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Abstract

The most popular algorithms for blind equalization are the constant-modulus algorithm (CMA) and the Shalvi-

Weinstein algorithm (SWA). It is well-known that SWA presents a higher convergence rate than CMA, at the expense

of higher computational complexity. If the forgetting factor is not sufficiently close to one, if the initialization is

distant from the optimal solution, or if the signal-to-noise ratio is low, SWA can converge to undesirable local minima

or even diverge. In this paper, we show that divergence can becaused by the inconsistency in the nonlinear estimate

of the transmitted signal, or (when the algorithm is implemented in finite precision) by the loss of positiveness

of the estimate of the autocorrelation matrix, or by a combination of both. In order to avoid the first cause of

divergence, we propose a dual-mode SWA (DM-SWA). In the firstmode of operation, the new algorithm works as

SWA, and in the second mode, it rejects non-consistent estimates of the transmitted signal. Assuming the persistence

of excitation condition, we present a deterministic stability analysis of the new algorithm. To avoid the second

cause of divergence, we propose a dual-mode lattice SWA (DM-LSWA), which is stable even in finite-precision

arithmetic, and has a computational complexity that increases linearly with the number of adjustable equalizer

coefficients. The good performance of the proposed algorithms is confirmed through numerical simulations.
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I. I NTRODUCTION

Adaptive equalizers are widely used in modern digital communications systems to remove intersymbol

interference introduced by dispersive channels. Over the last decades, this has been an area of intense

research in the signal processing community (see, e.g., [1]–[4] and the many references therein). The

performance of an adaptive equalization algorithm can be evaluated by different factors such as accuracy

of the steady-state solution, convergence rate, tracking abilities, computational cost, numerical robustness,

stability, etc. [5], [6]. The design of an adaptive algorithm for supervised or blind equalization with a

good tradeoff among these factors is a problem of wide interest.

In supervised equalization, the least-mean-squares (LMS)and the recursive least-squares (RLS) al-

gorithms are the most popular for the adaptation of finite impulse response (FIR) equalizers [5]. It

is well-known in the literature that these algorithms present a tradeoff between convergence rate and

computational cost, which tends to be less critical when fast versions of RLS are compared to LMS [5].

Among the members of the fast RLS family, the fast QR-RLS [7] and the error feedback least-squares

lattice (EF-LSL) [8] algorithms are the most attractivein terms of numerical stability and computational

cost. The former uses the QR factorization of matrices and is numerically stable as shown analytically in

[9] from a backward stability perspective. The latter is numerically well-behaved even in finite precision,

although no proof of its numerical stability is known [10]. Moreover, its computational cost is slightly

lower than the fast QR-RLS algorithm.

In blind equalization, there is no training data and the algorithms may update the equalizer coefficients

using higher-order statistics (HOS) of the transmitted signal. A simplified communications system with a

blind equalizer based on HOS is depicted in Figure 1 [3]. The signal a(n), assumed iid (independent and

identically distributed) and non Gaussian, is transmittedthrough an unknown channel, whose model is

constituted by an FIR filterH(z) and additive white Gaussian noiseη(n). From the received signalu(n)

and the known HOS of the transmitted signal, the blind equalizer must mitigate the channel effects and

recover the signala(n) for some delayτd. The equalizer output is given byy(n) = wHu(n), whereu(n)

is the input regressor vector,w the equalizer weight vector (both column vectors withM coefficients),

and the superscriptH denotes complex conjugate transposition.

In this context, the constant-modulus algorithm (CMA) [11],[12] and the Shalvi-Weinstein algorithm

(SWA) [13] are the most popular. CMA is a stochastic gradient algorithm obtained from the minimization

of the CM cost function defined as

JCM = E
{
(|y(n)|2 − r)2

}
, (1)
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Fig. 1. Schematic representation of a communications system with blind equalizer.

whereE{·} stands for the expectation operation andr = E{|a(n)|4}/E{|a(n)|2}. SWA was originally

derived in [13], using empirical cumulants in the minimization of the SW cost function defined as

JSW =
Cy

2,2

(Cy
1,1)

2
, (2)

where

Cy
2,2 , E{|y(n)|4} − βE{|y(n)|2}2

and

Cy
1,1 , E{|y(n)|2}

are the cumulants ofy of order(2, 2) and(1, 1), respectively, andβ = 2 (resp.,β = 3) for complex (resp.,

real) data. As shown in [14], under certain conditions, the SW cost function reduces to the CM cost

function. Thus, CMA and SWA seek to optimize the same criterion. Hence, SWA can also be interpreted

as a constant-modulus-based algorithm which uses an approximation for the Hessian matrix, i.e., it can

be considered as a quasi-Newton-type algorithm [13], [15].

Based on the link between blind equalization and classical adaptive filtering of [16], CMA and SWA

can be viewed as the blind versions of LMS and RLS, respectively. Hence, they also have a tradeoff

between convergence rate and computational cost. Thus, SWAhas a higher convergence rate than that of

CMA, at the expense of higher computational complexity. Due to the multimodality of theSW (resp., CM)

cost function, an inadequate choice of the forgetting factor (resp., step-size) of SWA (resp., CMA), an

initialization distant from the zero-forcing solution, and a low signal-to-noise ratio are three factors which

can lead both algorithms to diverge (i.e., the norm of the weight vector goes to infinity) or to converge to

undesirable local minima. Many important results on the convergence and stability of constant-modulus-

based algorithms have been obtained in the literature (see,e.g., [3], [17]–[21] and the references therein).

However, the major part of these results is focused on analyses of CMA. Little has been done to avoid

divergence of these algorithms, mainly in the case of SWA.
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In this work, we show that the divergence of SWA has two different causes: (i) inconsistency in the

nonlinear estimate of the transmitted signal, and (ii) the loss of numerical compatibility in the update of

the inverse of the autocorrelation matrix, as occurs in RLS. We also propose solutions for both problems.

First, using a representation equivalent to the state-space representation of the RLS algorithm [9] and

temporarily assuming infinite-precision arithmetic (so that (ii) does not occur), we find conditions to

ensure the stability of SWA, and we propose a dual-mode algorithm, denoted by DM-SWA. In the first

mode of operation, the proposed algorithm works as SWA. In the second mode, it does not use the estimate

of the transmitted signal, updating the coefficient vector with an error proportional to the equalizer output.

Assuming the persistence of excitation condition, we show that DM-SWA is stable in infinite-precision

arithmetic. Second, inspired in [9] and [10], we propose a dual-mode lattice SWA (DM-LSWA), which

maintains the convergence rate of SWA, avoids divergence even when implemented in finite precision,

and whose computational cost increases linearly withM . As happens for EF-LSL, we do not provide a

stability proof for DM-LSWA in finite-precision arithmetic. However, results of exhaustive simulations

show that DM-LSWA presents reliable numerical results, avoiding both causes of divergence. Some of

our results were published as a conference paper in [22]. In this paper, we extend our previous results by

providing a stability proof for the infinite-precision filter and considering complex data.

The paper is organized as follows. In Section II, SWA is derived from the minimization of a deterministic

cost function, reinforcing the link with the RLS algorithm. Based on this link and on the well-founded

results on the RLS algorithm, DM-SWA is introduced and a stability analysis is presented in Section III.

Then, in Section IV, we propose DM-LSWA, a fast and numerically stable version of DM-SWA. In

Section V, we present some simulation results, comparing the proposed algorithms to the conventional

SWA in different situations. The main conclusions of the paper are presented in Section VI.

II. REVISITING SWA

SWA was originally obtained in [13] through the minimization of (2), using empirical approximations

for the cumulants. However, in order to reinforce the link between SWA and the RLS algorithm, SWA is

revisited in this section from a least-squares perspective. This link is obtained by deriving SWA from the

minimization of a deterministic cost-function (much as RLS solves a deterministic least-squares problem

[5]), and will help us extend to SWA some of the well-known methods to avoid numerical instability in

RLS.

It was shown in [14] that the SW cost function reduces to the CM cost function under certain conditions.

In a different approach, we show below that SW may be obtainedfrom a deterministic version of the CM
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cost function, that is,

J(n) =
n∑

ℓ=0

λn−ℓ(|yn,ℓ|
2 − r)2, (3)

whereyn,ℓ , wH(n)u(ℓ) and0 ≪ λ < 1 is a forgetting factor.

Equating the gradient ofJ(n) with respect tow(n) to the null vector, we get the normal equations

rR̂(n)w(n) = p(n), (4)

where

R̂(n) =
n∑

ℓ=0

λn−ℓu(ℓ)uH(ℓ), (5)

p(n) =
n∑

ℓ=0

λn−ℓ|yn,ℓ|
2y∗n,ℓu(ℓ), (6)

and∗ stands for complex conjugate.

In order to obtain an update equation forw, we define

∆w(n) = w(n) − w(n− 1) (7)

and use the updating of̂R(n), which is given by

R̂(n) = λR̂(n− 1) + u(n)uH(n). (8)

The matrixR̂ is initialized asR̂(−1) = δ I, whereI is theM -by-M identity matrix, andδ is a small

positive constant. Thus, using (7) and (8), the left-hand side of (4) can be rewritten as

rR̂(n)w(n) =rR̂(n)∆w(n) + λrR̂(n−1)w(n−1) + ry∗(n)u(n), (9)

wherey(n) , yn−1,n = wH(n− 1)u(n).

For convenience, we define

∆yn,ℓ , |yn,ℓ|
2yn,ℓ − |yn−1,ℓ|

2yn−1,ℓ (10)

and rewritep(n) as

p(n) =
n∑

ℓ=0

λn−ℓ
[
∆y∗n,ℓ + |yn−1,ℓ|

2y∗n−1,ℓ

]
u(ℓ). (11)

After some algebraic manipulations in (11), we get

p(n) = λp(n− 1) + |y(n)|2y∗(n)u(n) + ρ(n), (12)
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where

ρ(n) ,

n∑

ℓ=0

λn−ℓ∆y∗n,ℓu(ℓ). (13)

Using (9), (12), (13), and assuming thatw(n− 1) satisfies (4) at time instant(n−1), we rewrite (4) as

rR̂(n)∆w(n) − ρ(n) = e∗(n)u(n), (14)

where

e(n) =
[
|y(n)|2 − r

]
y(n). (15)

To proceed, we obtain an approximation forρ(n), similar to the approximations used in [13] and [23].

To this end, we assume that the cumulant

c , E{|y(n)|2y∗(n)u(n)} − βCy
1,1E{y

∗(n)u(n)} (16)

can be approximated at the time instantn, replacing expectations with empirical averages, i.e.,

ĉn,k =
n∑

ℓ=0

λn−ℓ|yk,ℓ|
2y∗k,ℓu(ℓ) − βCa

1,1R̂(n)w(k). (17)

As usual, we replacedCy
1,1 by Ca

1,1 = E{|a(n)|2}. The difference between (17) and the corresponding

approximations in [13] and [23] is that we use an exponentialwindow instead of a rectangular window.

Using k = n and k = n − 1 in (17) and assuming thatn is large enough such that̂cn,n ≈ ĉn,n−1, we

obtain

ρ(n) ≈ βCa
1,1R̂(n)∆w(n). (18)

Then, replacing (18) in (14), we arrive at

w(n) = w(n− 1) +
1

r − βCa
1,1

e∗(n)R̂−1(n)u(n). (19)

It is important to observe that:

1) Eq. (19) characterizes SWA and was originally obtained in[13] through the minimization of (2),

using empirical approximations for cumulants. Some of these approximations are similar toc ≈

(1 − λ)ĉn,k, with k = n− 1 or k = n;

2) as in RLS, the inverse matrix̂R−1(n) is obtained via the matrix inversion lemma applied to (8) [6,

p. 67];

3) the constellationa(n) in practice is sub-Gaussian, ensuring that the denominator(r−βCa
1,1) in (19)

is always negative [6], [13];

4) the link between SWA and RLS is reinforcedthrough the deterministic cost function (3) and

the derivation of SWA presented here. Different from RLS, which provides an exact solution for
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the least-squares criterion, (19) is not an exact solution for the minimization of (3) due to the

approximation (18).

III. A DUAL -MODE SWA

In order to avoid divergence in SWA and derive a robust and dual-mode version of the algorithm, we

rewrite (19) in the form of a supervised algorithm, i.e.,

w(n) = w(n− 1) + [d(n) − y(n)]∗ R̂−1(n)u(n), (20)

definingd(n) , x(n)y(n) and

x(n) ,
|y(n)|2 − βCa

1,1

r − βCa
1,1

. (21)

Note that (20) has the same structure as that of the RLS algorithm. Thus, using the state-space represen-

tation of the RLS algorithm [9], after some algebra, (20) can be rewritten as


 w(n)

d∗(n) − y∗(n)



 = Γ(n)



 λw(n− 1)

d∗(n)



 , (22)

where

Γ(n) =



 R̂−1(n)R̂(n− 1) R̂−1(n)u(n)

−λ−1uH(n) 1



 . (23)

From (22), we can observe that:

1) Γ(n) is the same as the state-transition matrix of the RLS algorithm [9].

2) d(n) can be interpreted as an estimate of the desired response (transmitted sequence). Different from

the RLS algorithm whered(n) does not depend on the filter outputy(n), here, it is obtained from

a nonlinear function that depends ony(n) and on the HOS of the transmitted sequencea(n).

Since numerical instability in RLS arises in the recursion for R̂−1(n) (obtained by applying the matrix

inversion lemma to (8)) [9], and this recursion is the same for SWA and RLS, SWA may also diverge

in finite-precision arithmetic. This observation is reinforced by the similarity of recursion (22) to its

equivalent for RLS (the state-transition matrixΓ(n) is the same in both cases). In addition, SWA can also

diverge because of the nonlinear nature of its recursion, since d(n) depends ony(n)|y(n)|2. This effect

is similar to the instability problems of CMA and the least mean fourth algorithm (LMF), in whichy(n)

is also fed back through a cubic function [21], [24].

Thus, SWA can diverge due to (i) the nonlinear feedback of thefilter output (as LMF and CMA);

and (ii) finite arithmetic problems (as RLS). A combination ofboth causes of divergence can also occur.
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This will become clearer from the analysis further ahead, and also from the simulations, in which we use

histograms of the time-before-divergence in several runs of SWA and of the modified versions (DM-SWA,

LSWA, and DM-LSWA) to separate the two causes of divergence.

In the literature, there are different techniques to ensurethe numerical consistency in the update of

R̂−1(n) as is the case of some versions of RLS algorithms that use the QRdecomposition and guarantee

implicitly the existence ofR̂−1(n) even for poorly exciting input sequences [5], [9]. In the remainder

of this section, we assume that (ii) does not occur and focus on the first cause of divergence. A blind

equalization algorithm that ensures the positiveness ofR̂−1(n), even when implemented in finite-precision

arithmetic, is considered in Section IV.

Note thatboth d(n) and y(n) represent estimates of the desired response. Thus, it is reasonable to

assume that these two estimates will be consistent only if they have the same sign, which is equivalent

to requiring the correction factorx(n) to be always positive. Since the denominator ofx(n) is always

negative,x(n) ≥ 0 occurs when|y(n)|2 ≤ βCa
1,1. Our proposal to remove the first cause of instability in

SWA is to restrictx(n) to be positive. To this end, we define

d̄(n) =





d(n), |y(n)|2 ≤ βCa

1,1

0, otherwise
(24)

and we usēd(n) instead ofd(n) in (20). Thus, whend(n) andy(n) are consistent, we use (20) unmodified

with d̄(n) = d(n) = x(n)y(n). In this case, we say that the algorithm is in theregion of interest(ROI).

On the other hand, whenx(n) < 0 (|y(n)|2 > βCa
1,1) the estimated(n) is rejected, i.e.,̄d(n) = 0 and (20)

reduces to

w(n) = w(n− 1) − y∗(n)R̂−1(n)u(n). (25)

The proposed dual-mode algorithm, denoted by DM-SWA, is summarized in Table I, whereP(n) ,

R̂−1(n). Its computational cost per iteration is shown in Table III (see Section IV) for real and complex-

valued data, and considering the number of real multiplications, real additions, real divisions, and com-

parisons (C). The estimated number of operations per iteration of DM-SWA depends on the manner in

which the calculations are performed. To obtain the computational cost of Table III, we assumed that the

DM-SWA calculations are performed as for the RLS algorithm described in [6, Sec. 5.9].

A stability proof for DM-SWA is presented in the sequel. It isrelevant to notice that it may converge

to a good or a poor stationary point [3], [17], [18], that is, it still presents the problems of possible

convergence to local minima, common to constant-modulus-based algorithms. The advantage is that the

new algorithm will keep the filter weights bounded in infinite-precision arithmetic.
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A stability analysis for DM-SWA

We show that the Euclidean norm of the coefficient vector‖w(n)‖ of DM-SWA is bounded for all

initial conditions if the inputu(n) satisfies a persistence of excitation condition. We also show that if

y(n) leaves the ROI for any reason (poor initial condition or large noise sample, for example), DM-SWA

is guaranteed to return to the ROI after a finite-time interval. Our only assumption is the persistence of

excitation condition below, which is a widely-used condition for deterministic stability of adaptive filters

[5], [9], [25], [26].

A-1 The input sequence{u(n)} is persistently exciting if there existα and ζ with 0 < α ≤ ζ <∞, such

that 1,

αI ≤ R̂(n) ≤ ζI, ∀n ≥ −1.

As consequences of A-1, we have that

1) the spectral norms of̂R−1(n) and ofR̂(n) satisfy

‖R̂−1(n)‖ ≤ α−1 and ‖R̂(n)‖ ≤ ζ; (26)

TABLE I

SUMMARY OF DM-SWA.

Initialization:

w(−1) = [0 · · · 0 1 0 · · · 0]T , 0 ≪ λ < 1,

P(−1) = δ−1
I, δ: small positive constant

for n = 0, 1, 2, 3, ... do:

y(n) = w
H(n− 1)u(n)

x(n) =
|y(n)|2 − βCa

1,1

r − βCa
1,1

if x(n) ≥ 0,

d̄(n) = x(n)y(n)

else

d̄(n) = 0

end

ē(n) = d̄(n) − y(n)

P(n) =
1

λ

»

P(n− 1) −
P(n− 1)u(n)uH(n)P(n− 1)

λ+ uH(n)P(n− 1)u(n)

–

w(n) = w(n− 1) + ē∗(n)P(n)u(n)

end

1Given two matricesA and B of dimensionsM × M , the inequalityA ≥ B means that the matrix difference(A−B) is positive

semi-definite.
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2) the Euclidean norm of the regressor vetoru(n) is bounded from above, i.e.,

0 ≤ ‖u(n)‖ ≤ Bu <∞, Bu > 0. (27)

From (24), under Assumption A-1 the absolute value ofd̄(n) is bounded from above, i.e.,

0 ≤ |d̄(n)| <
βCa

1,1

βCa
1,1 − r

√
βCa

1,1 = Bd <∞. (28)

The bound (28) is obtained from the maximum values thatx(n) and |y(n)| can assume in the ROI. In

this case, we havemax{x(n)}=βCa
1,1/(βC

a
1,1 − r) andmax{|y(n)|} =

√
βCa

1,1. Note that the maximum

value of |y(n)| corresponds tox(n)=0, and consequently this is a very conservative bound. Furthermore,

when the algorithm is outside the ROI,̄d(n) = 0. Hence, (28) is valid independently of the operation

mode of DM-SWA.

Theorem 1 Under the persistence of excitation condition (AssumptionA-1), the Euclidean norm of the

coefficient vector of DM-SWA has the following upper bound

‖w(n)‖ <
1

α

[
λn+1 ζ ‖w(−1)‖ +

BdBu

1 − λ

]
<∞, (29)

which ensures the stability of the algorithm, independentlyof the operation mode.

Proof: Using (22), we get

w(n)=λR̂−1(n)R̂(n−1)w(n−1) + d∗(n)R̂−1(n)u(n). (30)

Multiplying both sides of (30) on the left bŷR(n), we obtain

R̂(n)w(n) = λR̂(n− 1)w(n− 1) + d∗(n)u(n). (31)

Defining q(n) , R̂(n)w(n), (31) can be rewritten more compactly as

q(n) = λq(n− 1) + d∗(n)u(n). (32)

Considering the initial conditionq(−1), (32) can be rewritten as

q(n) = λn+1q(−1) +
n∑

ℓ=0

λn−ℓd∗(ℓ)u(ℓ). (33)

Multiplying both sides of (33) bŷR−1(n), i.e., returning tow(n), we obtain

w(n) =λn+1R̂−1(n)R̂(−1)w(−1) + R̂−1(n)
n∑

ℓ=0

λn−ℓd∗(ℓ)u(ℓ). (34)

Applying the triangle inequality to (34), we arrive at

‖w(n)‖ ≤ λn+1
∥∥∥R̂−1(n)

∥∥∥
∥∥∥R̂(−1)

∥∥∥ ‖w(−1)‖ +
∥∥∥R̂−1(n)

∥∥∥
n∑

ℓ=0

λn−ℓ|d∗(ℓ)|‖u(ℓ)‖. (35)
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Using (26), (27), and (28) in (35), we obtain (29), which completes the proof.

Suppose that the algorithm leaves the ROI at the iterationn0. While it remains outside the ROI, since

d̄(n) = 0, (35) reduces to

0 ≤ ‖w(n)‖ <
ζ

α
λn−n0+1‖w(n0 − 1)‖ <∞, n ≥ n0. (36)

In this case, the upper bound of the norm of the coefficient vector of DM-SWA will decrease exponentially

with time. This leads to a reduction of the norm of the coefficient vector after a sufficiently large number

of iterations, forcing the algorithm to return to the ROI, asshown in the next theorem.

Theorem 2 Under the persistence of excitation condition (AssumptionA-1), if DM-SWA leaves the ROI

at time instantn0, it will return to it, at most after

kmax =

⌈
1

ln(λ)
ln

(
α

ζ

√
βCa

1,1

Bu ‖w(n0 − 1)‖

)⌉
<∞ (37)

iterations, where⌈·⌉ is theceiling function.

Proof: The absolute value of the equalizer output has the followingupper bound

|y(n)| ≤ ‖w(n− 1)‖‖u(n)‖ ≤ ‖w(n− 1)‖Bu. (38)

Since DM-SWA left the ROI atn = n0, we can replace (36) in (38) to obtain

|y(n)| ≤ Bu
ζ

α
λn−n0‖w(n0 − 1)‖, (39)

which is an upper bound for the equalizer output in this case.

The algorithm returns to the ROI at instantn1, for which |y(n1)| ≤
√
βCa

1,1. From the upper-bound

(39), we see that DM-SWA returns to the ROI at most atn1 such that

Bu
ζ

α
λn1−n0‖w(n0 − 1)‖ ≤

√
βCa

1,1. (40)

Solving (40) forn1 and taking the next higher integer, we arrive at

n1 ≤ n0 + kmax, (41)

wherekmax is defined in (37), which completes the proof.

Note that the coefficient vectorw(n) of DM-SWA could be updated in different manners outside the

ROI, by choosing different values for̄d(n). However, the choicēd(n) = 0 leads to the minimum upper

bound, given by (36). If we made|d̄(n)| > 0, (35) would provide an upper bound higher than (36) and

the algorithm could, in the worst case, spend more iterations to return to the ROI. Furthermore, it is
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important to emphasize that noapproximationshave been used to establish Theorems 1 and 2. Assuming

the persistence of excitation condition, Theorem 1 provides a deterministic upper bound for the norm of

the coefficient vector of DM-SWA, showing that the algorithmis stable independently of the operation

mode. Theorem 2 shows that DM-SWA may stay outside the ROI only for a finite-time interval. However,

the upper bounds in (29) and in (41) are very conservative dueto A-1, mainly in the case ofζ ≫ α.

We see from (39) that the rate of reduction of the worst-case bound (36) for‖w(n)‖, when DM-

SWA is outside the ROI, isλn. Using some simplifying assumptions(A-2 and A-3 below), we can show

that this rate of reduction applies, on average, also tow(n), not only to the worst-case bound.It is

important to notice that these assumptions are valid only inthe steady-state. A-2 is a part of the widely

used independence assumptions in adaptive filter theory, and A-3 is a reasonable steady-state assumption,

mainly in the case ofλ ≈ 1 [27], [28].

A-2 The coefficient vectorw(n−1) is independent of̂R−1(n)u(n)uH(n) in the steady-state.

A-3 Using (8), we consider valid the approximation

E{R̂−1(n)u(n)uH(n)} ≈ (1 − λ)I. (42)

Then, to obtain a model for the reduction of the coefficient vector in the mean, outside the ROI, we

first rewrite (25) as

w(n) =
[
I − R̂−1(n)u(n)uH(n)

]
w(n− 1). (43)

Taking the expectations of both sides of (43), using A-2 and A-3, we obtain

E{w(n)} ≈ λE{w(n− 1)}. (44)

This approximation shows that the mean of the coefficient vector of DM-SWA decreases exponentially

with time outside the ROI, with rateλn.

When the persistence excitation condition is satisfied and DM-SWA is implemented in infinite-precision

arithmetic, Theorem 1 establishes that the equalizer coefficients are bounded. However, if DM-SWA is

implemented in finite precision, it can diverge due to numerical problems. Moreover, its computational

cost increases linearly withM2, which is a disadvantage when compared to fast algorithms. To solve these

problems, in the next section, we obtain a fast version of DM-SWA. The new algorithm is numerically

well-behaved even when implemented in finite-precision arithmetic and has a computational cost which

increases linearly withM . Thus, it avoids the two causes of divergence of SWA and has the advantage

of being fast.
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IV. A DUAL -MODE LATTICE SWA

It is well-known in the literature that one of the problems ofthe conventional RLS algorithm is its

numerical instability, which can arise because of the loss of the numerical compatibility in the update

of R̂−1(n) [5]. Through changes of coordinates, the state-space representation of the conventional RLS

algorithm can be transformed to an unlimited number of systems with the same input-output relation, and

hence solving the same least-squares problem. Although allthese realizations are equivalent in infinite

precision, the numerical behavior will vary from one coordinate system to another [9]. Thus, the numerical

instability of the conventional RLS can be avoided by choosing a convenient transformation on the state-

space representation.

Since (22) is equivalent to the state-space representationof the conventional RLS, the changes of

coordinates usually applied to obtain numerically stable versions of RLS can also be used to obtain

numerically stable versions of SWA and DM-SWA. Since a coordinate system based on the Cholesky

decomposition of̂R−1(n) leads to a fast and stable version of RLS [9], we chose it to obtain a fast and

stable version of DM-SWA. Thus, we use the following transformation matrix

L(n) =



 K−H(n) 0

0T 1



 .

The matrixK(n) appears in the Cholesky factorization ofR̂−1(n) and is a lower triangular matrix with

ones along its main diagonal and zeros above the main diagonal; the nonzero elements of each row,

except for complex conjugation, are equal to the weights of abackward prediction-error filter whose

order corresponds to the position of that row in the matrix [5]. Defining v(n) , K−H(n)w(n), (22) can

be rewritten as


 v(n)

d∗(n) − y∗(n)



 = Υ(n)



 λv(n− 1)

d∗(n)



 , (45)

whereΥ(n) = L(n)Γ(n)L−1(n− 1).

The realization (45) is equivalent to (22) and can be used to implement DM-SWA using a lattice

structure. The resulting algorithm is named dual-mode lattice SWA (DM-LSWA). Each lattice stage

provides prediction errors in its output [5]. The literature contains different versions of algorithms to obtain

prediction errors from the observed sequence{u(n)}. The modified EF-LSL presents reliable numerical

properties, even in the absence of persistent excitation and when implemented in finite-precision arithmetic

[10].
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Thus, DM-LSWA, summarized in Table II, uses the modified EF-LSL algorithm of [10] for the prediction

section. The variables(Ef
i (n), ϑi, k

f
i (n)) and (Eb

i (n), ψi(n), kb
i (n)) represent respectively, energies,a

priori prediction errors and reflection coefficients of the forwardand backward predictions. The conversion

factors are theγi(n). The variables (b, b̄, f, f̄ ) were introduced to reduce the computational complexity of

the algorithm [10]. To ensure robust numerical behavior in the prediction section, it is necessary to avoid

divisions by values close to zero in their computations. To this end, we add a small positive constantǫ to

the denominators, whose value depends on the implementation precision. In general,ǫ = 2k−b should be

employed for input signals satisfying−2k/2 ≤ u(n) ≤ 2k/2, with k being an integer andb the mantissa

wordlength to which the energies are quantized [10].

For the joint estimation section,y(n) = wH(n−1)u(n) can be rewritten asy(n) = vH(n − 1)ψ(n),

whereψ(n) = K(n − 1)u(n) is the a priori backward prediction error vector. The estimation errorsξi,

i = 1, 2, · · · ,M − 1 are obtained from the backward prediction errors and the coefficients vi(n− 1). The

zero-order estimation error isξ0 = d(n).

The variables, which are initialized with non null values, are listed at the top of Table II. Using the

same initialization for the vectorv(−1) as forw(−1) (the center-tap initialization method), and choosing

the initial energiesEf
i (−1) andEb

i (−1), i = 0, . . . ,M − 1, equal to the same small positive constantδ as

for P(−1), DM-LSWA and DM-SWA will present close performance in infinite-precision arithmetic. The

computational cost per iteration of DM-LSWA is shown in Table III for real and complex-valued data,

and considering the number of real multiplications, real additions, real divisions, and comparisons (C). As

its computational cost increases linearly withM , DM-LSWA can be interpreted as a fast version of DM-

SWA. Furthermore, as the modified EF-LSL algorithm of [10], DM-LSWA has an inherent parallelism

that can be advantageously exploited for fast implementations.
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TABLE II

SUMMARY OF DM-LSWA

Initialization:

v(−1) = [0 · · · 0 1 0 · · · 0]T

Ef
i (−1) = Eb

i (−1) = δ, i = 0, . . . ,M − 1

for n = 0, 1, 2, 3, ... do:

ϑ0 = ψ0(n) = u(n)

ξ0 = d̄(n− 1)

γ0 = 1

for i = 0:M−1,

b = ψi(n− 1) γi

f = ϑi γi

Eb
i(n− 1) = λEb

i(n− 2) + b ψ∗

i(n− 1)

Ef
i (n) = λEf

i (n− 1) + f ϑ∗

i

b̄ = b/(ǫ+ Eb
i(n− 1))

f̄ = f/(ǫ+ Ef
i (n))

γi+1 = γi − b̄ b∗

Lattice:

ψi+1(n) = ψi(n− 1) − kb∗
i (n− 1)ϑi

ϑi+1 = ϑi − kf∗

i (n− 1)ψi(n− 1)

kb
i (n) = kb

i(n− 1) + f̄ ψ∗

i+1(n)

kf
i (n) = kf

i(n− 1) + b̄ ϑ∗

i+1

Joint estimation:

ξi+1 = ξi − ψi(n− 1) v∗i(n− 1)

vi(n− 1) = vi(n− 2) + b̄ ξ∗i+1

end

y(n) = v
H(n− 1)ψ(n)

x(n) = (|y(n)|2 − βCa
1,1)/(r − βCa

1,1)

if x(n) ≥ 0

d̄(n) = x(n) y(n)

else

d̄(n) = 0

end

end

TABLE III

COMPUTATIONAL COST PER ITERATION OFDM-SWA AND DM-LSWA.

Real-valued data

Algorithm × + ÷ C

DM-SWA M2 + 5M + 4 M2 + 3M + 1 1 1

DM-LSWA 14M + 3 12M 2M 1

Complex-valued data

Algorithm × + ÷ C

DM-SWA 4M2 + 16M + 8 4M2 + 12M + 4 1 1

DM-LSWA 46M + 7 39M + 1 4M 1
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V. SIMULATION RESULTS

To verify the influence of the arithmetic precision, we implemented the algorithms in floating point,

in Matlab with 64 or 32 bits. The precision is indicated as subscripts (e.g., SWA32). We label a given

run of the algorithms as “diverging” if̄e(n) overflows (we check forNaNs). For a given algorithm, the

mean-squared error (MSE) is estimated from an ensemble-average of103 independent runs of̄e(n). On the

other hand, the squared error (SE) corresponds to only one run of ē(n) filtered by a moving-average filter.

For complex data, since constant-modulus-based algorithms are insensible to random phase rotations, we

include a phase correction algorithm. For simplicity, we use the phase tracking algorithm [29], [30], which

provides the following phase update equation

ϕ(n+ 1) = ϕ(n) + µpIm{ȳ(n)â∗(n− τd)}, (46)

where ȳ(n) = y(n)e−jϕ(n), µp is the step-size, andIm{ · } stands for the imaginary part of a complex

number.

Fig. 2 shows the MSE curves for SWA64, DM-SWA32, and DM-LSWA32, considering the transmission

of binary signals (2-PAM - pulse amplitude modulation) through the non-minimum phase channelH(z) =

0.1 + z−1 + 0.1z−2 with a signal-to-noise ratio (SNR) of 50 dB. The equalizer hasM = 11 coefficients

initialized with only one non-null element (equal to one) inthe sixth position.The channel model and

the length of the equalizer were obtained from the computer experiment of [5, p. 455] withW = 2.5152.

AlthoughH(z) is a non-minimum phase channel, its amplitude distortion isnot large.In Figures 2-(a), 2-

(b), and 2-(c), we vary the value of the forgetting factor andadd a constant at a specific sample of the input

signalu(n). This added constant causes divergence in SWA64 and makes DM-SWA32 and DM-LSWA32

leave the ROI. However, as established by Theorem 2 and Eq. (39), DM-SWA32 and DM-LSWA32 return

to the ROI with a rate that depends on the forgetting factor. Since there is no divergence due to numerical

problems, these algorithms present the same performance. In Fig. 2-(d), we show a histogram of the MSE

for the final103 iterations of DM-SWA32 and DM-LSWA32 for the case of Fig. 2-(a). One can observe that,

after the perturbation atn = 2500, the algorithms may converge back to different minima: DM-SWA32

and DM-LSWA32 reached the minimum withMSE ≈ −41 dB in 767 of the 1000 independent runs, the

minimum with MSE ≈ −31 dB in 123 of the 1000 runs, and the minimum withMSE ≈ −12 dB in

110 of the 1000 runs. This behavior leads to the steady-state MSE of approximately−20 dB after the

perturbation, as observed in Fig. 2-(a). Note that the perturbation is equivalent to a new initialization for

DM-SWA32 and DM-LSWA32. This convergence to different minima is a common problem ofconstant-

modulus-based algorithms, and occurred only forλ = 0.9. For λ ≥ 0.99, the new algorithms always
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returned to the same steady-state performance of the ensemble-average of SWA64 before the perturbation.

Thus, besides avoiding divergence, (24) does not cause meaningful changes in the performance of the

algorithm since a quick return to the region of interest was always observed.
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Fig. 2. MSE for SWA64, DM-SWA32, and DM-LSWA32, assuming (a)λ = 0.9, u(2500) = 10; (b) λ = 0.99, u(5000) = 10; (c)

λ = 0.999, u(10000) = 20; (d) Histogram of MSE for the final103 iterations of DM-SWA32 and DM-LSWA32 for the case (a);δ = 1,

ǫ = 1.2 × 10−5; mean of103 independent runs;H(z) = 0.1 + z−1 + 0.1z−2, SNR=50 dB;M = 11, 2-PAM .

Fig. 3 shows a histogram of the divergence time for103 independent runs of SWA, DM-SWA, LSWA2,

and DM-LSWA, all implemented with 64 bits of arithmetic precision. We assume the transmission of

4-QAM (quadrature amplitude modulation) signals through the channelH(z) = 0.1 + z−1 + 0.1z−2 with

SNR = 30 dB. Again, the equalizer hasM = 11 coefficients initialized with only one non-null element

in the sixth position, but the non-null element is equal to 1.6. This simulation scenario was carefully

2We call LSWA the algorithm of Table II without the conditional statement (if),i.e., LSWA always uses̄d(n) = d(n) = x(n)y(n)

independently of the sign ofx(n).
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chosen to highlight the two causes of divergence of SWA. The divergence due to the inconsistency in

the nonlinear estimate of the transmitted signal ismore likely to occur at the first iterations, when the

algorithm is still far from a minimum. This cause of divergence leads SWA and LSWA to diverge in 594

of the 1000 independent runs, but it is avoided by DM-SWA and DM-LSWA through the use of (24).

The divergence due to the loss of the numerical compatibility in the update ofR̂−1(n) occurs around

n = 3×104. This numerical problem causes divergence in SWA and DM-SWA. When SWA “survives” to

the divergence due to the nonlinearity, it diverges due to the numerical problem, which happens in 406

of the 1000 runs. DM-SWA also diverges in all the 1000 independent runs but only due to the loss of the

numerical compatibility. DM-LSWA never diverges since it combines the numerical robustness of LSWA

with the capability of DM-SWA of rejecting inconsistent estimates of the transmitted signal. This behavior

also occurs when the algorithms are implemented with 32 bitsof arithmetic precision. The only difference

is that the divergences due to the numerical problem occur earlier, aroundn = 104.

Again, Fig. 4 shows a histogram of the divergence time for103 independent runs of SWA, DM-SWA,

LSWA, and DM-LSWA, but now implemented with 32 bits. We also choose a different simulation scenario:

transmission of non-constant modulus signals (16-QAM) through the non-minimum phase channelH(z) =

(0.37− j0.06)+(0.47+ j0.70)z−1 +(0.37− j0.06)z−2 in the absence of noise. The equalizer hasM = 23

coefficients initialized with only one non-null element (equal to 0.05) in the 12th position. The two causes

of divergence of SWA are again highlighted. Only DM-LSWA avoids both causes of divergence. Due to

the lower-precision arithmetic, the divergence due to the numerical problem occurs aroundn = 8 × 103.

Using 64 bits, this kind of divergence occurs later, aroundn = 2.8 × 104.
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ǫ = 6.5 × 10−16, µp = 10−3; M = 11; 4-QAM; H(z) = 0.1 + z−1 + 0.1z−2, SNR=30 dB.
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ǫ = 5.2 × 10−6, µp = 10−3; M = 23; 16-QAM; H(z) = (0.37 − j0.06) + (0.47 + j0.70)z−1 + (0.37 − j0.06)z−2, absence of noise.

In Fig. 5, we show the squared error for one run of the SWA and DM-SWA, implemented with 64 and 32

bits, and DM-LSWA, implemented with 32 bits. We assume the transmission of 4-QAM signals through

the channelH(z) = 0.1 + z−1 + 0.1z−2 with SNR = 50 dB. The equalizer hasM = 11 coefficients

initialized with only one non-null element (equal to 1) in the sixth position. This simulation scenario

was chosen to avoid the divergence at the first iterations dueto the nonlinearity and to emphasize the
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divergence due to the numerical problem. To facilitate the visualization, the SE curves were filtered by

a moving-average filter with1024 coefficients. We can observe that SWA64 and DM-SWA64 present the

same numerical behavior, diverging aroundn = 3 × 104. The same occurs with SWA32 and DM-SWA32,

but the divergence happens aroundn = 104. DM-LSWA32 does not diverge and maintains its numerical

robustness, even implemented with 32 bits.
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Fig. 5. SE for SWA (64 and 32 bits), DM-SWA (64 and 32 bits), and DM-LSWA (32 bits); λ = 0.999, δ = 1, ǫ64 = 6.5 × 10−16,

ǫ32 = 3.5 × 10−7, µp = 10−3; M = 11; 4-QAM; H(z) = 0.1 + z−1 + 0.1z−2, SNR=50 dB.

Fig. 6 shows simulation results considering the transmission of a binary signal (2-PAM) through a

linear and time-variant channelH(z, n) = h0(n)+h1(n)z−1 +h2(n)z−2, with h2
0(n)+h2

1(n)+h2
2(n) = 1.

We assume a Rayleigh fading channel with fast variation (maximum Doppler spreadfD = 80 Hz) and

SNR = 25 dB [6, p. 401]. The absolute values of the roots ofh0(n)z2 + h1(n)z + h2(n) are shown in

Fig. 6-(a) so that error bursts can be associated with rapid changes of these roots or deep spectral nulls,

which occur when both roots are on the unit circle (absolute value equal to one is indicated by a straight

line). We compare the performance of SWA64 with that of DM-LSWA32. Fig. 6-(b) shows the squared

error filtered by a moving-average filter with 512 coefficients for each algorithm. The equalizer outputs

are shown in Figures 6-(c) and 6-(d) for SWA64 and DM-LSWA32, respectively. We can observe from

the sign ofx(n), shown in Fig. 6-(e), that there are iterations in which DM-LSWA32 leaves the ROI,

but quickly returns to it. Generally, these iterations coincide with critical situations associated with error

bursts. The figure also shows that, little before SWA64 became unstable, DM-LSWA32 makesd̄(n) = 0,

thereby avoiding divergence. Although the channel is time-variant, it has unit norm for all time instant,

which is a favorable condition for SWA64.
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Fig. 6. (a) Absolute root values of a Rayleigh channel (3 coefficients,symbol periodT = 0.8µs, maximum Doppler spreadfD = 80 Hz,

SNR = 25 dB); (b) SE in dB for SWA64 and DM-LSWA32; Output of the equalizer for (c) SWA64 and (d) DM-LSWA32; (e) Sign ofx(n)

for DM-LSWA32; 2-PAM; λ = 0.85, δ = 0.1, ǫ = 4.4 × 10−7, M = 11.

The simulation results presented here are also valid for different channels, transmitted-signal constel-

lations, and values of the forgetting factor. In all these situations, DM-LSWA remained stable and did

not break down, although it did not present useful performance for low λ values due to large estimation

errors.
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VI. CONCLUSION

We show that the divergence of SWA can be caused by (i) inconsistency in the nonlinear estimate

of the transmitted signal, or (ii) loss of numerical compatibility in the update of the inverse of the

autocorrelation matrix. The divergence of SWA due to (ii) has the same origin as in the RLS algorithm.

Thus, the proposed solutions in the literature to solve thisproblem in the conventional and fast RLS

algorithms can be used directly to solve (ii). To avoid divergence due to (i), we proposed DM-SWA,

which works as the conventional SWA in the first mode of operation and rejects non-consistent estimates

of the transmitted signal in the second mode. Although DM-SWA does not diverge due to (i), it can still

diverge due to (ii). Assuming the persistence of excitationcondition, we proved, through a deterministic

analysis, that DM-SWA is stable in infinite-precision arithmetic. Furthermore, if the algorithm leaves the

first mode of operation, it will return to it in finite time. This property guarantees that the new algorithm

is not trading off performance for robustness, as our simulations confirm. To solve (ii) and to obtain

an algorithm with reduced computational cost, we proposed DM-LSWA, which avoids divergence even

when implemented in finite precision, and maintains the convergence rate of DM-SWA. In spite of the

lack of a proof for the numerical stability for the prediction section of DM-LSWA, the algorithm never

diverges when implementedas in Section IV. It is relevant to notice that other methods for ensuring

numerical stability in RLS algorithms could also be employedhere. For example, we could use the QR-

based methods, whose stability proofs are available in the literature. The procedure used to remedy the

problem (i) can also be extended to other constant-modulus-based algorithms. Recently, we extended this

idea in [31] to avoid divergence in a normalized version of CMA. However, in this case, the stability

analysis of the algorithm is not a straightforward extension of that presented here.
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