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Abstract

We derive an easy-to-compute approximate bound for the range of step-sizes for which the constant-modulus

algorithm (CMA) will remain stable if initialized close to aminimum of the CM cost function. Our model highlights

the influence of the signal constellation used in the transmission system: for smaller variation in the modulus of

the transmitted symbols, the algorithm will be more robust,and the steady-state misadjustment will be smaller. The

theoretical results are validated through several simulations, for long and short filters and channels.

Index Terms

Adaptive filters, adaptive equalizers, tracking, least mean square methods, recursive estimation, unsupervised

learning.

I. I NTRODUCTION

When using a gradient-based adaptive filter, such as the constant-modulus algorithm (CMA) or the least-mean

squares algorithm (LMS), it is important to have an estimate ofthe range in which the step-size must remain

to guarantee an adequate (stable) behavior of the algorithm[1], [2]. For supervised algorithms, such as LMS,

normalized LMS and other variants, approximations for this range are well-known: from the simpler and more

practical earlier results, which assume Gaussian, independent regressors [3], to exact results for more general

models, but which are only practical for very short filters [4]. For blind algorithms, to the best of our knowledge,

available works that provide approximations for the mean-square behavior of blind algorithms either arrive at

complex recursions whose stability is not easy to study [5],[6], or rely on linearization arguments in such a way

that only stability in the mean is guaranteed [7]. This last kind of analysis can prove that the algorithm will converge
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for “sufficiently small” step-sizes, but can provide only very loose bounds for the range of step-sizes that guarantee

convergence.

A recent result [8] proves that CMA is in fact alwaysunstable when the noise is not bounded (as, e.g., Gaussian

noise). It is also proven that the algorithm has useful stability properties for small step-sizes when a finite time

horizon is considered. Using a different approach, [9] shows that the least-mean fourth algorithm (LMF) is also

always mean-square unstable when the regressor is Gaussian, and [10] computes a range of step-sizes for which

the algorithm will be stable in a finite horizon. In this paper,we extend some of these latter results to CMA.

In [11] we proposed a simple model for the real-valued constant-modulus algorithm, that we used to study convex

combinations of CMA with the Shalvi-Weinstein algorithm (SWA). In this correspondence we use and extend that

model to obtain explicit stability conditions for CMA. The stability of CMA in fact depends on its initial condition

(a similar dependence appears in the LMF algorithm, see, e.g., [10]). In the simplified model presented here, this

dependence is not described; instead we assume that the algorithm was initialized close to the optimum solution,

providing the largest range of the step-size for which stable performance of CMA is possible. Our assumptions

regarding initialization are similar to what was used in thefirst work on the LMF algorithm [12], whose model

was latter improved in works such as [9], [10], [13].

II. T HE CONSTANT-MODULUS ALGORITHM

The data transmission problem with which we will work is depicted in Fig. 1. A sequence
{

a(n)
}

of data is

transmitted through a channel, which in general will distort and add noise (η(n) in the figure) to the transmitted

signal. The equalizer should approximately invert the effect of the (mostly linear) distortion, without significantly

amplifying the noise. The constant-modulus algorithm attempts to perform this task blindly, i.e., without the help

of a training sequence. Although there is more than one variant of CMA, we will focus on the so-called CMA2-2,

whose performance was found in previous works to be better than that of other variants [14].

CMA2-2 will update a weight vectorwn through the recursion

wn+1 = wn + µe(n)xn, (1)

wherexn ∈ R
M is a column-vector. The estimation error ise(n) = (ra − y2(n))y(n), wherey(n) = xT

nwn is the

filter output,ra = E a4(n)/ E a2(n) is a positive constant,E denotes expected value and(·)T denotes transposition.

To keep the discussion short, in this correspondence we willconsider only the case of real signals. We will assume

that the sampling rate at the equalizer is higher than the symbol rate, i.e., we will consider fractionally-spaced

equalizers (FSEs).

As Fig. 1 shows forL = 2, in an FSE the regressorxn is a concatenation ofL tap-delay lines, whereL is

the up-sampling factor [14]. ForL = 2, xn = [ x
T
e,n x

T
o,n ]T , xe,n = [ xe(n) xe(n−1) ... xe(n−M/2+1) ]T and xo,n =
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[ xo(n) xo(n−1) ... xo(n−M/2+1) ]T , wherexe(n) = x(2n) are the even, andxo(n), the odd samples ofx(n). The full

weight vectorwn is also a concatenation:wn = [ w
T
e,n w

T
o,n ]T .

z−1

z−1Codd(z)

Ceven(z)
x(n) y(n)

η(n)

Adapt.
EqualizerChannel

we,n

wo,n

xe(n)

xo(n)

a(n)
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2

2

2

2

Fig. 1. A fractionally-spaced equalizer (assuming an oversampling by afactor of 2). In this model, the equalizer is adapted once two new

samples arrive at the receiver.

The property of FSEs that is of interest to us is that a linear equalizer may achieve zero-forcing equalization in

the absence of noise [15], such that there exists an optimum weight vectorw∗ such thatwT
∗ xn = a(n− τd), where

τd is a delay. Note that other optimum choices would also exist,e.g.,w′
∗ = −w∗. Since the performance of the

equalizer would be the same for these alternative solutionsif an adequate rotation is applied to the output of the

filter, we assume, without loss of generality, that the algorithm is initialized so that it converges tow∗.

III. A MODEL FOR CMA

In order to find a simple model for CMA which allows determination of the stability range for the algorithm’s

step-size, we need to make, as is usually the case for the study of adaptive filters, some simplifying assumptions in

order to make analysis tractable. In this section we describe and justify the assumptions made in this correspondence.

First, for stability analysis it is easier to consider that the statistics of the input signal to the equalizer is time-

invariant, so our first assumption is

A-1 The channel is time-invariant and
{

a(n)
}

,
{

η(n)
}

and
{

xn

}

are stationary and have zero mean. We also

assume that
{

a(n)
}

and
{

η(n)
}

are both iid (independent, identically distributed) and independent of each other

(see also Assumption A-6 further ahead).

Second, we want to describe the filter output in terms of the transmitted data
{

a(n)
}

and of the difference

between the estimated parameter vectorwn and the zero-forcing vectorw∗, as was done in [14]. When the SNR

at the receiver is high, the optimum parameter vector will beclose tow∗, so our next assumption is

A-2 The noise power σ2
η = E η2(n) is small enough for the zero-forcing solution w∗ to be one of the global

minimizers of the CM cost-function J(w) = (ra − (wT xn)2)2. Under this assumption, wT
∗ xn ≈ a(n − τd).

Under Assumptions A-1 and A-2, we can definew̃n = w∗ − wn, and write the filter output as

y(n) = w
T
nxn = (w∗ − w̃n)T

xn ≈ a(n − τd) − w̃
T
nxn

∆
= a(n − τd) − ea(n), (2)
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where we defined thea-priori error ea(n) = w̃
T
nxn.

Next we need to simplify the CMA recursion (1). Most difficulties arise from the nonlinear error term,e(n).

Using Assumption A-2 and (2), we can write

e(n) = y(n)
(

ra − y2(n)
)

≈
(

a(n − τd) − ea(n)
)

(

ra −
(

a(n − τd) − ea(n)
)2

)

= −a3(n − τd) + e3
a(n) + 3a2(n − τd)ea(n) − 3a(n − τd)e

2
a(n) + a(n − τd)ra − ea(n)ra. (3)

To simplify this expression, we assume that higher powers ofea(n) can be disregarded, for alln ≥ 0:

A-3 The initial condition w0 is close enough to w∗ (i.e., ea(n) is small enough) so that (3) reduces to

e(n)≈
(

3a2(n−τd)−ra

)

ea(n)−a3(n−τd)+a(n−τd)ra. (4)

Definingγ(n) = 3a2(n− τd)− ra andβ(n) = a(n− τd)
(

ra − a2(n − τd)
)

, we obtaine(n) ≈ γ(n)ea(n)+β(n).

This relation has a number of interesting interpretations, as we show next (some of these properties were shown

in [11]). We will need an extra assumption:

A-4 The constellation used to generate the a(n) has circular symmetry, so that E ak(n) = 0 for all odd integers

k > 0. This assumption is not restrictive, since these conditions are true for practical constellations.

Lemma 1 Under Assumptions A-1 and A-4, β(n) has zero mean and is uncorrelated with xn.

Proof: Eβ(n) = E
(

raa(n − τd) − a3(n − τd)
)

= 0, if E a(n − τd) = E a3(n − τd) = 0.

To see thatβ(n) and xn are uncorrelated, recall that each entry ofxn, x(n − k), 0 ≤ k ≤ M − 1, is a noisy

linear combination of the transmitted symbolsa(n): x(n) =
∑K

k=0 ci(k)a(n − k) + η(n), where theci(k) are the

coefficients of the impulse response of one of the sub-channels. If n is even, the even sub-channel is used (i = 0),

if n is odd, i = 1 and the coefficients of the odd sub-channel are used. Both sub-channels are assumed to have

effective lengthK + 1. From the iid part of Assumption A-1, we obtain

Ex(m)β(n)=
K

∑

k=0

E
{(

raa(n−τd)−a3(n−τd)
)

ci(k)a(m−k)
}

+ E
{(

raa(n − τd) − a3(n − τd)
)

η(m)
}

.

From assumption A-1, the last term in the right-hand side is zero. Assumptions A-1 and A-4 guarantee that the

expected values in the sum are zero whenevern − τd 6= m − k. On the other hand,

E
{(

raa(n − τd) − a3(n − τd)
)

ci(m + τd − n)a(n − τd)
}

= ci(m + τd − n)
(

ra E a2(n − τd) − E a4(n − τd)
)

= 0,

since the channel is constant andra = E a4(n)/ E a2(n).

Using a similar argument, and the symmetry ofa(n) (Assumption A-4), it can be shown thatEx2(m)β(n) =

Ex(m)β2(n) = 0 for all m, n.

Next, note that ifa(n) has indeed a constant modulus, thenβ(n) ≡ 0. We can say that (when the SNR is high)

β(n) plays a role similar to that of the measurement noise in system identification. We should expect CMA to
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present a very low variance in steady-state about the optimum solution when the constellation has constant modulus,

and a larger variance as|a(n)| is allowed to vary (see also [11]).

In the sequel, we will also need to evaluate the expected values Eβ2(n)x(n − m1)x(n − m2), E γ(n)x(n −

m1)x(n−m2) andE γ2(n)x(n−m1)x(n−m2)x(n−m3)x(n−m4), for integerm1 . . .m4. Consider the second

of these quantities (Below,i = 0, 1, depending ifn−m1 is even or odd, and similarly forj andn−m2. We used

Assumption (A-1) to simplify terms involving the noise):

E {γ(n)x(n − m1)x(n − m2)} = E

{

(

3a2(n − τd) − ra

)

·

[

K
∑

k=0

ci(k)a(n−m1−k)

][

K
∑

ℓ=0

cj(ℓ)a(n−m2−ℓ)

] }

+

+ γ̄ E{η(n − m1)η(n − m2)}, (5)

where we defined̄γ = E{γ(n)}. Recalling A-1 and A-4, the expected value ofE a(2ℓ+1)(m)a(k) = 0 if m 6= k

for any integerℓ > 0. Definingσ2
a = E a2(n), σp = E ap(n) and∆ = m1 −m2, the only nonzero terms of (5) are

E {γ(n)x(n − m1)x(n − m2)} = γ̄σ2
ηδ(∆) − raσ

2
a

K
∑

k=0
0≤k+∆≤K

ci(k)cj(k+∆) + 3σ4
a

K
∑

k=0
k 6=τd−m1

0≤k+∆≤K

ci(k)cj(k+∆)

+ 3σ4ci(τd − m1)cj(τd − m2), (6)

whereδ(n) is the Kronecker delta. On the other hand, expanding(E γ(n)) (E{x(n − m1)x(n − m2)}), we obtain

(E γ(n)) (Ex(n − m1)x(n − m2)) = γ̄σ2
ηδ(∆) − raσ

2
a

K
∑

k=0
0≤k+∆≤K

ci(k)cj(k+∆) + 3σ4
a

K
∑

k=0
0≤k+∆≤K

ci(k)cj(k+∆). (7)

Although these equations can be further simplified by replacing the value ofra, we can already see that the

difference between (6) and (7) is only the term withσ4 that had to be separated from the second sum in (6). Since

E a4(n) = (1+ ǫ2)
(

E a2(n)
)2 with ǫ2 ≥ 0, we conclude that (6) and (7) will be approximately equal if the channel

is long enough andǫ2 is small enough for the term3ǫ2σ
4
aci(τd −m1)cj(τd −m2) to be small next to the two sums

in (6). Similar considerations can be made forEβ2(n)x(n−m1)x(n−m2) andE γ2(n)x(n−m1)x(n−m2)x(n−

m3)x(n − m4). We thus assume

A-5 The channel is long enough, and the constellation has small enough constants ǫp, where E a2p(n) = (1 +

ǫp)
(

E a2(n)
)p

, p = 1 . . . 4, so that

Eβ2(n)x(n−m1)x(n−m2)≈Eβ2(n) Ex(n−m1)x(n−m2),

E γ(n)x(n−m1)x(n−m2) ≈ E γ(n) Ex(n−m1)x(n−m2),

E γ2(n)x(n−m1)x(n−m2)x(n−m3)x(n−m4) ≈ E γ2(n) E x(n−m1)x(n−m2)x(n−m3)x(n−m4).
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A. Convergence in the mean

Subtracting the zero-forcing solution from both sides in (1)and using (4), we obtain (below,I is the identity

matrix andw̃n = w∗ − wn)

w̃n+1 = w̃n − µe(n)xn ≈
(

I − µγ(n)xnx
T
n

)

w̃n − µβ(n)xn. (8)

This expression is very similar to the weight-error vector recursion for LMS, only in the case of LMS we would

haveγ(n) ≡ 1, and instead ofβ(n) we would have the measurement noise. Sinceβ(n) is uncorrelated withxn,

from this point on the analysis of CMA is similar to well-known results about LMS [2], [3], [16].

Taking the expected value of this expression, we find a recursion for E w̃n if we make the next assumption

A-6 The vectors xn and w̃n are independent.

This assumption would be true if the vector sequence
{

xn

}

were iid. Although this is never true for an equalizer, it

is well-known that approximations of the meanE w̃n and covarianceE w̃nw̃
T
n of the weight-error vector are good

for small step-sizes. Approximations for the range of step-sizes obtained using this assumption tend to overestimate

the range of allowed step-sizes, but not so much as to render the estimated range useless [1].

Using Assumptions A-5 and A-6 and Lemma 1, the expected value of (8) reduces to

E w̃n+1 ≈
(

I − µE
{

γ(n)
}

E
{

xnx
T
n

})

E w̃n.

Defining the autocorrelation matrixR = E
{

xnxT
n

}

and recalling that̄γ = E{γ(n)}, we see that CMA converges

in the mean if0 < µ < 1/(γ̄λ1), whereλ1 is the largest eigenvalue ofR.

B. Mean-square stability

Multiplying (8) by its transpose, taking the expected value, and using Assumptions A-5 and A-6, we obtain a

recursion for the autocorrelationSn
∆
= E w̃nw̃

T
n :

Sn+1 =Sn − µγ̄RSn − µγ̄SnR + µ2r2
γ E

{

xnx
T
nSnxnx

T
n

}

+ µ2σ2
βR, (9)

where we definedσ2
β

∆
= Eβ2(n), r2

γ
∆
= E γ2(n). We obtained a similar recursion in [11], but there we assumed that

µ is small enough so that the fourth term on the right-hand sidecould be ignored. This approximation is good for

a steady-state analysis, as was the case in [11]. However, all terms in (9) must be considered when the goal is to

estimate the range of step-sizes for stable filter behavior. For that, we need to make a further assumption on the

statistics ofxn. Recalling that the entries ofxn arex(m) =
∑K

k=0 ci(k)a(m− k), where thea(m− k) are iid, we

see that the distribution ofx(m) will approach the Gaussian if the channel is long. The assumption below is thus

reasonable for long channels:
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A-7 The channel is long enough for the fourth-order moments of xn to be well approximated by those of a

Gaussian vector, so that [3] (Tr(A) is the trace of matrix A):

E
{

xnx
T
nSnxnx

T
n

}

≈ 2RSnR + R Tr
{

RSn

}

.

The recursion forSn then reads

Sn+1 =Sn − µγ̄RSn − µγ̄SnR + 2µ2r2
γRSnR + µ2r2

γ Tr
{

RSn

}

R + µ2σ2
βR. (10)

SinceSn is nonnegative-definite, the stability of (10) is determinedthrough a recursion for the diagonal of the

rotatedU
T
SnU , whereU is the orthogonal transformation that diagonalizesR, i.e., U

T
U = I, U

T
RU = Λ,

whereΛ = diag(λ1, . . . , λM ) andλ1 ≥ λ2 ≥ · · · ≥ λM are the eigenvalues ofR. Defining sn = diag(UT
SnU)

(the diagonal elements ofUT
SnU ) and l = [ λ1 ... λM ]T , (10) reduces to

sn+1 =
[

I − 2µγ̄Λ + µ2r2
γ

(

2Λ2 + ll
T
)]

sn + µ2σ2
βl. (11)

An exact condition for the stability of (11) can be obtained as follows [16]. First, note that the system matrixA

of (11) is positive-definite for allµ > 0, since

A = I − 2µγ̄Λ + µ2r2
γ

(

2Λ2 + ll
T
)

= (I − µγ̄Λ)2 + µ2(2r2
γ − γ̄2)Λ2 + µ2r2

γll
T ,

andr2
γ = E γ2(n) ≥ {E γ(n)}2 = γ̄2, so we need to guarantee only that the largest eigenvalue ofA is less than 1.

This, on the other hand, is equivalent toB = I−A being positive-definite. A necessary and sufficient conditionfor

a matrix to be positive-definite is that all its principal minors (i.e., all the determinants of the principal sub-matrices)

are positive [17]. This requires that (i) the diagonal entries of B be positive, i.e.,

2µγ̄λk−3µ2r2
γλ2

k > 0 ⇔ 0<µ<
2γ̄

3r2
γλk

, k=1 . . .M, (12)

and (ii) the determinants of allk×k principal sub-matrices are positive. These determinants can be evaluated using

the relationdet(I − ab
T ) = 1 − b

T
a, leading to the conditions

2i
i

∏

j=1

(

γ̄λj−µr2
γλ2

j

)

[

1−
µr2

γ

2

i
∑

k=1

λk

γ̄−µr2
γλk

]

>0, 1≤ i≤M.

These conditions reduce to
µr2

γ

2

M
∑

k=1

λk

γ̄ − µr2
γλk

< 1. (13)

A simpler, sufficient but not necessary condition to guarantee stability of (11) can be obtained as follows: since

Tr{R} ≥ λk, it follows that

µr2
γ

2

Tr{R}

γ̄ − µr2
γ Tr{R}

=
µr2

γ

2

M
∑

k=1

λk

γ̄ − µr2
γ Tr{R}

≥
µr2

γ

2

M
∑

k=1

λk

γ̄ − µr2
γλk

.
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If µ is small enough to make the left-hand side of the above expression less than one, then (13) will also be

satisfied. A range of step-sizes that guarantees stability of(11) is thus

0 < µ <
2γ̄

3r2
γ Tr{R}

. (14)

IV. SIMULATIONS

Due to the cubic term iny3(n) appearing in the CMA recursion (1), we can expect the overallbehavior of

CMA to be similar to that of LMF, which also has a cubic nonlinearity [9]. Both algorithms present dependence on

the initial condition, and a probability of divergence thatis larger for large step-sizes and poor initial conditions.

We say that a given run of the algorithm diverged when the Euclidean norm‖wn‖ of the weight vector becomes

unbounded. In the simulations, we label a given run of the algorithm as “diverging” if e(n) overflows (we check

for NaNs in Matlab). The probability of divergencePdiv is estimated fromNr runs of the algorithm by

Pdiv =
Number of curves diverging

Nr
.

In fact, [8] shows that, if the regressorxn were indeed Gaussian, CMA would be mean-square unstable no matter

how small the step-size (a similar result for LMF was proven in[9] using an alternative approach.) However, the

mean-square stability analysis provided here predicts accurately the range of step-sizes for which the probability of

divergence of a realization of CMA is small (see also [10] forLMF). When the regressor is not exactly Gaussian

(which is the case in practical applications) what happens is the following:

1) For very small step-sizes and an initial condition close enough to a local minimum, CMA will converge and

stay close to that local minimum;

2) As the step-size is increased, still with a good initial condition, the algorithm may switch between local

minima (see Figure 3), and occasionally diverge (i.e., the weights will become unbounded), with a small

probability that increases with the step-size;

3) For large step-sizes, the algorithm will always diverge;

4) Whether a given step-size should be considered “small” or“large” depends on how close the initial condition

is to a local optimum of the CM cost function;

5) If the initial condition is far enough from a local optimumso that approximation (4) fore(n) is not valid,

then, for a fixed step-size, the algorithm will be much more likely to diverge in the first iterations, while the

weights are far from the optimum. In this case, the probability of divergence is virtually independent of the

number of iterations in a given run (see [9], [10] for equivalent results for LMF);

6) If the initial condition is good (close to a minimum)and the step-size is large enough for divergence to occur,

the probability of divergence will depend on the number of iterations considered. If there are no local minima
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close together, the probability of divergencePdiv, N in N iterations will be equal to1− (1−Pdiv, N/k)
k, where

Pdiv, N/k is the probability of divergence inN/k iterations (see Figure 2).

We observed in the many simulations that we performed, that the probability of divergence starts being significa-

tive (e.g., larger than 0.1% for104 iterations) for a step-size between the two bounds, (14) and(13). A step-size

as large as half of (14) will make the probability of divergence virtually zero (no divergence observed in103 runs

of 2 × 105 iterations, or105 runs of104 iterations.)

In the following we present a few of our simulations. In all cases, we use pulse-amplitude modulation (PAM)

constellations, either PAM-4 (a(n) =
{

±α,±3α
}

) or PAM-6 (a(n) =
{

±α,±3α,±5α
}

), with α chosen so that

E a2(n) = 1, and FSEs withL = 2. We tested both long and short channels, and long and short adaptive filters.

Except for Figure 4, the algorithm was initialized close to a minimum of the CM cost-function, as required by

Assumption A-3. The initial condition was obtained by running the algorithm once with a small step-size (less than

half the approximate bound), and saving the final weight vector after the algorithm converged to a good solution

(with an open eye). In the following, the step-size predicted by the approximate bound (14) is denotedµa, andµe

for (13). In almost all plots, the step-sizes are normalizedby µa (i.e., we plot the probabilities of divergence as

functions ofµ/µa.)

The first examples are for channelC1, with impulse response
{

0.1, 0.3, 1.0,−0.1, 0.5, 0.2
}

in the absence of

noise, with PAM-4 and an FSE with a total ofM = 4 coefficients. Figure 2 shows the probability of divergence

(Pdiv) as a function of the step-size. One of the curves is the observedPdiv for Nr = 103 runs ofNit = 104 iterations

each, the other forNit = 3 × 104. We included a plot of the probability predicted for the longer simulation, using

Pdiv,3×104 ≈ 1 − (1 − Pdiv,104)3. The observed and estimated plots are close to each other – they are not identical,

because in this simulation CMA has a few local minima close together, and with medium-large step-sizes, the

algorithm tends to switch between these minima. The probability of divergence depends a little on how deep a

minimum is. In Figure 3 we provide a plot of the coefficients ofwn, with µ = 1.4µa, showing the filter switching

between two states.

Figure 4 shows the probability of divergence for a fixed step-size (equal toµa), as a function of the initial

condition: the initial condition for each point in the curvewas chosen aspw∗, wherep is a scalar, andw∗ is

the optimum weight vector, evaluated experimentally. The plot shows that the requirement that the algorithm be

initialized close to a minimum is not too restrictive: the probability of divergence stays small in a reasonably-sized

ball around the minimum.

Additive noise at the receiver will increase the probability of divergence, but our results are still valid if the

signal-to-noise ratio is not too low, as can be seen in Figure 5.

Figure 6 shows the results of simulations under different conditions: The solid line is a plot ofPdiv as a function
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)
Fig. 2. Probability of divergence as a function of the step-size for PAM-4, for channelC1. Equalizer withM = 4 coefficients,µa = 0.0418,

µe = 0.0814. Solid line (–):10
3 runs of10

4 iterations each; broken line (- -):3×10
4 iterations; dotted line (· · · ): Pdiv for 3×10

4 iterations,

estimated as described in the text from the results for10
4 iterations.
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5
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Fig. 3. Filter weightswn,i for PAM-4, for channelC1, µ = 1.4µa, M = 4, µ = µa.

of the step-size for the same conditions as in Figure 2, but with PAM-6 instead of PAM-4. The other two curves are

examples with longer channels: the real part of the microwave channels from [18]. The files have 300 coefficients,

although the effective length of the channels is much shorter (e.g., forchan7.mat, 99% of the energy is between

samples 20 and 55). The curve in broken line isPdiv for the channel in filechan7.mat (equalizer withM = 6

coefficients, PAM-4), and the last curve uses the channel fromchan9.mat, and an equalizer withM = 50
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20

30

40

50

60

70

80
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100

p

P
di

v
(%

)

Fig. 4. Probability of divergence as a function of the initial condition for PAM-4, for channelC1. The filter hadM = 4 coefficients, with

µ = µa = 0.0418, µe = 0.0814. Nr = 10
3 runs ofNit = 10

4 iterations each.
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coefficients and PAM-4. In all cases, the simulations were performed with Nit = 104 iterations,Nr = 103 runs,

and no noise. In this figure, we plot the probabilities of divergence normalizing the step-size by the approximate

boundµa (top) and by the more precise boundµe (bottom). It can be seen that the approximate bound (14) does

guarantee a reasonable performance for the filter.

0.8 1 1.2 1.4 1.6 1.8 2
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90

100

No noise
SNR = 30 dB
SNR = 20 dB
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P
di

v
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)

Fig. 5. Probability of divergence in the same conditions as in Figure 2, butwith additive noise at the receiver. For SNR = 30 dB,

µa = 0.0425, µe = 0.0813; for SNR = 20 dB,µa = 0.0417, µe = 0.0804. Solid line (–): no noise; broken line (- -): SNR = 30 dB; dotted

line (· · · ): SNR = 20 dB.

0.2 0.4 0.6 0.8 1 1.2
0

50

100

0.5 1 1.5 2 2.5 3
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100
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v
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P
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v
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b)

a)

Fig. 6. Probability of divergence as a function of the step-size. Above (a), the step-size is normalized byµa; below (b), byµe. Nr = 10
3

runs ofNit = 10
4 iterations each. Solid line (–): PAM-6, channelC1, µa = 0.0367, µe = 0.0706. Broken line (- -): PAM-4,M = 6, the

channel is the real part ofchan7.mat from [18], µa = 0.0288, µe = 0.0658. Line-dot (-·): PAM-4, M = 50, real part ofchan9.mat

from [18], µa = 0.0024, µe = 0.0068.

V. CONCLUSIONS

In this paper we derive a simple expression for the range of step-sizes for which the constant-modulus algorithm

remains stable. To our knowledge, this is the first easy-to-compute bound for CMA, which should be a valuable help

for designers. We validate our theoretical model with several simulations, for long and short filters and channels.

The simulations show that the behavior of CMA is qualitatively different from that of LMS and similar to that of

LMF: for a range of step-sizes, the algorithm may diverge or notin a given run, with a probability of divergence

that depends on how close the initial condition is to a local minimum, the step-size, and the noise level.
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