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Abstract

The most popular algorithms for blind equalization are tbiestant-modulus algorithm (CMA) and the Shalvi-
Weinstein algorithm (SWA). It is well-known that SWA presen higher convergence rate than CMA, at the expense
of higher computational complexity. If the forgetting factis not sufficiently close to one, if the initialization is
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of the estimate of the autocorrelation matrix, or by a coratiam of both. In order to avoid the first cause of
divergence, we propose a dual-mode SWA (DM-SWA). In the firetle of operation, the new algorithm works as
SWA, and in the second mode, it rejects non-consistent atsof the transmitted signal. Assuming the persistence
of excitation condition, we present a deterministic siabihnalysis of the new algorithm. To avoid the second
cause of divergence, we propose a dual-mode lattice SWA [ISMAA), which is stable even in finite-precision
arithmetic, and has a computational complexity that ineeealinearly with the number of adjustable equalizer

coefficients. The good performance of the proposed alguostis confirmed through numerical simulations.
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. INTRODUCTION

Adaptive equalizers are widely used in modern digital comizations systems to remove intersymbol
interference introduced by dispersive channels. Over dlsé decades, this has been an area of intense
research in the signal processing community (see, e.g-[4[Lhnd the many references therein). The
performance of an adaptive equalization algorithm can laduated by different factors such as accuracy
of the steady-state solution, convergence rate, trackiigi@s, computational cost, numerical robustness,
stability, etc. [5], [6]. The design of an adaptive algomitifor supervised or blind equalization with a
good tradeoff among these factors is a problem of wide istere

In supervised equalization, the least-mean-squares (L) the recursive least-squares (RLS) al-
gorithms are the most popular for the adaptation of finite ule@ response (FIR) equalizers [5]. It
is well-known in the literature that these algorithms prése tradeoff between convergence rate and
computational cost, which tends to be less critical whehassions of RLS are compared to LMS [5].
Among the members of the fast RLS family, the fast QR-RLS [7] dral drror feedback least-squares
lattice (EF-LSL) [8] algorithms are the most attractiveterms of numerical stability and computational
cost The former uses the QR factorization of matrices and is mizaley stable as shown analytically in
[9] from a backward stability perspective. The latter is ruitally well-behaved even in finite precision,
although no proof of its numerical stability is known [10].0k&over, its computational cost is slightly
lower than the fast QR-RLS algorithm.

In blind equalization, there is no training data and the allgms may update the equalizer coefficients
using higher-order statistics (HOS) of the transmittechaigA simplified communications system with a
blind equalizer based on HOS is depicted in Figure 1 [3]. Tigead a(n), assumed iid (independent and
identically distributed) and non Gaussian, is transmitte@dugh an unknown channel, whose model is
constituted by an FIR filtef/(z) and additive white Gaussian noigén). From the received signal(n)
and the known HOS of the transmitted signal, the blind egaalmust mitigate the channel effects and
recover the signak(n) for some delayr;. The equalizer output is given hyn) = w”u(n), whereu(n)
is the input regressor vectow the equalizer weight vector (both column vectors with coefficients),
and the superscripf denotes complex conjugate transposition.

In this context, the constant-modulus algorithm (CMA) [1f1]2] and the Shalvi-Weinstein algorithm
(SWA) [13] are the most popular. CMA is a stochastic gradiégo@hm obtained from the minimization

of the CM cost function defined as

Jom = E{(ly(n)]> = r)*}, 1)
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Fig. 1. Schematic representation of a communications system with blindizua

where E{-} stands for the expectation operation and-= E{|a(n)|*}/E{|a(n)[*}. SWA was originally

derived in [13], using empirical cumulants in the minimipat of the SW cost function defined as

Jewr — 03,2 (2)
(e e
where
C3, = E{ly(n)['} — BE{|y(n)|*}?
and

Cty = E{ly(n)["}

are the cumulants aof of order(2,2) and(1, 1), respectively, an@ = 2 (resp.,5 = 3) for complex (resp.,
real) data. As shown in [14], under certain conditions, tW¢ 8ost function reduces to the CM cost
function. Thus, CMA and SWA seek to optimize the same criterldence, SWA can also be interpreted
as a constant-modulus-based algorithm which uses an apmtian for the Hessian matrix, i.e., it can
be considered as a quasi-Newton-type algorithm [13], [15].

Based on the link between blind equalization and classicaptac filtering of [16], CMA and SWA
can be viewed as the blind versions of LMS and RLS, respegtivétnce, they also have a tradeoff
between convergence rate and computational cost. Thus, I84&//& higher convergence rate than that of
CMA, at the expense of higher computational complexity. Duthe multimodality of theSsW (resp., CM)
cost function, an inadequate choice of the forgetting fa¢tesp., step-size) of SWA (resp., CMA), an
initialization distant from the zero-forcing solution,da low signal-to-noise ratio are three factors which
can lead both algorithms to diverge (i.e., the norm of thegivevector goes to infinity) or to converge to
undesirable local minima. Many important results on theveagence and stability of constant-modulus-
based algorithms have been obtained in the literature ésgg,[3], [17]-[21] and the references therein).
However, the major part of these results is focused on aealgé CMA. Little has been done to avoid

divergence of these algorithms, mainly in the case of SWA.
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In this work, we show that the divergence of SWA has two défgrcauses: (i) inconsistency in the
nonlinear estimate of the transmitted signal, and (ii) t&slof numerical compatibility in the update of
the inverse of the autocorrelation matrix, as occurs in RL8.a80 propose solutions for both problems.
First, using a representation equivalent to the stateespapresentation of the RLS algorithm [9] and
temporarily assuming infinite-precision arithmetic (sa@ttlii) does not occur), we find conditions to
ensure the stability of SWA, and we propose a dual-mode iétgoy denoted by DM-SWA. In the first
mode of operation, the proposed algorithm works as SWA.érsttond mode, it does not use the estimate
of the transmitted signal, updating the coefficient vectahwan error proportional to the equalizer output.
Assuming the persistence of excitation condition, we shiost DM-SWA is stable in infinite-precision
arithmetic. Second, inspired in [9] and [10], we propose al-ahiode lattice SWA (DM-LSWA), which
maintains the convergence rate of SWA, avoids divergenea ghen implemented in finite precision,
and whose computational cost increases linearly WithAs happens for EF-LSL, we do not provide a
stability proof for DM-LSWA in finite-precision arithmeticHowever, results of exhaustive simulations
show that DM-LSWA presents reliable numerical results,iding both causes of divergence. Some of
our results were published as a conference paper in [22hisnpaper, we extend our previous results by
providing a stability proof for the infinite-precision fittend considering complex data.

The paper is organized as follows. In Section Il, SWA is datifrom the minimization of a deterministic
cost function, reinforcing the link with the RLS algorithm. &l on this link and on the well-founded
results on the RLS algorithm, DM-SWA is introduced and a $tgtinalysis is presented in Section II.
Then, in Section IV, we propose DM-LSWA, a fast and numelycatable version of DM-SWA. In
Section V, we present some simulation results, compariegptioposed algorithms to the conventional

SWA in different situations. The main conclusions of the grapre presented in Section VI.

II. REVISITING SWA

SWA was originally obtained in [13] through the minimizatiof (2), using empirical approximations
for the cumulants. However, in order to reinforce the linkween SWA and the RLS algorithm, SWA is
revisited in this section from a least-squares perspeciiues link is obtained by deriving SWA from the
minimization of a deterministic cost-function (much as Rldbves a deterministic least-squares problem
[5]), and will help us extend to SWA some of the well-known heats to avoid numerical instability in
RLS.

It was shown in [14] that the SW cost function reduces to the ©bt unction under certain conditions.

In a different approach, we show below that SW may be obtalred a deterministic version of the CM
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cost function, that is,

T() =Y X (yne* —r)?, (3)
(=0

wherey, , = w"(n)u(f) and0 < X < 1 is a forgetting factor.

Equating the gradient of (n) with respect tow(n) to the null vector, we get the normal equations

rR(n)w(n) = p(n), (4)
where
Rim) = 3 X —u(0)u’ (0), ©)
=0
p(n) = > X" ynl’y; u(0), (6)
=0

andx stands for complex conjugate.

In order to obtain an update equation fer we define
Aw(n) =w(n) —w(n—1) (7)

and use the updating (ﬁ(n), which is given by

~

R(n) = AR(n — 1) + u(n)u”(n). (8)

The matrixR is initialized asﬁ(—l) = 01, wherel is the M-by-M identity matrix, andd is a small

positive constant. Thus, using (7) and (8), the left-hanl@ sif (4) can be rewritten as

~

rR(n)w(n) :rf{(n)Aw(n) + )\rﬁ(n— Dw(n—1) + ry*(n)u(n), 9

wherey(n) £ y, 1., = w(n — 1)u(n).

For convenience, we define

AYne = |yn,e’2yn,z - ’ynfl,€‘2ynfl,€ (10)
and rewritep(n) as
p(n) = 30 A | A+ ey e (o) (11)
=0

After some algebraic manipulations in (11), we get

p(n) = Ap(n — 1) + [y(n)[*y’(n)u(n) + p(n), (12)
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where
p(n) £ AN"Ayr u(l). (13)

=0
Using (9), (12), (13), and assuming thatn — 1) satisfies (4) at time instari.—1), we rewrite (4) as

A~

rR(n)Aw(n) — p(n) = e’(n)u(n), (14)

where
e(n) = [ly(n)* =] y(n). (15)

To proceed, we obtain an approximation g ), similar to the approximations used in [13] and [23].

To this end, we assume that the cumulant

c = E{ly(n)[y(n)u(n)} — BCY ,E{y(n)u(n)} (16)

can be approximated at the time instantreplacing expectations with empirical averages, i.e.,

n

Cok = > A"yl Py u(0) — BCT R (n)w(k). (17)
/=0

As usual, we replaced?, by Cf, = E{|a(n)?}. The difference between (17) and the corresponding
approximations in [13] and [23] is that we use an exponentiadow instead of a rectangular window.
Usingk = n andk = n — 1 in (17) and assuming that is large enough such that,,, ~ ¢, ,1, we
obtain

p(n) = BCY R(n)Aw(n). (18)

Then, replacing (18) in (14), we arrive at

1

o, R mute), (19

w(n)=w(n—1)+

It is important to observe that:

1) Eq. (19) characterizes SWA and was originally obtainedlB] through the minimization of (2),
using empirical approximations for cumulants. Some of ¢happroximations are similar to ~
(I =N)Cpp, Withk=n—10rk=mn;

2) asin RLS, the inverse matrﬁ*l(n) is obtained via the matrix inversion lemma applied to (8) [6,
p. 67];

3) the constellation(n) in practice is sub-Gaussian, ensuring that the denomirater3CY ;) in (19)
is always negative [6], [13];

4) the link between SWA and RLS is reinforcedrough the deterministic cost function (3) and

the derivation of SWA presented here. Different from RLS, akhprovides an exact solution for
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the least-squares criterion, (19) is not an exact solutamtlie minimization of (3) due to the

approximation (18).

[11. A DUAL-MODE SWA

In order to avoid divergence in SWA and derive a robust and-ohamle version of the algorithm, we

rewrite (19) in the form of a supervised algorithm, i.e.,
w(n) = w(n—1)+[d(n) = y(n)]" R~ (n)u(n), (20)

definingd(n) £ z(n)y(n) and
x(n> N ‘y(n)|2 - BCil
r—= 6011,1 .

Note that (20) has the same structure as that of the RLS digurithus, using the state-space represen-

(21)

tation of the RLS algorithm [9], after some algebra, (20) canrdwritten as

[ w(n) ] —T(n) |: Aw(n —1) ] | 22)
d'(n) = y'(n) d(n)
where
. R'n)BR(n—1) R-'(n)u(n) ] | )
— A"t (n) 1

From (22), we can observe that:

1) T'(n) is the same as the state-transition matrix of the RLS algurit®i.
2) d(n) can be interpreted as an estimate of the desired respoaassiftitted sequence). Different from
the RLS algorithm wheré(n) does not depend on the filter outpy(t:), here, it is obtained from

a nonlinear function that depends 9(r) and on the HOS of the transmitted sequen(e).

Since numerical instability in RLS arises in the recursionITUl(n) (obtained by applying the matrix
inversion lemma to (8)) [9], and this recursion is the sameS@A and RLS, SWA may also diverge
in finite-precision arithmetic. This observation is reirded by the similarity of recursion (22) to its
equivalent for RLS (the state-transition matfixn) is the same in both cases). In addition, SWA can also
diverge because of the nonlinear nature of its recursiomesi(n) depends ory(n)|y(n)|?. This effect
is similar to the instability problems of CMA and the least mdaurth algorithm (LMF), in whichy(n)
is also fed back through a cubic function [21], [24].

Thus, SWA can diverge due to (i) the nonlinear feedback offilter output (as LMF and CMA);

and (ii) finite arithmetic problems (as RLS). A combinationbaith causes of divergence can also occur.
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This will become clearer from the analysis further ahead, @so from the simulations, in which we use
histograms of the time-before-divergence in several rdrf®MA and of the modified versions (DM-SWA,
LSWA, and DM-LSWA) to separate the two causes of divergence.

In the literature, there are different techniques to enshieenumerical consistency in the update of
ﬁ—l(n) as is the case of some versions of RLS algorithms that use thdeQ&mnposition and guarantee
implicitly the existence otﬁ*l(n) even for poorly exciting input sequences [5], [9]. In the eamder
of this section, we assume that (ii) does not occur and focughe first cause of divergence. A blind
equalization algorithm that ensures the positivenes]?.ﬁf(n), even when implemented in finite-precision
arithmetic, is considered in Section IV.

Note thatboth d(n) and y(n) represent estimates of the desired response. Thus, it sermable to
assume that these two estimates will be consistent onlyelf trave the same sign, which is equivalent
to requiring the correction factor(n) to be always positive. Since the denominatorz¢f) is always
negative,z(n) > 0 occurs wherjy(n)|*> < SC{,. Our proposal to remove the first cause of instability in

SWA is to restrictz(n) to be positive. To this end, we define

_ d(n), n)|* < oY,
s = | 0 w0 < 60 o0

0, otherwise

and we usel(n) instead ofd(n) in (20). Thus, wheni(n) andy(n) are consistent, we use (20) unmodified
with d(n) = d(n) = z(n)y(n). In this case, we say that the algorithm is in tegion of interestROI).
On the other hand, when(n) < 0 (Jy(n)|* > 5C{,) the estimatei(n) is rejected, i.e.d(n) = 0 and (20)
reduces to

w(n) =w(n—1) —y(nR™"(nu(n). (25)

The proposed dual-mode algorithm, denoted by DM-SWA, israanzed in Table |, wher®(n) £
f{—l(n). Its computational cost per iteration is shown in Table $ké Section V) for real and complex-
valued data, and considering the number of real multipbost real additions, real divisions, and com-
parisons ). The estimated number of operations per iteration of DMASMépends on the manner in
which the calculations are performed. To obtain the contfmrtal cost of Table Ill, we assumed that the
DM-SWA calculations are performed as for the RLS algorithrsadibed in [6, Sec. 5.9].

A stability proof for DM-SWA is presented in the sequel. Itredevant to notice that it may converge
to a good or a poor stationary point [3], [17], [18], that is,still presents the problems of possible
convergence to local minima, common to constant-modufseth algorithms. The advantage is that the

new algorithm will keep the filter weights bounded in infingeecision arithmetic.
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A stability analysis for DM-SWA

We show that the Euclidean norm of the coefficient vedtar(n)|| of DM-SWA is bounded for all
initial conditions if the inputu(n) satisfies a persistence of excitation condition. We alsavstiat if
y(n) leaves the ROI for any reason (poor initial condition or éargise sample, for example), DM-SWA
is guaranteed to return to the ROI after a finite-time inter@ur only assumption is the persistence of
excitation condition below, which is a widely-used corafitifor deterministic stability of adaptive filters

[51. [9], [23], [26].

A-1 The input sequencgu(n)} is persistently exciting if there existand ¢ with 0 < o < ¢ < oo, such
that ?,
ol < f{(n) <, Vn>-1.

As consequences of A-1, we have that

1) the spectral norms dR~!(n) and of R(n) satisfy

IR () <o and |R(n)] < (26)

TABLE |

SUMMARY OF DM-SWA.

Initialization:
w(=1)=[0---010---0]", 0<A<I,
P(—1) = 6'I, ¢: small positive constant

for n=0,1,2,3,... do:
y(n) = w"(n - u(n)
_ \y(n)|2 - ﬁoil,l
z(n) = —~F—8——

r— Bcla,l

if z(n) >0,

i(n) = z(n)y(n)
else

d(n) =0
end
é(n) = d(n) —y(n)

! P(n— Du(n)u”(n)P(n —1)
P(n) = 3 Pn—1) - A+ u”(n)P(n —1)u(n)

w(n) =w(n—1)+e&(n)P(n)u(n)

end

'Given two matricesA and B of dimensionsM x M, the inequalityA > B means that the matrix differendqe — B) is positive

semi-definite.
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2) the Euclidean norm of the regressor vetdr.) is bounded from above, i.e.,
0 <|un)|| <B,<o0, B,>0. (27)

From (24), under Assumption A-1 the absolute valuelof) is bounded from above, i.e.,

Ca
_ 5a 11
501,1 -r

The bound (28) is obtained from the maximum values that) and |y(n)| can assume in the ROI. In
this case, we haveax{z(n)} =4CY,/(8CT, — r) andmax{|y(n)|} = /BCT,. Note that the maximum

value of|y(n)| corresponds ta:(n) =0, and consequently this is a very conservative bound. Fumibre,

0 < |d(n)

BCS, = By < oo. (28)

when the algorithm is outside the RQI(n) = 0. Hence, (28) is valid independently of the operation
mode of DM-SWA.

Theorem 1 Under the persistence of excitation condition (Assumpgel), the Euclidean norm of the
coefficient vector of DM-SWA has the following upper bound

B, B,
1—A

which ensures the stability of the algorithm, independeatithe operation mode.

i)l <~ (X ¢ lw(-1)] + 247 | < oo, (29)
Proof. Using (22), we get

w(n)= R (n)R(n—1)w(n—1) + ()R (n)u(n). (30)
Multiplying both sides of (30) on the left bﬁ(n), we obtain
R(n)w(n) = AR(n — 1)w(n — 1) + d(n)u(n). (31)
Defining q(n) £ R(n)w(n), (31) can be rewritten more compactly as

qa(n) = Aq(n — 1) + d'(n)u(n). (32)

Considering the initial conditiol(—1), (32) can be rewritten as

a(n) = A"a(=1)+ Y A d(Ou(e). (33)

Multiplying both sides of (33) b)f{_l(n), i.e., returning tow(n), we obtain
w(n) =A""R'(n)R(-1)w(=1) + R'(n) Xn: AL O 0). (34)
Applying the triangle inequality to (34), we arrive at -
R )| [R-1)| w1+ [Rm) Ziwwd*w)wuww. (35)
=0

Iw(n)|l <A™
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Using (26), (27), and (28) in (35), we obtain (29), which céetes the proof. [ |
Suppose that the algorithm leaves the ROI at the iteratioprwWhile it remains outside the ROI, since

d(n) =0, (35) reduces to
¢

0<|w(n)|| < a)\”_”OHHW(nO —1)|| < 00, 1 > ny. (36)

In this case, the upper bound of the norm of the coefficientoveaf DM-SWA will decrease exponentially
with time. This leads to a reduction of the norm of the coeadfitivector after a sufficiently large number

of iterations, forcing the algorithm to return to the ROI,sk®wn in the next theorem.

Theorem 2 Under the persistence of excitation condition (Assump#iel), if DM-SWA leaves the ROI

at time instantn, it will return to it, at most after

I Y R VEC -
’“ma"‘{ 1 (cBunw(no—l)m - 7

In(\)

iterations, where|-| is the ceiling function.

Proof: The absolute value of the equalizer output has the followipger bound
ly(n)| < fw(n = Dllffu(r)]| < [lw(n—1)[|B.. (38)

Since DM-SWA left the ROI ak» = ny, we can replace (36) in (38) to obtain

y()] < Bu X (g — 1)) (39)

«
which is an upper bound for the equalizer output in this case.
The algorithm returns to the ROI at instamt, for which [y(n,)| < ,/8CY,. From the upper-bound
(39), we see that DM-SWA returns to the ROI at mostatsuch that

B, $ammlw(ng — 1)]| < 1 /3C%,. (40)

“a
Solving (40) forn; and taking the next higher integer, we arrive at

ni S no + kmax» (41)

wherek,,., is defined in (37), which completes the proof. [ |
Note that the coefficient vectox(n) of DM-SWA could be updated in different manners outside the
ROI, by choosing different values fel(n). However, the choice(n) = 0 leads to the minimum upper

bound, given by (36). If we madgl(n)| > 0, (35) would provide an upper bound higher than (36) and

the algorithm could, in the worst case, spend more iterationreturn to the ROI. Furthermore, it is
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important to emphasize that rapproximationshave been used to establish Theorems 1 and 2. Assuming
the persistence of excitation condition, Theorem 1 pravidedeterministic upper bound for the norm of
the coefficient vector of DM-SWA, showing that the algorithsnstable independently of the operation
mode. Theorem 2 shows that DM-SWA may stay outside the RQi fonla finite-time interval. However,

the upper bounds in (29) and in (41) are very conservativetdue 1, mainly in the case of > «.

We see from (39) that the rate of reduction of the worst-casen® (36) for|w(n)||, when DM-
SWA is outside the ROI, i9. Using some simplifying assumptiois-2 and A-3 below) we can show
that this rate of reduction applies, on average, alsavta), not only to the worst-case bound. is
important to notice that these assumptions are valid onljhénsteady-state. A-2 is a part of the widely
used independence assumptions in adaptive filter theotlyAe®is a reasonable steady-state assumption,

mainly in the case of ~ 1 [27], [28].
A-2 The coefficient vectow(n—1) is independent oR ! (n)u(n)u’(n) in the steady-state.
A-3 Using (8), we consider valid the approximation

E{R ' (n)u(n)u”(n)} ~ (1 — ML (42)

Then, to obtain a model for the reduction of the coefficierttorin the mean, outside the ROI, we
first rewrite (25) as

w(n) = [I ~ R (n)u(n)u’ (n)] win — 1). (43)
Taking the expectations of both sides of (43), using A-2 ar8, Ave obtain
E{w(n)} ~ AE{w(n —1)}. (44)

This approximation shows that the mean of the coefficientoreaf DM-SWA decreases exponentially
with time outside the ROI, with rata”.

When the persistence excitation condition is satisfied and®WNA is implemented in infinite-precision
arithmetic, Theorem 1 establishes that the equalizer comits are bounded. However, if DM-SWA is
implemented in finite precision, it can diverge due to nucarproblems. Moreover, its computational
cost increases linearly with/2, which is a disadvantage when compared to fast algorithmsolve these
problems, in the next section, we obtain a fast version of S8WA. The new algorithm is numerically
well-behaved even when implemented in finite-precisiotharetic and has a computational cost which
increases linearly with\/. Thus, it avoids the two causes of divergence of SWA and hastivantage

of being fast.
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IV. A DUAL-MODE LATTICE SWA

It is well-known in the literature that one of the problemstbé conventional RLS algorithm is its
numerical instability, which can arise because of the ldsthe numerical compatibility in the update
of ﬁ*l(n) [5]. Through changes of coordinates, the state-space semi@ion of the conventional RLS
algorithm can be transformed to an unlimited number of systevith the same input-output relation, and
hence solving the same least-squares problem. Althougthedle realizations are equivalent in infinite
precision, the numerical behavior will vary from one coaate system to another [9]. Thus, the numerical
instability of the conventional RLS can be avoided by chogsirconvenient transformation on the state-
space representation.

Since (22) is equivalent to the state-space representafidhe conventional RLS, the changes of
coordinates usually applied to obtain numerically staldesins of RLS can also be used to obtain
numerically stable versions of SWA and DM-SWA. Since a cowte system based on the Cholesky
decomposition oﬁ—l(n) leads to a fast and stable version of RLS [9], we chose it toimldast and

stable version of DM-SWA. Thus, we use the following tramsfation matrix

K "(n) 0
0" 1

L(n) =

The matrixK(n) appears in the Cholesky factorization ﬁfl(n) and is a lower triangular matrix with

ones along its main diagonal and zeros above the main diggiveanonzero elements of each row,
except for complex conjugation, are equal to the weights tlaekward prediction-error filter whose
order corresponds to the position of that row in the matrix [Eefining v(n) £ K=" (n)w(n), (22) can

be rewritten as

v(n) Av(n —1)
=Y (n) : (45)
d*(n) — y(n) d*(n)
whereY (n) = L(n)T'(n)L~(n — 1).

The realization (45) is equivalent to (22) and can be usedmplement DM-SWA using a lattice
structure. The resulting algorithm is named dual-moddcEtSWA (DM-LSWA). Each lattice stage
provides prediction errors in its output [5]. The literauwontains different versions of algorithms to obtain
prediction errors from the observed sequekeén)}. The modified EF-LSL presents reliable numerical

properties, even in the absence of persistent excitatidmduien implemented in finite-precision arithmetic

[10].
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Thus, DM-LSWA, summarized in Table Il, uses the modified EF-lalgorithm of [10] for the prediction
section. The variable§E! (n), ¥;, k/(n)) and (E'(n), v;(n), k’(n)) represent respectively, energies,
priori prediction errors and reflection coefficients of the forwand backward predictions. The conversion
factors are they;(n). The variablesH,b, f, f) were introduced to reduce the computational complexity of
the algorithm [10]. To ensure robust numerical behaviohm prediction section, it is necessary to avoid
divisions by values close to zero in their computations.his end, we add a small positive constaro
the denominators, whose value depends on the implementatéxision. In generak, = 2~ should be
employed for input signals satisfying2"/? < u(n) < 2¥/2, with k being an integer andé the mantissa
wordlength to which the energies are quantized [10].

For the joint estimation sectiony(n) = w”(n—1)u(n) can be rewritten ag(n) = v”(n — 1)¥(n),
wherey(n) = K(n — 1)u(n) is thea priori backward prediction error vector. The estimation ergrs
i=1,2,---,M —1 are obtained from the backward prediction errors and théiceats v;(n — 1). The
zero-order estimation error & = d(n).

The variables, which are initialized with non null valuese disted at the top of Table II. Using the
same initialization for the vector(—1) as forw(—1) (the center-tap initialization method), and choosing
the initial energiess/ (—1) and E?(—1),i = 0,..., M — 1, equal to the same small positive constamais
for P(—1), DM-LSWA and DM-SWA will present close performance in infatprecision arithmetic. The
computational cost per iteration of DM-LSWA is shown in Tabll for real and complex-valued data,
and considering the number of real multiplications, realitiohs, real divisions, and comparisory.(As
its computational cost increases linearly with, DM-LSWA can be interpreted as a fast version of DM-
SWA. Furthermore, as the modified EF-LSL algorithm of [LOMILSWA has an inherent parallelism

that can be advantageously exploited for fast implemeontati



MIRANDA, SILVA, AND NASCIMENTO: ON THE STABILITY OF THE SHALVI-WEINSTEIN ALGORITHM

TABLE Il
SUMMARY OF DM-LSWA

Initialization:
v(=1)=[0---010 ---0]7
El(-1)=E!(-1)=6,i=0,...,M —1

for n=0,1,2,3,... do:

Yo = 1po(n) = u(n)

Yo =1

for : =0:M—1,
b=1in—1)v
f=vv
E¥n—1) = AEXn —2) + bapj(n —1)
El(n) = AEl(n — 1) + f 97
b="b/(e+ EYn —1))
f=f/(e+ E{(n)
Yit1 =i —bb”
Lattice:
Yiri(n) = Pin — 1) — k'(n — 1)0;
197;+1 = 192 — sz*(n — 1)wz(n — 1)
ki (n) = ki(n —1) + foi(n)
kf(n) = kl(n — 1) + b9},
Joint estimation:
Cir1 =& —Yin—1)vi(n—1)
vi(n — 1) = vi(n —2) + b &y

end

y(n) = v(n - 1)3(n)

z(n) = (ly(n)|* — BCT1)/(r — BCT1)

if z(n) >0

(n) = x(n) y(n)

d(n) =0
end
end

TABLE 11l

COMPUTATIONAL COST PER ITERATION OFDM-SWA AND DM-LSWA.

Real-valued data

Algorithm X + | C
DM-SWA M? +5M +4 M?4+3M +1 1 |1
DM-LSWA 14M + 3 12M oM | 1

Complex-valued data
Algorithm X + = | C
DM-SWA | 4M? +16M +8 | 4M* +12M +4 | 1 | 1
DM-LSWA 46 M + 7 39M 41 aM |1
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V. SIMULATION RESULTS

To verify the influence of the arithmetic precision, we impknted the algorithms in floating point,
in Matlab with 64 or 32 bits. The precision is indicated asssuipts (e.g., SW4). We label a given
run of the algorithms as “diverging” if(n) overflows (we check foNaNs). For a given algorithm, the
mean-squared error (MSE) is estimated from an ensemblag®f10? independent runs af(n). On the
other hand, the squared error (SE) corresponds to only anefre(n) filtered by a moving-average filter.
For complex data, since constant-modulus-based algasitme insensible to random phase rotations, we
include a phase correction algorithm. For simplicity, we tise phase tracking algorithm [29], [30], which

provides the following phase update equation

p(n+1) =p(n) + pplm{g(n)a*(n — 7a)}, (46)
wherey(n) = y(n)e %™, 1, is the step-size, antin{ -} stands for the imaginary part of a complex
number.

Fig. 2 shows the MSE curves for SWA DM-SWA;,, and DM-LSWA;,, considering the transmission
of binary signals (2-PAM - pulse amplitude modulation) thgh the non-minimum phase chandé(z) =
0.1 + 271 +0.1272 with a signal-to-noise ratio (SNR) of 50 dB. The equalizer has= 11 coefficients
initialized with only one non-null element (equal to one)tive sixth position.The channel model and
the length of the equalizer were obtained from the computperment of [5, p. 455] withV = 2.5152.
Although H(z) is a non-minimum phase channel, its amplitude distortiomoislarge.In Figures 2-(a), 2-
(b), and 2-(c), we vary the value of the forgetting factor add a constant at a specific sample of the input
signalu(n). This added constant causes divergence in gVéhd makes DM-SW4A and DM-LSWA;,
leave the ROI. However, as established by Theorem 2 and BY. @B1-SWAg, and DM-LSWA;, return
to the ROI with a rate that depends on the forgetting factimceSthere is no divergence due to numerical
problems, these algorithms present the same performamégég.| 2-(d), we show a histogram of the MSE
for the final10? iterations of DM-SWA, and DM-LSWA;, for the case of Fig. 2-(a). One can observe that,
after the perturbation at = 2500, the algorithms may converge back to different minima: DW/;
and DM-LSWA;, reached the minimum withISE ~ —41 dB in 767 of the 1000 independent runs, the
minimum with MSE ~ —31 dB in 123 of the 1000 runs, and the minimum witMSE ~ —12 dB in
110 of the 1000 runs. This behavior leads to the steady-state MSE of apmiately —20 dB after the
perturbation, as observed in Fig. 2-(a). Note that the peation is equivalent to a new initialization for
DM-SWA3;, and DM-LSWA;,. This convergence to different minima is a common problencafstant-

modulus-based algorithms, and occurred only foe 0.9. For A > 0.99, the new algorithms always
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returned to the same steady-state performance of the etesendrage of SW4 before the perturbation.
Thus, besides avoiding divergence, (24) does not causeimgéanchanges in the performance of the

algorithm since a quick return to the region of interest wiasags observed.

@
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Fig. 2.  MSE for SWA4, DM-SWA32, and DM-LSWAg,, assuming (@A = 0.9, u(2500) = 10; (b) A = 0.99, «(5000) = 10; (c)
X = 0.999, ©(10000) = 20; (d) Histogram of MSE for the final0® iterations of DM-SWA, and DM-LSWAg, for the case (a)f = 1,
e =1.2 x 107°; mean of10® independent runsf (z) = 0.1 + 2z~ ' + 0.1z72, SNR=50 dB;M = 11, 2-PAM .

Fig. 3 shows a histogram of the divergence timeffiot independent runs of SWA, DM-SWA, LSWA
and DM-LSWA, all implemented with 64 bits of arithmetic pigon. We assume the transmission of
4-QAM (quadrature amplitude modulation) signals throulgé thannelH (z) = 0.1 + 2! + 0.1272 with
SNR = 30 dB. Again, the equalizer had/ = 11 coefficients initialized with only one non-null element
in the sixth position, but the non-null element is equal t6. I'his simulation scenario was carefully

2We call LSWA the algorithm of Table Il without the conditional statement (i#,, LSWA always usesl(n) = d(n) = z(n)y(n)
independently of the sign af(n).
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chosen to highlight the two causes of divergence of SWA. Tikergence due to the inconsistency in
the nonlinear estimate of the transmitted signainisre likely to occur at the first iterations, when the
algorithm is still far from a minimum. This cause of divergeneads SWA and LSWA to diverge in 594
of the 1000 independent runs, but it is avoided by DM-SWA ard-DSWA through the use of (24).
The divergence due to the loss of the numerical compatibiitthe update ofﬁ—l(n) occurs around
n = 3 x 10%. This numerical problem causes divergence in SWA and DM-SWAen SWA “survives” to
the divergence due to the nonlinearity, it diverges due &rtmerical problem, which happens in 406
of the 1000 runs. DM-SWA also diverges in all the 1000 indejeeh runs but only due to the loss of the
numerical compatibility. DM-LSWA never diverges since @nobines the numerical robustness of LSWA
with the capability of DM-SWA of rejecting inconsistent isates of the transmitted signal. This behavior
also occurs when the algorithms are implemented with 32dbigsithmetic precision. The only difference

is that the divergences due to the numerical problem ocaliegaroundn = 10%.

Again, Fig. 4 shows a histogram of the divergence timelfdr independent runs of SWA, DM-SWA,
LSWA, and DM-LSWA, but now implemented with 32 bits. We al$mose a different simulation scenario:
transmission of non-constant modulus signals (16-QAM)ufgh the non-minimum phase chanig(z) =
(0.37—50.06) + (0.47 +50.70)2~' 4 (0.37 — 50.06) 2 in the absence of noise. The equalizer has= 23
coefficients initialized with only one non-null element (adjto 0.05) in the 12th position. The two causes
of divergence of SWA are again highlighted. Only DM-LSWA & both causes of divergence. Due to
the lower-precision arithmetic, the divergence due to therical problem occurs around= 8 x 103.

Using 64 bits, this kind of divergence occurs later, around 2.8 x 10*.
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Fig. 3. Histogram of the divergence time fod® independent runs of SWA, DM-SWA, LSWA, and DM-LSWA; 64 bits= 0.999, § = 1,
€=6.5x107", p, = 1073, M = 11; 4-QAM; H(z) = 0.1+ 2~ +0.1z272, SNR=30 dB.
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Fig. 4. Histogram of the divergence time foh® independent runs of SWA, DM-SWA, LSWA, and DM-LSWA; 32 bits= 0.999, § = 5,
e=52x107°% u, =107% M = 23; 16-QAM; H(z) = (0.37 — j0.06) + (0.47 + j0.70)z~* + (0.37 — 50.06)22, absence of noise.

In Fig. 5, we show the squared error for one run of the SWA and®NMA, implemented with 64 and 32

bits, and DM-LSWA, implemented with 32 bits. We assume tlamgmission of 4-QAM signals through

the channelH(z) = 0.1 + 27! + 0.1272 with SNR = 50 dB. The equalizer hag/ = 11 coefficients

initialized with only one non-null element (equal to 1) inetlsixth position. This simulation scenario

was chosen to avoid the divergence at the first iterationstdube nonlinearity and to emphasize the
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divergence due to the numerical problem. To facilitate tiseialization, the SE curves were filtered by
a moving-average filter with024 coefficients. We can observe that SyyAand DM-SWA, present the
same numerical behavior, diverging around- 3 x 10*. The same occurs with SWAand DM-SWA;,,
but the divergence happens around= 10*. DM-LSWA3, does not diverge and maintains its numerical

robustness, even implemented with 32 bits.

25 -
'l = — —SWA
* * 64
SWA
30f ox 2 32
; ' % DM-SWA,,
= -35 X "I‘ DM-LSWA
E)J 32

0 1 2 3 4
iterations X 104

Fig. 5. SE for SWA (64 and 32 bits), DM-SWA (64 and 32 bits), and DMAIS (32 bits); A = 0.999, 6 = 1, €4 = 6.5 x 10716,
€32 =3.5x 1077, pp = 1073, M = 11; 4-QAM; H(z) = 0.1 + 2z~ +0.1z272, SNR=50 dB.

Fig. 6 shows simulation results considering the transmissif a binary signal (2-PAM) through a
linear and time-variant channél (z, n) = ho(n) +hi(n)z=" + ha(n)z=2, with h2(n) +h3(n) + h3(n) = 1.
We assume a Rayleigh fading channel with fast variation (mer Doppler spread, = 80 Hz) and
SNR = 25 dB [6, p. 401]. The absolute values of the roots/gfn)z2 + hi(n)z + ho(n) are shown in
Fig. 6-(a) so that error bursts can be associated with rapaash@es of these roots or deep spectral nulls,
which occur when both roots are on the unit circle (absolaieesequal to one is indicated by a straight
line). We compare the performance of SyAwith that of DM-LSWAs,. Fig. 6-(b) shows the squared
error filtered by a moving-average filter with 512 coefficeefdr each algorithm. The equalizer outputs
are shown in Figures 6-(c) and 6-(d) for S¥Aand DM-LSWA;,, respectively. We can observe from
the sign ofz(n), shown in Fig. 6-(e), that there are iterations in which DIEWA;, leaves the ROI,
but quickly returns to it. Generally, these iterations caile with critical situations associated with error
bursts. The figure also shows that, little before S\WWBecame unstable, DM-LSWA makesd(n) = 0,

thereby avoiding divergence. Although the channel is timgant, it has unit norm for all time instant,

which is a favorable condition for SWA
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Fig. 6. (a) Absolute root values of a Rayleigh channel (3 coefficiamytsibol periodl” = 0.8us, maximum Doppler spreadip, = 80 Hz,
SNR = 25 dB); (b) SE in dB for SWA4 and DM-LSWAg,; Output of the equalizer for (c) SWA and (d) DM-LSWA;.; (e) Sign ofz(n)
for DM-LSWA32; 2-PAM; A = 0.85, § = 0.1, e = 4.4 x 1077, M = 11.

The simulation results presented here are also valid féeréit channels, transmitted-signal constel-
lations, and values of the forgetting factor. In all thesations, DM-LSWA remained stable and did

not break down, although it did not present useful perforreaior low \ values due to large estimation

errors.
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VI. CONCLUSION

We show that the divergence of SWA can be caused by (i) instergiy in the nonlinear estimate
of the transmitted signal, or (ii) loss of numerical compéity in the update of the inverse of the
autocorrelation matrix. The divergence of SWA due to (i lthe same origin as in the RLS algorithm.
Thus, the proposed solutions in the literature to solve phablem in the conventional and fast RLS
algorithms can be used directly to solve (ii). To avoid dijece due to (i), we proposed DM-SWA,
which works as the conventional SWA in the first mode of openaand rejects non-consistent estimates
of the transmitted signal in the second mode. Although DMASHges not diverge due to (i), it can still
diverge due to (ii). Assuming the persistence of excitatondition, we proved, through a deterministic
analysis, that DM-SWA is stable in infinite-precision anitbtic. Furthermore, if the algorithm leaves the
first mode of operation, it will return to it in finite time. Thiproperty guarantees that the new algorithm
is not trading off performance for robustness, as our sitimla confirm. To solve (i) and to obtain
an algorithm with reduced computational cost, we proposBtiLI3SWA, which avoids divergence even
when implemented in finite precision, and maintains the ecgence rate of DM-SWA. In spite of the
lack of a proof for the numerical stability for the predigtisection of DM-LSWA, the algorithm never
diverges when implementeas in Section IV It is relevant to notice that other methods for ensuring
numerical stability in RLS algorithms could also be employede. For example, we could use the QR-
based methods, whose stability proofs are available initbeiure. The procedure used to remedy the
problem (i) can also be extended to other constant-mochased algorithms. Recently, we extended this
idea in [31] to avoid divergence in a normalized version of CMAowever, in this case, the stability

analysis of the algorithm is not a straightforward extensib that presented here.
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