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Stochastic Stability Analysis for the
Constant-Modulus Algorithm (CMA)
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Abstract

We derive an easy-to-compute approximate bound for theerafigtep-sizes for which the constant-modulus
algorithm (CMA) will remain stable if initialized close torminimum of the CM cost function. Our model highlights
the influence of the signal constellation used in the trassimn system: for smaller variation in the modulus of
the transmitted symbols, the algorithm will be more robast] the steady-state misadjustment will be smaller. The

theoretical results are validated through several sinaat for long and short filters and channels.

Index Terms

Adaptive filters, adaptive equalizers, tracking, least mequare methods, recursive estimation, unsupervised

learning.

. INTRODUCTION

When using a gradient-based adaptive filter, such as theamgrsiodulus algorithm (CMA) or the least-mean
squares algorithm (LMS), it is important to have an estimatehef range in which the step-size must remain
to guarantee an adequate (stable) behavior of the algofithni2]. For supervised algorithms, such as LMS,
normalized LMS and other variants, approximations for tlisge are well-known: from the simpler and more
practical earlier results, which assume Gaussian, indbggnregressors [3], to exact results for more general
models, but which are only practical for very short filters. [Bbr blind algorithms, to the best of our knowledge,
available works that provide approximations for the megmase behavior of blind algorithms either arrive at
complex recursions whose stability is not easy to study [E], or rely on linearization arguments in such a way

that only stability in the mean is guaranteed [7]. This lastkof analysis can prove that the algorithm will converge
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for “sufficiently small” step-sizes, but can provide only yéoose bounds for the range of step-sizes that guarantee
convergence.

A recent result [8] proves that CMA is in fact alwaysstable when the noise is not bounded (as, e.g., Gaussian
noise). It is also proven that the algorithm has useful Btalproperties for small step-sizes when a finite time
horizon is considered. Using a different approach, [9] shdwat the least-mean fourth algorithm (LMF) is also
always mean-square unstable when the regressor is Gauari@ifil0] computes a range of step-sizes for which
the algorithm will be stable in a finite horizon. In this papee extend some of these latter results to CMA.

In [11] we proposed a simple model for the real-valued const@odulus algorithm, that we used to study convex
combinations of CMA with the Shalvi-Weinstein algorithm (SYAn this correspondence we use and extend that
model to obtain explicit stability conditions for CMA. Theasility of CMA in fact depends on its initial condition
(a similar dependence appears in the LMF algorithm, see, [@@]). In the simplified model presented here, this
dependence is not described; instead we assume that th&hatgevas initialized close to the optimum solution,
providing the largest range of the step-size for which stgi@rformance of CMA is possible. Our assumptions
regarding initialization are similar to what was used in flst work on the LMF algorithm [12], whose model

was latter improved in works such as [9], [10], [13].

II. THE CONSTANFMODULUS ALGORITHM

The data transmission problem with which we will work is dépitin Fig. 1. A sequencéa(n)} of data is
transmitted through a channel, which in general will diseord add noiser(n) in the figure) to the transmitted
signal. The equalizer should approximately invert the eftdahe (mostly linear) distortion, without significantly
amplifying the noise. The constant-modulus algorithm agtesmo perform this task blindly, i.e., without the help
of a training sequence. Although there is more than one MaoBCMA, we will focus on the so-called CMA2-2,
whose performance was found in previous works to be bettar that of other variants [14].

CMA2-2 will update a weight vectow,, through the recursion
Wn41 = Wy + /’Le(n)xna (l)

wherex,, € R is a column-vector. The estimation errorei®:) = (r, — y(n))y(n), wherey(n) = =X w,, is the
filter output,r, = Ea*(n)/ Ea?(n) is a positive constan denotes expected value afy’” denotes transposition.
To keep the discussion short, in this correspondence wecwaiilsider only the case of real signals. We will assume
that the sampling rate at the equalizer is higher than thebelmate, i.e., we will consider fractionally-spaced
equalizers (FSEs).

As Fig. 1 shows forL = 2, in an FSE the regressar, is a concatenation of. tap-delay lines, wherd, is

the up-sampling factor [14]. FoE = 2, x, = [al, 2. |7, @en = [ze(n) e(n—1) ... ze(n—-M1/2+1)]" and o, =
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[ 2o(n) @o(n—1) ... mo(nfM/2+1)]T, wherexe(n) = x(2n) are the even, andy(n), the odd samples of(n). The full

weight vectorw,, is also a concatenationw,, = [w?,, on,n]T.

Codd(2)

Channel

Fig. 1. A fractionally-spaced equalizer (assuming an oversamplingfagtar of 2). In this model, the equalizer is adapted once two new

samples arrive at the receiver.

The property of FSEs that is of interest to us is that a linear egramay achieve zero-forcing equalization in
the absence of noise [15], such that there exists an optimeightwectorw, such thatw?! z, = a(n —74), where
74 is a delay. Note that other optimum choices would also egigt,, w, = —w,. Since the performance of the
equalizer would be the same for these alternative solutioas adequate rotation is applied to the output of the

filter, we assume, without loss of generality, that the atbamiis initialized so that it converges 0,.

I1l. A MODEL FORCMA

In order to find a simple model for CMA which allows determinatiof the stability range for the algorithm’s
step-size, we need to make, as is usually the case for thg sfuatlaptive filters, some simplifying assumptions in
order to make analysis tractable. In this section we desenital justify the assumptions made in this correspondence.

First, for stability analysis it is easier to consider that 8iatistics of the input signal to the equalizer is time-

invariant, so our first assumption is

A-1 The channel is time-invariant and {a(n)}, {n(n)} and {x,} are stationary and have zero mean. We also
assume that {a(n)} and {n(n)} are both iid (independent, identically distributed) and independent of each other
(see also Assumption A-6 further ahead).

Second, we want to describe the filter output in terms of thestrdited data{a(n)} and of the difference
between the estimated parameter veatgr and the zero-forcing vectaw., as was done in [14]. When the SNR

at the receiver is high, the optimum parameter vector wilclose tow., SO our next assumption is

A-2 The noise power 03] = En?%(n) is small enough for the zero-forcing solution w, to be one of the global

minimizers of the CM cost-function J(w) = (r, — (w’x,)?)?. Under this assumption, wlz, ~ a(n — 7q).
Under Assumptions A-1 and A-2, we can defizg = w, — w,, and write the filter output as

y(n) = wla, = (w. — @) @, ~ a(n — 79) — WL@, 2 a(n — ) — ea(n), )
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where we defined tha-priori error ea(n) = wlx,.

Next we need to simplify the CMA recursion (1). Most difficelsi arise from the nonlinear error terain).

Using Assumption A-2 and (2), we can write
e(n) =y(n)(ra — y*(n)) = (a(n — 74) — ea(n)) (ra — (a(n — 1) — ea(n))2>
= —a®(n — 1) +e3(n) + 3a*(n — 1a)ea(n) — 3a(n — 14)e(n) + a(n — 74)rq — ea(n)rq. (3)
To simplify this expression, we assume that higher powers,0f) can be disregarded, for all > 0:

A-3 Theinitial condition wy is close enough to w. (i.e, ea(n) is small enough) so that (3) reduces to

e(n)~ (3a2(n—7'd) —ra) ea(n) —a3 (n—71¢)+a(n—7q4)rq. (4)

Definingy(n) = 3a*(n —74) — 7o @andB(n) = a(n—14) (ro — a*(n — 74)), We obtaine(n) ~ vy(n)ea(n) + B(n).
This relation has a humber of interesting interpretatiossya show next (some of these properties were shown

in [11]). We will need an extra assumption:

A-4 The constellation used to generate the a(n) has circular symmetry, so that Ea*(n) = 0 for all odd integers

k > 0. This assumption is not restrictive, since these conditions are true for practical constellations.
Lemma 1 Under Assumptions A-1 and A-4, 3(n) has zero mean and is uncorrelated with x,,.

Proof: E3(n) = E (rqa(n — 7q) — a®*(n — 19)) =0, if Ea(n — 79) = Ea*(n — 79) = 0.

To see that3(n) andx,, are uncorrelated, recall that each entryagf, x(n — k), 0 < k < M — 1, is a noisy
linear combination of the transmitted symbal&:): z(n) = Zf:o ci(k)a(n — k) + n(n), where thec;(k) are the
coefficients of the impulse response of one of the sub-chanHet is even, the even sub-channel is useé: (),
if nis odd,7 = 1 and the coefficients of the odd sub-channel are used. Botltlsanels are assumed to have

effective lengthK + 1. From the iid part of Assumption A-1, we obtain

K
Exz(m)B(n) :ZE {(raa(n—Td)—a?’(n—Td)) ci(k)a(m—k)} + E{(rqa(n — 1) — a®(n — 79)) n(m)} .
k=0

From assumption A-1, the last term in the right-hand side i®.zA&ssumptions A-1 and A-4 guarantee that the

expected values in the sum are zero wheneverrq # m — k. On the other hand,
E { (raa(n —Tq) — a3(n — Td)) ci(m+ 714 —n)a(n — Td)} =c¢i(m+714—n) (’I“a Ea2(n —Tq) — Ea4(n - Td)) =0,

since the channel is constant ang= E a*(n)/ E a?(n). [
Using a similar argument, and the symmetryagf) (Assumption A-4), it can be shown th@tz?(m)3(n) =
Exz(m)3%(n) = 0 for all m,n.

Next, note that ifa(n) has indeed a constant modulus, th&m) = 0. We can say that (when the SNR is high)

B(n) plays a role similar to that of the measurement noise in systentification. We should expect CMA to
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present a very low variance in steady-state about the optisalution when the constellation has constant modulus,
and a larger variance dg(n)| is allowed to vary (see also [11]).

In the sequel, we will also need to evaluate the expectedesdlls?(n)z(n — my)z(n — ms), Ey(n)z(n —
mi)x(n—ms) andE~?(n)z(n —my)z(n — ma)x(n — ms)x(n —my), for integerm; ... my. Consider the second
of these quantities (Below,= 0, 1, depending ifn —m; is even or odd, and similarly fof andn — ms. We used

Assumption (A-1) to simplify terms involving the noise):

+7E{n(n —mi)n(n —ma)}, (%)

where we definedy = E{v(n)}. Recalling A-1 and A-4, the expected value Bt (m)a(k) = 0 if m # k

for any integer? > 0. Definingo?2 = Ea?(n), 0, = EaP(n) and A = m; — ma, the only nonzero terms of (5) are

K K
E{v(n)z(n —mi)x(n —mso)} = f’yaflé(A) —rq02 Z ci(k)cj(k+A) + 302 Z ci(k)ej(k+A)
0<KA<K ke,
0<k+A<K
+ 304c¢;(7q4 — m1)cj(Tg — ma), (6)

whered(n) is the Kronecker delta. On the other hand, expanding(n)) (E{x(n — m1)x(n — mg2)}), we obtain

K K
(Ey(n) Ba(n —my)az(n —mg)) = J075(A) = raos Y ci(k)ej(k+A) + 305 > ci(k)e;(k+A).  (7)
0<Hin<K 0<Hin<K

Although these equations can be further simplified by reptpadhe value ofr,, we can already see that the
difference between (6) and (7) is only the term withthat had to be separated from the second sum in (6). Since
Ea*(n) = (14€) (E aQ(n))2 with e > 0, we conclude that (6) and (7) will be approximately equahé thannel

is long enough and, is small enough for the tereaoic; (g — m1)c;(1a — m2) to be small next to the two sums

in (6). Similar considerations can be made B6?(n)x(n —m1)z(n—msz) andE~2(n)x(n—m1)z(n—msz)z(n—

ms)x(n —my). We thus assume
A-5 The channel is long enough, and the constellation has small enough constants e,, where Ea?’(n) = (1 +
&) (Ea’(n))’, p=1...4, so that
EG?(n)z(n—my)z(n—mso) ~EG%(n) BEz(n—m1)z(n—msy),
Ev(n)x(n—mi)x(n—ms2) =~ Ey(n) Ex(n—my)z(n—ms),

E~%(n)z(n—my)z(n—ms)z(n—ms)z(n—my) = E42(n) Ez(n—m1)z(n—my)z(n—ms)z(n—my).
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A. Convergence in the mean

Subtracting the zero-forcing solution from both sides in &byl using (4), we obtain (below, is the identity

matrix andw,, = w, — wy,)

Wil = Wy — pe(n)c, ~ (I — ,u'y(n)a:nacg) W, — pfB(n)x,. (8)

This expression is very similar to the weight-error vectarursion for LMS, only in the case of LMS we would
have~(n) = 1, and instead ofj(n) we would have the measurement noise. SiA¢e) is uncorrelated withe,,,
from this point on the analysis of CMA is similar to well-knowesults about LMS [2], [3], [16].

Taking the expected value of this expression, we find a remurfsir E w,, if we make the next assumption
A-6 The vectors x,, and w,, are independent.

This assumption would be true if the vector seque{mg} were iid. Although this is never true for an equalizer, it
is well-known that approximations of the me&nv,, and covariancé w,,w. of the weight-error vector are good
for small step-sizes. Approximations for the range of stizies obtained using this assumption tend to overestimate
the range of allowed step-sizes, but not so much as to rehdegdtimated range useless [1].

Using Assumptions A-5 and A-6 and Lemma 1, the expected vdl§8)aeduces to
Ewns1 ~ (I — pE{y(n)} E{z,z]}) Ew,.

Defining the autocorrelation matriR = E{x,x]} and recalling thaty = E{v(n)}, we see that CMA converges

in the mean if0 < © < 1/(3A1), where); is the largest eigenvalue dg.

B. Mean-sgquare stability

Multiplying (8) by its transpose, taking the expected valard using Assumptions A-5 and A-6, we obtain a

recursion for the autocorrelatioi,, £ E b, w.:
Sn+1 =S, — pyRS,, — pyS, R+ ,u27“3 E {wanSnmnazg} + M2O'%R, (9)

where we defined? 2 ER(n), r2 2 E~2(n). We obtained a similar recursion in [11], but there we asslthat

1 is small enough so that the fourth term on the right-hand s@éd be ignored. This approximation is good for
a steady-state analysis, as was the case in [11]. HoweVeer@s in (9) must be considered when the goal is to
estimate the range of step-sizes for stable filter behavir.tivat, we need to make a further assumption on the
statistics ofx,,. Recalling that the entries of,, arex(m) = Zfzo ci(k)a(m — k), where thea(m — k) are iid, we
see that the distribution af(m) will approach the Gaussian if the channel is long. The assompelow is thus

reasonable for long channels:
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A-7 The channel is long enough for the fourth-order moments of x,, to be well approximated by those of a

Gaussian vector, so that [3] (Tr(A) is the trace of matrix A):
E {xanS’nmnmg} ~2RS, R+ RTr{RSn}.
The recursion foiS,, then reads
Sni1=8n — p7RS, — pASu R+ 21°r2 RS, R + 112 Tr{ RS, } R + p*o3R. (10)

Since S,, is honnegative-definite, the stability of (10) is determintbtbugh a recursion for the diagonal of the
rotatedU’' S,,U, whereU is the orthogonal transformation that diagonaliZsi.e., UTU = I, UTRU = A,
where A = diag(A1,...,A\y) and\y > Ao > --- > Ay are the eigenvalues dR. Defining s,, = diag(UTSnU)

(the diagonal elements &’ S,U) andl = [ .. AM]T, (10) reduces to
Spi1 = [I —2uyA + ,u27“§ (2A2 + llT)} Sy + /,LQO'%Z. (11)

An exact condition for the stability of (11) can be obtainedfallows [16]. First, note that the system matuik

of (11) is positive-definite for al, > 0, since
A=1T1-2uyA + u2r,2y (2A2 + llT) = (I —pyA)* + /12(27"3 —FHA? + /ﬂr?/llT,

andr? = E~?*(n) > {E v(n)}? = 4%, so we need to guarantee only that the largest eigenvalut isfless than 1.
This, on the other hand, is equivalenti®= I — A being positive-definite. A necessary and sufficient conditayn
a matrix to be positive-definite is that all its principal miadi.e., all the determinants of the principal sub-mas)ce

are positive [17]. This requires that (i) the diagonal estroé B be positive, i.e.,

_ 25
QAN — 322 N2 L k=1...M 12
Y AL —3H Ty k>0<:>0<u<3r’2y)\k7 ) ( )

and (ii) the determinants of all x k principal sub-matrices are positive. These determinantdeaevaluated using

the relationdet(I — ab?) = 1 — b’ a, leading to the conditions

9 i
1T/ Hr Ak .
2T (3 — A 1= 225" 2% | oo 1<i<m.
il B P e

These conditions reduce to
:u’r'y )\k
—L — < 1. 13
2 Z Y — ur2 Ay (13)

A simpler, sufficient but not necessary condition to guarastability of (11) can be obtained as follows: since

Tr{R} > A, it follows that

pri  T{R} _ pr} i N pr? i N
2 7 —pr2Tr{R} 2
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If 1 is small enough to make the left-hand side of the above egjmredess than one, then (13) will also be

satisfied. A range of step-sizes that guarantees stabiliff Of is thus

2
O<p<—nid (14)

IV. SIMULATIONS

Due to the cubic term in/(n) appearing in the CMA recursion (1), we can expect the ovérehavior of
CMA to be similar to that of LMF, which also has a cubic nonliriga[9]. Both algorithms present dependence on
the initial condition, and a probability of divergence thstlarger for large step-sizes and poor initial conditions.
We say that a given run of the algorithm diverged when the Heal norm||w,, || of the weight vector becomes
unbounded. In the simulations, we label a given run of theritlyn as “diverging” ife(n) overflows (we check

for NaNs in Matlab). The probability of divergendgy;, is estimated fromV, runs of the algorithm by

Number of curves diverging

Fyiy = N

In fact, [8] shows that, if the regressoy, were indeed Gaussian, CMA would be mean-square unstabletierm
how small the step-size (a similar result for LMF was provef9husing an alternative approach.) However, the
mean-square stability analysis provided here predictarately the range of step-sizes for which the probability of
divergence of a realization of CMA is small (see also [10] idF). When the regressor is not exactly Gaussian

(which is the case in practical applications) what happserite following:

1) For very small step-sizes and an initial condition closeugh to a local minimum, CMA will converge and
stay close to that local minimum;

2) As the step-size is increased, still with a good initiahdition, the algorithm may switch between local
minima (see Figure 3), and occasionally diverge (i.e., th@ghts will become unbounded), with a small
probability that increases with the step-size;

3) For large step-sizes, the algorithm will always diverge;

4) Whether a given step-size should be considered “smalilaoge” depends on how close the initial condition
is to a local optimum of the CM cost function;

5) If the initial condition is far enough from a local optimuse that approximation (4) fo¢(n) is not valid,
then, for a fixed step-size, the algorithm will be much moreliiko diverge in the first iterations, while the
weights are far from the optimum. In this case, the probgbdf divergence is virtually independent of the
number of iterations in a given run (see [9], [10] for equérdl results for LMF);

6) If the initial condition is good (close to a minimurajd the step-size is large enough for divergence to occur,

the probability of divergence will depend on the number efdtions considered. If there are no local minima
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close together, the probability of divergenBg,, ; in NV iterations will be equal td — (1 — Py, N/k)"f, where

Py, v/ is the probability of divergence itV/k iterations (see Figure 2).

We observed in the many simulations that we performed, tteaptobability of divergence starts being significa-
tive (e.g., larger than 0.1% fai0?* iterations) for a step-size between the two bounds, (14)(48)1 A step-size
as large as half of (14) will make the probability of divergervirtually zero (no divergence observedli®® runs

of 2 x 10° iterations, or10° runs of 10* iterations.)

In the following we present a few of our simulations. In alkea, we use pulse-amplitude modulation (PAM)
constellations, either PAM-4a(n) = {+a, £3a}) or PAM-6 (a(n) = {+a, +3a, £5a}), with a chosen so that
Ea%(n) = 1, and FSEs withl, = 2. We tested both long and short channels, and long and shaptiee filters.
Except for Figure 4, the algorithm was initialized close to aimum of the CM cost-function, as required by
Assumption A-3. The initial condition was obtained by rurqihe algorithm once with a small step-size (less than
half the approximate bound), and saving the final weight veatter the algorithm converged to a good solution
(with an open eye). In the following, the step-size predidiy the approximate bound (14) is denojegd and p.e
for (13). In almost all plots, the step-sizes are normalibgd., (i.e., we plot the probabilities of divergence as

functions of i/ pa.)

The first examples are for chann€}, with impulse responS({O.l,OB, 1.0, —0.1,0.5,0.2} in the absence of
noise, with PAM-4 and an FSE with a total 8f = 4 coefficients. Figure 2 shows the probability of divergence
(Pgiv) as a function of the step-size. One of the curves is the vbddly, for N; = 103 runs of Ny, = 10* iterations
each, the other folV; = 3 x 10%. We included a plot of the probability predicted for the lengimulation, using
Piivaxior =1 —(1— Pdi\,7104)3. The observed and estimated plots are close to each othey -atheot identical,
because in this simulation CMA has a few local minima closgetber, and with medium-large step-sizes, the
algorithm tends to switch between these minima. The proibaluf divergence depends a little on how deep a
minimum is. In Figure 3 we provide a plot of the coefficientswaf, with © = 1.4u,, showing the filter switching

between two states.

Figure 4 shows the probability of divergence for a fixed step-gequal tous), as a function of the initial
condition: the initial condition for each point in the curweas chosen apw,, wherep is a scalar, andw, is
the optimum weight vector, evaluated experimentally. Thet phows that the requirement that the algorithm be
initialized close to a minimum is not too restrictive: thepability of divergence stays small in a reasonably-sized

ball around the minimum.

Additive noise at the receiver will increase the probapilif divergence, but our results are still valid if the

signal-to-noise ratio is not too low, as can be seen in Figure 5

Figure 6 shows the results of simulations under differentd¢ams: The solid line is a plot oy, as a function
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Fig. 2. Probability of divergence as a function of the step-size for RANbr channelC;. Equalizer withM = 4 coefficients ua = 0.0418,
e = 0.0814. Solid line (-):10% runs of10* iterations each; broken line (- -3:x 10* iterations; dotted line-¢ - ): Pyy for 3 x 10* iterations,

estimated as described in the text from the resultslédriterations.
1.5 T

1 15 2
n x10°

o 05

Fig. 3. Filter weightsw,, ; for PAM-4, for channelC1, pu = 1.4pa, M =4, p = pa.

of the step-size for the same conditions as in Figure 2, but RAM-6 instead of PAM-4. The other two curves are
examples with longer channels: the real part of the micrenahannels from [18]. The files have 300 coefficients,
although the effective length of the channels is much shdetg., forchan7. mat , 99% of the energy is between
samples 20 and 55). The curve in broken linePig, for the channel in filechan7. mat (equalizer withM = 6

coefficients, PAM-4), and the last curve uses the channel ftoran9. mat , and an equalizer with\/ = 50

100

90-r

80~

701

601

Pyiv (%)

501

40+

30F

201

101

Fig. 4. Probability of divergence as a function of the initial condition folMPA, for channelC,. The filter hadM = 4 coefficients, with

1= pa = 0.0418, pe = 0.0814. N; = 10° runs of Ny = 10* iterations each.
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coefficients and PAM-4. In all cases, the simulations werdop@ed with N = 10* iterations, N; = 103 runs,
and no noise. In this figure, we plot the probabilities of dijerce normalizing the step-size by the approximate
bound 4 (top) and by the more precise boupd (bottom). It can be seen that the approximate bound (14) does

guarantee a reasonable performance for the filter.

100 ‘ ‘ ‘ T
= No noise ?,
= = SNR=30dB 3

'+ SNR=20dB

90

80

70 ’

60 '

Py (%)

50 I}
40 ’

30 . S ’
20 ’

10 .

0

0.8 1 1.2 1.8 2

1.4 1‘.6
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Fig. 5. Probability of divergence in the same conditions as in Figure 2wiht additive noise at the receiver. For SNR = 30 dB,
pa = 0.0425, pe = 0.0813; for SNR = 20 dB,ua = 0.0417, pe = 0.0804. Solid line (=): no noise; broken line (- -): SNR = 30 dB; dotted
line (---): SNR = 20 dB.
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Fig. 6. Probability of divergence as a function of the step-size. Abayetlfe step-size is normalized hy; below (b), bype. Ny = 10°
runs of Ny = 10? iterations each. Solid line (=): PAM-6, chann@l, pa = 0.0367, pe = 0.0706. Broken line (- -): PAM-4,M = 6, the
channel is the real part afhan7. mat from [18], ua = 0.0288, pe = 0.0658. Line-dot (-): PAM-4, M = 50, real part ofchan9. mat
from [18], pa = 0.0024, pe = 0.0068.

V. CONCLUSIONS

In this paper we derive a simple expression for the rangeep-sizes for which the constant-modulus algorithm
remains stable. To our knowledge, this is the first easy-topzde bound for CMA, which should be a valuable help
for designers. We validate our theoretical model with ssveimulations, for long and short filters and channels.
The simulations show that the behavior of CMA is qualitagivdifferent from that of LMS and similar to that of
LMF: for a range of step-sizes, the algorithm may diverge orina given run, with a probability of divergence

that depends on how close the initial condition is to a locadimum, the step-size, and the noise level.
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