

Using (34) and remarking thaty1(n) − y2(n) = ea,2(n) −
ea,1(n), the update equation ofη-LMS, given by (14), can be
rewritten as

η(n + 1) =

A︷ ︸︸ ︷
η(n)

(
1 − µη[ea,2(n) − ea,1(n)]2

)

+

B︷ ︸︸ ︷
µη[e2

a,2(n) − ea,1(n)ea,2(n)]

+

C︷ ︸︸ ︷
µηb(n)[ea,2(n) − ea,1(n)] . (35)

Using (35), we can obtain recursions for the first and the
second moments ofη(n).

1) First-order analysis:Using the same arguments of Sec-
tion III, we remark thatE{C} = 0. Assuming A1 and taking
expectations in (35), we get

E {η(n+1)}=E {η(n)}[1−µηα(n)] + µη∆ζ22(n). (36)

Since the constraintη(n) ≤ 1 is imposed in theη-LMS
algorithm, we truncate at each iteration the theoretical value
of E{η(n+1)} estimated by (36), so thatE{η(n+1)} ≤ 1.

Taking the limit forn → ∞ on both sides of (36), we obtain

lim
n→∞

E {η(n)} = ηo(∞). (37)

Thus, as observed in [12], theη-LMS algorithm converges in
the average to the optimum mixing parameter at the steady-
state.
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A sufficient condition for the exponential stability of (36)
is given by [38, p. 73]

|1 − µηα(n)| < 1 − ε, ∀n, (38)

where ε is a small positive constant. In particular, for a
constant step-size, a sufficient condition is

0 < µη <
2

max{α(n)}
. (39)

2) Second-order analysis:Squaring (35) and taking expec-
tations, we obtain

E
{
η2(n+1)

}
= E

{
A2

}
+E

{
B2

}
+E

{
C2

}
+E{2AB}

+ E{2AC} + E{2BC} . (40)

To evaluate the terms of (40), we assume that

A2. The a priori errors ea,1(n) and ea,2(n) are jointly
Gaussian with zero-mean, which implies [39]

E
{
e3
a,i(n)ea,j(n)

}
= 3ζii(n)ζij(n), i, j = 1, 2, (41)

E
{
[ea,2(n)−ea,1(n)]4

}
= 3α2(n), (42)

E
{
e2
a,1(n)e2

a,2(n)
}

= ζ11(n)ζ22(n) + 2ζ2
12(n). (43)

Although this condition is violated in general, it is frequently
used to make the transient analysis of adaptive filters more
tractable [16]–[19]. This assumption tends to be reasonable
for small step-sizes and long filters [17].

Now, using A1 and A2 we can evaluate the terms of (40):

E{A2}: Using A1 and (42), we obtain

E{A2} = E
{

η2(n)
(
1−µη[ea,2(n)−ea,1(n)]2

)2
}

≈ E{η2(n)}
[
1−2µηα(n) + 3µ2

ηα2(n)
]
. (44)

E{B2}: Using (41) and (43), we have

E{B2} = µ2
ηE

{
[e2

a,2(n) − ea,1(n)ea,2(n)]2
}

≈ µ2
ηζ22(n)α(n)+2µ2

η∆ζ2
22(n). (45)

E{C2} : Sinceb(n) is assumed independent ofea,i(n), i =
1, 2, E{b(n)} = 0, andE{b2(n)} = σ2

b , we get

E
{
C2

}
= E

{
µ2

ηb2(n)[ea,2(n) − ea,1(n)]2
}

≈ µ2
ησ2

bα(n). (46)

For the combination of two CMA equalizers this term is null,
sinceb(n) ≡ 0.

E{2AB} : Using A1, (41) and (43), we obtain

E{2AB} = 2µηE{η(n)}E
{(

1−µη[ea,2(n)−ea,1(n)]2
)

× [e2
a,2(n)−ea,1(n)ea,2(n)]

}

≈ 2µηE{η(n)} [ζ22(n)−3µη∆ζ22(n)α(n)] . (47)

E{2AC} andE{2BC}: Sinceb(n) is assumed independent
of ea,i(n), i = 1, 2 and E{b(n)} = 0, these terms
are null. Again, for the combination of two CMA
equalizers these terms are null by definition, since
b(n) ≡ 0.

Replacing the approximations (44)-(47) in (40), we finally
arrive at

E{η2(n + 1)} ≈ E{η2(n)}
[
1−2µηα(n) + 3µ2

ηα2(n)
]

+ 2µηE{η(n)} [ζ22(n)−3µη∆ζ22(n)α(n)]

+ µ2
η

(
ζ22(n) + σ2

b

)
α(n) + 2µ2

η∆ζ2
22(n). (48)

Using (48) and (36) in conjunction with the expressions
of Table V, the EMSE of the combination for alln ≥ 0
considering theη-LMS algorithm can be estimated via (30).

From (48), the range of step-sizes to ensure the mean-square
stability of η-LMS is given by [38]

0 < µη <
2

3max{α(n)}
, (49)

which is more restrictive than (39).
The stability ofη-LMS depends onα(n). From Fig. 1, we

can see thatα(n) = E{[y1(n)−y2(n)]2} is large at first when
the fast filter has almost converged but the slow filter is still
far from the optimum solution. At this point,µη should be
small, as required by (49). However, when the EMSE of the
slow and fast filters are similar,α(n) is small. At this point,
a largeµη is required so the combination will switch to the
slow filter. This is the reason why [12] needs to constrain
η(n) ≤ 1. To guarantee thatη-LMS switches quickly to the
slow filter at the proper time,µη must be chosen so large
that η-LMS will be unstable at the beginning, whenα(n) is
large. Therefore, some sort of normalization is necessary for
the estimation ofη. Thus, we propose in the following sections
two normalized algorithms to update the mixing parameter.

B. Adaptation of the mixing parameter usingη-PN-LMS

Using an instantaneous normalization, i.e., replacing the
step-size byµη(n)= µ̃η/[y1(n)−y2(n)]2, can also lead to
divergence (see, e.g, [40]). One possible solution is to nor-
malize the algorithm using an estimate ofα(n), as in [9].
The resulting normalized algorithm is called power normalized
least mean-square (η-PN-LMS) algorithm and updates the
mixing parameter via the recursion

η(n + 1) = η(n) + µη(n)eg(n)[y1(n) − y2(n)] (50)

where

µη(n) ,
µ̃η

ǫ + p(n)
, (51)

p(n) = λp(n − 1) + (1 − λ)[y1(n) − y2(n)]2 (52)

is a low-pass filtered estimate for the power ofy1(n)−y2(n),
ǫ is a small positive constant used to avoid large step-sizes
when p(n) becomes small, and0 ≪ λ < 1 is a forgetting
factor. The stability of (50) is ensured for0 < µ̃η < 2 [38]
and no constraint onη(n) is necessary.

In the analysis of theη-PN-LMS algorithm, we assume that

A3. The forgetting factorλ is sufficiently close to one, so
that the variance ofp(n) is small and the step-sizeµη(n)
is weakly correlated with thea priori errorsea,i(n), i =
1, 2 and the mixing parameterη(n).
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Using A3, the analysis ofη-LMS can be directly extended
to η-PN-LMS, replacingµk

η by [E{µη(n)}]
k, k = 1, 2 in the

expressions of Section V-A. Hence, we only need to estimate
E{µη(n)}, as shown in the sequel.

Expandingµη(n) as a Taylor series, around the expected
valueE{p(n)} , p̄(n), we obtain

µη(n)≈
µ̃η

ǫ+p̄(n)
−

µ̃η [p(n)−p̄(n)]

[ǫ+p̄(n)]
2 +

µ̃η [p(n)−p̄(n)]
2

[ǫ+p̄(n)]
3 . (53)

Taking expectations on both sides of (53), we arrive at

E{µη(n)}≈
µ̃η

ǫ+p̄(n)
+

µ̃ησ2
p(n)

[ǫ+p̄(n)]
3 , (54)

where we denotedσ2
p(n) = E{[p(n) − p̄(n)]

2
}. Assuming A3,

the second term on the r.h.s. of (54) can be disregarded, which
leads to

E {µη(n)} ≈
µ̃η

ǫ + p̄(n)
. (55)

Using the same arguments, the second moment of the step-size
µη(n) can be approximated byE{µ2

η(n)} ≈ [E{µη(n)}]
2.

Now, we obtain a recursion for̄p(n). Taking expectations
on both sides of (52), we get

p̄(n)=λp̄(n−1)+(1−λ)E
{
[y1(n)−y2(n)]2

}
. (56)

Remarking thaty1(n)−y2(n)=ea,2(n)−ea,1(n), the following
recursion holds

p̄(n)=λp̄(n−1)+(1−λ)α(n). (57)

At steady-state, we havēp(∞) = α(∞).

C. Adaptation of the mixing parameter usingη-SR-LMS

Althoughη-PN-LMS circumvents the problem encountered
in the convergence ofη-LMS, three parameters must be
adjusted:µ̃η, λ, and ǫ. The forgetting factorλ is relatively
easy to be adjusted (e.g.,λ = 0.99). However, the choice of
the step-sizẽµη and of the regularization factorǫ needs some
care, as we show through the simulations of Section VI. In
order to avoid these extra adjustments and since a normal-
ization is necessary, we can employ a partial instantaneous
normalization usingµη(n) = µηs/|y1(n) − y2(n)| as step-
size. With this choice, the update rule (50) reduces to

η(n + 1) = η(n) + µηseg(n)sign[y1(n) − y2(n)] , (58)

where sign[·] is the sign function defined as

sign[x] ,





+1, x > 0
0, x = 0

−1, x < 0
. (59)

We call this algorithm sign regressor least mean-square algo-
rithm (η-SR-LMS).

Using (34) and remarking thatx sign[x] = |x| and that
y1(n)−y2(n)=ea,2(n)−ea,1(n), (58) can be rewritten as

η(n + 1) =

D︷ ︸︸ ︷
η(n) (1 − µηs|ea,2(n)−ea,1(n)|)

+

E︷ ︸︸ ︷
µηsea,2(n)sign[ea,2(n)−ea,1(n)]

+

F︷ ︸︸ ︷
µηsb(n)sign[ea,2(n)−ea,1(n)] . (60)

Using (60), we can obtain recursions for the first and second
moments ofη(n).

1) First-order analysis:Assuming A1, taking expectations
in (60), and remarking thatE{F} = 0, we obtain

E{η(n+1)}=E {η(n)}
(
1−µηsE {|ea,2(n)−ea,1(n)|}

)

+µηsE {ea,2(n)sign[ea,2(n)−ea,1(n)]} . (61)

Assuming A2 and using a special case of Price’s theorem (see,
e.g, [39], [17, p. 306]), the following approximations hold

E {|ea,2(n)−ea,1(n)|} ≈

√
2α(n)

π
, (62)

and

E {ea,2(n)sign[ea,2(n)−ea,1(n)]} ≈
∆ζ22(n)√
πα(n)/2

. (63)

Replacing (62) and (63) in (61), we arrive at

E{η(n+1)}≈E{η(n)}

[
1−µηs

√
2α(n)

π

]
+µηs

∆ζ22(n)√
πα(n)/2

.

(64)

Taking the limit forn → ∞ on both sides of (64), we obtain
limn→∞ E{η(n)} = ηo(∞). Hence, theη-SR-LMS algorithm
also converges in the average to the optimum mixing parameter
at the steady-state.

The range of step-sizes that guarantees stability of (64) is
given by [38]

0 < µηs <

√
2π

max{α(n)}
. (65)

2) Second-order analysis:Squaring (60) and taking expec-
tations, we obtain

E
{
η2(n+1)

}
= E

{
D2

}
+E

{
E2

}
+E

{
F2

}
+E{2DE}

+ E{2DF} + E{2EF} . (66)

Using A1 and A2, we can evaluate the terms of (66):

E{D2}: Using A1 and (62), we obtain

E{D2} = E
{

η2(n)
[
1−µηs|ea,2(n)−ea,1(n)|

]2}

≈ E{η2(n)}
[
1−µηs

√
8α(n)/π + µ2

ηsα(n)
]
. (67)

E{E2} andE{F2}: Using the fact that sign2[x] = 1 almost
everywhere on the real line, we get
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E{E2} = E
{
µ2

ηse
2
a,2(n)sign2 [ea,2(n) − ea,1(n)]

}

≈ µ2
ηsζ22(n), (68)

and

E
{
F2

}
= E

{
µ2

ηsb
2(n)sign2 [ea,2(n) − ea,1(n)]

}

≈ µ2
ηsσ

2
b . (69)

E{2DE}: Using A1 and (63), we obtain

E{2DE}=2µηsE
{

η(n)
(
1−µηs|ea,2(n)−ea,1(n)|

)

× ea,2(n)sign[ea,2(n)−ea,1(n)]
}

≈ 2µηsE{η(n)}

[
∆ζ22(n)√
πα(n)/2

− µηs∆ζ22(n)

]
. (70)

Since b(n) is assumed independent ofea,i(n), i = 1, 2 and
E{b(n)} = 0, we haveE{2DF} ≈ 0 and E{2EF} ≈ 0.
Replacing the approximations (67)-(70) in (66), we finally
arrive at

E{η2(n+1)}≈E{η2(n)}

[
1−µηs

√
8α(n)

π
+µ2

ηsα(n)

]

+ 2µηsE{η(n)}

[
∆ζ22(n)√
πα(n)/2

− µηs∆ζ22(n)

]

+ µ2
ηs

[
σ2

b + ζ22(n)
]
. (71)

The range of step-sizes that guarantees stability of (71) is
given by [38]

0 < µηs <

√
8

π max{α(n)}
. (72)

It should be noticed that this range is more restrictive than
(65). Although the step sizeµηs still depends on an estimate
of α(n), this dependence is weaker than that of theη-LMS
algorithm due to the square-root in (72). Furthermore,µηs can
be adjusted based on the analytical EMSE of the combination
(see Fig. 11). Thus, theη-SR-LMS algorithm can perform
better thanη-LMS, following quickly the variations onηo(n)
with a small EMSE and with only one free parameter to adjust,
as shown in the simulations of Section VI-A.

VI. SIMULATION RESULTS

The simulations are divided into four parts. First, we verify
the accuracy of the transient analysis for the introductory
simulations shown in Fig. 1. We also verify the behavior of the
proposed algorithmsη-PN-LMS andη-SR-LMS in the same
simulation scenario. In the second part, we show some results
concerning the analysis of combinations of NLMS filters and
CMA equalizers. In the third part, we verify the validity of the
analysis of combinations of LMS filters with close step-sizes.
Finally, we focus on the tracking analysis and compare the
performances of the affine and convex combinations.

A. Recalling the introductory simulation

To verify the validity of the transient analysis in the
supervised case, we consider the identification of a time-
invariant system. The optimum solution is formed withM = 7
independent random values between -1 an 1, and is given by

wo = [+0.90 −0.54 −0.03 +0.78 +0.52 −0.09]. (73)

We assume white Gaussian input with variance1/M so that
Tr(R) = 1, and an average of 500 runs. Moreover, i.i.d. noise
v(n) with varianceσ2

v = 0.01 is added to form the desired
signal.

Figures 5 and 6 show the results of the EMSE and the
mixing parameter for the affine combination of two LMS filters
in the same situations considered in Figures 1-(a) and (b),
in which the mixing parameter is updated with theη-LMS
algorithm. In Fig. 5, whereµη = 3, the analysis can predict
that the performance of the combination is far from universal
in the initial iterations. Similarly, withµη = 0.1, the analysis
can predict that the combination is not able to switch to the
slow filter, as shown in Fig. 6. We should notice that, due to
the constraint imposed in theη-LMS algorithm (η(n) ≤ 1),
these situations become difficult to model and there is a small
gap between the experimental and theoretical EMSE during
the initial iterations. Moreover, the mixing parameter does not
achieve the optimum value obtained in the analysis, which is
higher than one in the initial iterations.
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Fig. 5. a) EMSE forµ1-LMS, µ2-LMS and their affine combination; b)
ensemble average ofη(n) adapted with theη-LMS algorithm and theoretical
ηo(n); µ1 = 0.01, µ2 = 0.001, µη = 3, M = 7; identification of the
system given by (73),σ2

v = 0.01, white input with varianceσ2
u = 1/7; 500

independent runs.

In the same scenario, the algorithmsη-PN-LMS or η-SR-
LMS can circumvent the problem, as shown in Figures 7 and 8
respectively. These two algorithms have a similar performance,
which is predicted by the analysis with a good accuracy in
both cases. In addition, the experimental mixing parameter
is higher than one in the initial iterations, being far from
its theoretical optimum value during the very first iterations,
as shown in Figures 7-(c) and 8-(c). However, this does not
represent an issue since the combination presents a close to
universal performance.

To illustrate the influence of the parametersǫ andµ̃η in the
performance of theη-PN-LMS algorithm, Figures 9 and 10
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Fig. 6. a) EMSE forµ1-LMS, µ2-LMS and their affine combination; b)
ensemble average ofη(n) adapted with theη-LMS algorithm and theoretical
ηo(n); µ1 = 0.01, µ2 = 0.001, µη = 0.1, M = 7; identification of the
system given by (73),σ2

v = 0.01, white input with varianceσ2
u = 1/7; 500

independent runs.
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Fig. 7. a) EMSE forµ1-LMS, µ2-LMS and their affine combination;
b) ensemble average ofη(n) adapted with theη-PN-LMS algorithm and
theoreticalηo(n); µ1 = 0.01, µ2 = 0.001, µ̃η = 3× 10−3, ǫ = 5× 10−4,
λ = 0.99, M = 7; identification of the system given by (73),σ2

v = 0.01,
white input with varianceσ2

u = 1/7; 500 independent runs; c) detail of b)
from n = 0 until n = 0.5×104 (note the different x-scaling).

show the theoretical, experimental, and optimal EMSE of the
combination at three time instants as a function ofǫ (Fig. 9)
and ofµ̃η (Fig. 10). The time instants were chosen in order to
check the accuracy of the analysis in three different situations:
at n = 15×103 the slower filter has not converged yet, the
time instantn = 40×103 is close to the switching between the
faster to the slower filter, and atn = 65×103 both filters have
converged. The same simulation setting of Fig. 7 is considered.
Similarly, Fig. 11 shows the results on the influence ofµηs

for theη-SR-LMS algorithm, considering the same simulation
setting of Fig. 8. The analysis provides an accurate estimation
of the EMSE in all cases, which enables the adjustment of
the parameters through the analytical results. We can also

observe that the optimum value ofǫ, µ̃η, or µηs is different for
each time instant considered in the simulations. However, it is
possible to choose an intermediate value to obtain a tradeoff
in these three situations.
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Fig. 8. a) EMSE forµ1-LMS, µ2-LMS and their affine combination;
b) ensemble average ofη(n) adapted with theη-SR-LMS algorithm and
theoreticalηo(n); µ1 = 0.01, µ2 = 0.001, µηs = 2.5 × 10−2, M = 7;
identification of the system given by (73),σ2

v = 0.01, white input with
varianceσ2

u = 1/7; 500 independent runs; c) detail of b) fromn = 0 until
n = 0.5×104 (note the different x-scaling).
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Fig. 9. Theoretical, experimental and optimal EMSE at three different time
instants for the affine combination ofµ1-LMS andµ2-LMS using theη-PN-
LMS for different values ofǫ; µ1 = 0.01, µ2 = 0.001, µ̃η = 3, λ = 0.99,
M = 7; identification of the system given by (73),σ2

v = 0.01, white input
with varianceσ2

u = 1/7; 500 independent runs; each experimental value
was calculated by the mean EMSE of 50 samples around the considered time
instant.

B. Combinations of two NLMS filters and two CMA equalizers

To verify that the transient analysis is also accurate for
the affine combination of the other algorithms, Fig. 12 and
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Fig. 10. Theoretical, experimental and optimal EMSE at three different time
instants for the affine combination ofµ1-LMS andµ2-LMS using theη-PN-
LMS for different values of̃µη ; µ1 = 0.01, µ2 = 0.001, ǫ = 5×10−4, λ =
0.99, M = 7; identification of the system given by (73),σ2

v = 0.01, white
input with varianceσ2

u = 1/7; 500 independent runs; each experimental value
was calculated by the mean EMSE of 50 samples around the considered time
instant.
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Fig. 11. Theoretical, experimental and optimal EMSE at three different
time instants for the affine combination ofµ1-LMS and µ2-LMS using the
η-SR-LMS for different values ofµηs; µ1 = 0.01, µ2 = 0.001, M = 7;
identification of the system given by (73),σ2

v = 0.01, white input with
varianceσ2

u = 1/7; 500 independent runs; each experimental value was
calculated by the mean EMSE of 50 samples around the consideredtime
instant.

Fig. 13 show the results for combination of two NLMS filters
with the η-PN-LMS algorithm and two CMA equalizers with
the η-SR-LMS algorithm, respectively. For the NLMS case,
to obtain a better estimate for the EMSE of the compo-
nent filters using the expression of Table V, we consider
M = 32 coefficients and the optimum solution (wo) from [12,
Fig. 2]. Again, we can observe a good agreement between
analysis and simulation. In the CMA case, we assume the

channelsh1 = [+0.1 +0.3 +1.0 −0.1 +0.5 +0.2]
T and

h2 = [+0.25 +0.64 +0.80 −0.55]
T [27], [33] in the absence

of noise and the transmission of a 4-PAM (pulse amplitude
modulation) signal, i.e.,a(n) = ±1 or a(n) = ±3, with
statisticsr = 8.2, σ2

β = 28.8, andγ̄ = 6.8. In the combination,
each component filter hasM =4 coefficients implemented as
a T/2-fractionally spaced equalizer (FSE) and is initialized
with only one non-null and unitary element in the second
position. Fig. 13 shows the results for the EMSE and the
mixing parameter considering the channelh1 until n = 4×104

and the channelh2 after that. To smooth the EMSE curves,
they were filtered by a moving-average filter of32 coefficients.
Although there is no exact agreement between analysis and
simulation, the predicted values model the overall behavior of
the combination, considering that a difference of a few dB
is common in models of blind algorithms due to the strong
assumptions necessary for the analysis.
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Fig. 12. a) EMSE forµ1-NLMS, µ2-NLMS and their affine combination;
b) ensemble average ofη(n) adapted with theη-PN-LMS algorithm and
theoreticalηo(n); µ1 = 0.1, µ2 = 0.01, µ̃η = 3 × 10−3, ǫ = 5 × 10−4,
λ = 0.99, M = 32; identification of the system considered in [12],σ2

v =
0.01, white input with varianceσ2

u = 1/32, Q = 0; 500 independent runs.

E
M

S
E

(d
B

)

(a)

µ1-CMA
µ2-CMA
Combination
ζ(n) (Theoretical)
ζo(n) from (26)

0 1 2 3 4 5 6
-30

-25

-20

-15

-10

-5

0

iterations ×104

E
{
η
(n

)}

(b)

Experimental
Theoretical
ηo(n) from (22)

0 1 2 3 4 5 6

0

0.5

1

1.5
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4-PAM transmitted signal;500 independent runs; EMSE curves filtered by a
moving-average filter of 32 coefficients.
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C. Affine combination of filters with close step-sizes

We now consider an affine combination of two LMS filters
with close step-sizes in a stationary environment. We assume
that the optimum solution is given by (73) and the inputu(n)
is generated using a first-order autoregressive model, whose
transfer function is

√
1−̺2/(1−̺z−1), with ̺ = 0.8. This

model is fed with and i.i.d. Gaussian random process, whose
variance is1/M , such thatTr(R) = 1. Again, to form the
desired signal, white noisev(n) with varianceσ2

v = 0.01
is added. Fig. 14 shows the EMSE and the mixing param-
eter along the iterations for two LMS filters with step-sizes
µ1 = 0.01 and µ2 = 0.009, using theη-LMS algorithm
with µη = 600. This high value ofµη is needed in order
to ensure a high convergence rate for the combination since
[y1(n)−y2(n)] is small. In this situation, the performances
of the component filters are very close and the combination
provides a3 dB EMSE gain in steady-state, as shown in
Fig. 14-(a) and predicted by the analysis. To smooth the EMSE
curves, they were filtered by a moving-average filter with
256 coefficients. We can observe that, due to the constraint
(η(n) ≤ 1) imposed in theη-LMS algorithm, the mixing
parameter does not achieve its optimum value, which may
be close to 25 in some time instants, as shown in Fig. 14-(b).
Consequently, the EMSE of the combination is far from the
optimum EMSE in some time instants.
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Fig. 14. a) EMSE forµ1-LMS, µ2-LMS and their affine combination; b)
ensemble average ofη(n) adapted with theη-LMS algorithm and theoretical
ηo(n); µ1 = 0.01, µ2 = 0.009, µη = 600, M = 7; identification of the
system given by (73),σ2

v = 0.01, colored input (AR model, 1st order, pole
at 0.8) with varianceσ2

u = 1/7; 500 independent runs; EMSE curves filtered
by a moving-average filter with 256 coefficients.

In the same scenario, theη-PN-LMS andη-SR-LMS algo-
rithms circumvent the problem since no constraint inη(n) is
necessarily used, as show respectively in Figures 15 and 16.A
3 dB EMSE gain can be observed in steady-state and there is
also an EMSE gain in the transient, being both well predicted
by the analysis.

D. Accuracy of tracking analysis

To verify the validity of the tracking analysis, the affine
combination is compared to the convex combination assuming
two LMS filters with different step-sizes. The same simulation
setting of Fig. 14 is considered, but with fixedµ1 = 0.1 and
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Fig. 15. a) EMSE forµ1-LMS, µ2-LMS and their affine combination;
b) ensemble average ofη(n) adapted with theη-PN-LMS algorithm and
theoreticalηo(n); µ1 = 0.01, µ2 = 0.009, µ̃η = 0.4, ǫ = 9 × 10−4,
λ = 0.99, M = 7; identification of the system given by (73),σ2

v = 0.01,
colored input (AR model, 1st order, pole at0.8) with varianceσ2

u = 1/7;
500 independent runs; EMSE curves filtered by a moving-average filter with
256 coefficients.
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Fig. 16. a) EMSE forµ1-LMS, µ2-LMS and their affine combination;
b) ensemble average ofη(n) adapted with theη-SR-LMS algorithm and
theoretical ηo(n); µ1 = 0.01, µ2 = 0.009, µηs = 0.5, M = 7;
identification of the system given by (73),σ2

v = 0.01, colored input (AR
model, 1st order, pole at0.8) with varianceσ2

u = 1/7; 500 independent
runs; EMSE curves filtered by a moving-average filter with 256 coefficients.

µ2 = δµ1. Fig. 17-(a) shows the theoretical and experimental
values of ζii(∞), i = 1, 2 for the component filters and
the values ofζ(∞) for the affine and convex combinations
as functions ofδ, considering a nonstationary environment
with Q = 4×10−7I. The ratioζ(∞)/min{ζii(∞)} is also
shown in Fig. 17-(b). It can be noticed that there is an
EMSE reduction for both the affine and convex combinations
when Tr(Q) = q12 = µ1µ2σ

2
vTr(R), which corresponds to

δ = 0.025 in this case. An EMSE reduction for the affine
combination also occurs whenµ1 ≈ µ2, i.e., δ ≈ 1. In
this case, the convex combination can only perform as its
best component filter, since the mixing parameter needs to be
negative to cause the EMSE reduction, as shown in Fig. 17-
(c). In both cases, the reduction is limited to 3 dB, which
agrees with the results of Table IV. The theoretical resultsfor
the convex combination were obtained truncating the value
of the optimal mixing parameter to the interval[0, 1]. It is
important to remark, though, that both points at which the
largest EMSE reduction happens do not represent optimal
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situations, as can be seen in Fig. 17-(a). For a single LMS filter
in a nonstationary environment, there is an optimum value of
the step-size that minimizes the EMSE. The minimum EMSE
value for the affine and convex combinations (≈ −38 dB)
occurs exactly whenµ2 assumes this optimum value, which
happens forδ = 0.17 in this example. In this case, both
combinations perform as their best component filterµ2-LMS.
Therefore, using the affine combination of filters of the same
family updated with different step-sizes is more worthwhile
than using it with close step-sizes.
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Fig. 17. Theoretical and experimental values of a)ζii(∞), i = 1, 2 and
ζ(∞); b) ζ(∞)/ min{ζii(∞)}, i = 1, 2; and c)E{η(∞)} for the affine
(µη = 1) and convex (µa = 100, a+ = 4 and ǫ = 0.1 [8]) combinations
of two LMS filters with µ1 = 0.1, µ2 = δµ1 andM = 7; identification of
the system given by (73),σ2

v = 0.01, colored input (AR model, 1st order,
pole at0.8) with varianceσ2

u = 1/7; Q = 4×10−7I; 50 independent runs.
The theoretical values are indicated by lines and the experimental values by
△, �, ©, and∗.

VII. C ONCLUSION

As an extension of [12] and [13], we proposed transient
and steady-state analyses for the EMSE and the mixing
parameter of the affine combination, based on the theoretical
EMSE and cross-EMSE of the component filters and on the
adaptation of the mixing parameter. This allows the application
to different combinations of algorithms, such as LMS, NLMS
and CMA, considering white or colored inputs and stationary
or nonstationary environments. Good agreement between the
analysis and the simulations was always observed. Moreover,
we proposed and analyzed two normalized algorithms for
updating the mixing parameter. The theoretical models can
predict situations in which these algorithms can achieve a
better performance, being useful for the designer.

APPENDIX A
ASSUMPTIONS FOR THECMA ANALYSIS

Model (8) is based on the following assumption:

B1. The channel noise power is small enough for the zero-
forcing solutionwo to be one of the global minimizers
of the constant-modulus cost function. In other words,
the optimal solution achieves perfect equalization, i.e.,
a(n − τd) ≈ uT (n)wo(n − 1) [10], [23], [26], [33].

Using B1, the filter output can be approximated by

yi(n) ≈ a(n − τd) − ea,i(n), i = 1, 2. (74)

Equation (8) is obtained replacing (74) in (7) and assuming
that terms depending onek

a,i(n), k ≥ 2 are sufficiently small
to be disregarded for alln ≥ 0. In other words, we assume
that the deviation between the component equalizers and the
zero-forcing solution is always small.

To calculate the first and second moments of the random
i.i.d. variablesγ(n) andβ(n), we assume that

B2. The constellation used to generate thea(n) has circular
symmetry, so thatE{ak(n)} = 0 for all odd integers
k > 0. This assumption is not restrictive, since this
condition is true for practical constellations.

Using B2, we find thatE{β(n)} = 0,

σ2
β , E{β2(n)} = E{a6(n) − r2a2(n)}, (75)

γ̄ , E{γ(n)} = 3E{a2(n)} − r, (76)

and

ξ , E{γ2(n)} = 3rE{a2(n)} + r2. (77)
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[7] M. Martı́nez-Raḿon et al., “An adaptive combination of adaptive filters
for plant identification,” inProc. 14th Int. Conf. Digital Signal Process.,
vol. 2, Santorini, Greece, 2002, pp. 1195–1198.
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