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Abstract

This paper presents a new convergence analysis of the Least Mean Fourth (LMF) adaptive algorithm, in the

mean square sense. The analysis improves previous results,in that it is valid for non-Gaussian noise distributions

and explicitly shows the dependence of algorithm stabilityon the initial conditions of the weights. Analytical

expressions are derived presenting the relationship between the step size, the initial weight error vector, and mean-

square stability. The analysis assumes a white zero-mean Gaussian reference signal and an independent, identically

distributed (i.i.d.) measurement noise with any even probability density function (pdf). It has been shown in [1] that

the LMF algorithm is not mean-square stable for reference signals whose pdfs have infinite support. However, the

probability of divergence as a function of the step size value tends to rise abruptly only when it moves past a given

threshold. Our analysis provides a simple (and yet precise)estimate of the region of quick rise in the probability of

divergence. Hence, the present analysis is useful for predicting algorithm instability in most practical applications.

I. I NTRODUCTION

Adaptive algorithms based on higher order moments of the error signal have been shown to perform better mean

square estimation than the well known Least Mean Square (LMS) algorithm in some important applications. The
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Jośe Carlos Bermudez is with the Dept. of Electrical Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil, e-
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Least-Mean Fourth (LMF) is one of such algorithms [2]. It seeks to minimize the mean fourth error, which is a

convex (and thus unimodal) function of the adaptive weight vector [2], [3]. Over the years, LMF has been shown

to have desirable properties for different applications [2], [4]–[8]. It has been shown that the LMF algorithm can

outperform LMS for Gaussian, uniform and sinusoidal noise distributions [2], [9]. These results have increased the

interest in a more detailed analysis of the LMF algorithm behavior, since its practical use has been limited in great

part due to the lack of good analytical models to predict its performance. In [9], a statistical analysis has been

presented, which led to accurate analytical models for the mean and mean-square behavior of the LMF algorithm

for small step sizes. Another important aspect of the algorithm’s behavior, which was not addressed in [9], is its

stability.

There are several approaches to analyze the convergence of adaptive algorithms: deterministic (worst-case) [10],

[11] and stochastic (in the mean, in the mean-square [11], and almost-sure [12], [13]). Deterministic approaches

such as in [10] tend to be very conservative, requiring the step size to be quite small in order to guarantee stability,

while almost-sure analysis may exaggerate, and conclude that an algorithm is stable when its performance is not

good at all (an explanation for this can be found in [14]). Walach and Widrow [2] studied the convergence properties

of the LMF algorithm in the mean-square sense. Their analysis was restricted to steady-state, and the stability limit

was not expressed as a function of the initial conditions, even though the reported simulation results indicated this

dependence. In [12], the ODE method was used to analyze general fixed-step adaptive algorithms, including LMF.

However, no analytical expression is given for the LMF stability conditions. In [15], the authors comment on the

dependence of LMF’s stability on its initial conditions. An expression is provided for the maximum adaptation

constant for convergence in the mean. However, the analysisin [15] does not consider the mean-square case, and

assumes that both the input signal and the measurement noiseare Gaussian. Reference [16] has shown that the

stability of the LMF algorithm depends on the initial conditions, but such dependence was not explicitly determined.

In [17] it is shown that LMF stability depends on the initial conditions, and this dependence is described analytically,

using an elegant argument. However, the analysis in [17] is restricted to Gaussian noise. More recently, a different

approach to stability analysis of the LMF algorithm was proposed in [1], which shows that there is always a nonzero

probability of divergence in any given realization when theinput signal has a probability density function (pdf)
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with infinite support. The probability of divergence was approximated for white Gaussian inputs.

This paper presents a new convergence analysis of the LMF algorithm in the mean-square sense1. The analysis

considers a white zero-mean Gaussian reference signal and an independent, identically distributed (i.i.d.) zero-mean

measurement noise with any even pdf. Thus, the derived results are also valid for the important applications in

which the LMF algorithm is employed with non-Gaussian measurement noise [2]. Our results agree with [17] in the

particular case of Gaussian noise. The dependence on the initial conditions is explicitly shown through analytical

expressions.

Strictly speaking, it has been shown in [1] that the LMF algorithm is never stable in the mean-square sense for

Gaussian regressors. Nevertheless, results based on standard mean-square stability analyses are useful for practical

design purposes. This is because the probability of divergence as a function of the step size value tends to rise

abruptly only when it moves past a given threshold. Before that, the probability of divergence tends to be sufficiently

small to grant the practical applicability of the LMF algorithm2. Moreover, signal amplitudes are necessarily limited

in practical applications, which contributes to reduce theprobability of divergence for step sizes smaller than the

threshold mentioned above. Our analysis provides a simple (and yet precise) estimate of the region of quick rise in

the probability of divergence. One important contributionof this paper is then a useful interpretation of standard

mean-square analyses of LMF in view of the results presented in [1].

Another relevant aspect of the LMF algorithm behavior is its steady-state stability. Depending on the step size

and on the initial condition, the LMF probability of divergence may increase considerably with the number of

iterations. Our model gives a very precise estimate of the useful step size range for the initial algorithm convergence.

However, if the algorithm is initialized close to the optimum solution and one chooses a large step-size, it may

have a significant probability of divergence also after initial convergence. This aspect (which we call “steady-state

divergence”) is not covered in the model presented here (seecomments in Sec. III-A).

The paper is organized as follows. In Section II we present a brief definition of the estimation problem considered.

In Section III we derive the analytical model for the second-order moments of the weight-error vector, which

1Initial results on this work have been presented in [18].
2In practical applications it may be of interest to include a re-initialization scheme in case, for instance, the error signal tends to increase

without bound.
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determine the stability of the algorithm. In Section IV we perform the stability analysis, where the conditions

on the step size and on the algorithm initialization are derived. In Section V we present simulation examples to

illustrate the application of the theoretical results. Throughout the paper we use lowercase bold letters to represent

column vectors, capital bold letters for matrices and regular (non-bold) lowercase letters for scalars. Capital regular

letters are used for constants.

II. PROBLEM DEFINITION

Fig. 1 shows a block diagram of the problem studied here. The adaptive filter attempts to estimate a desired

signald(n), which is linearly related to the input signalx(n) by the stationary model

d(n) = w
oT

x(n) + z(n) (1)

wherew
o = [w0

0, w
0
1, ..., w

0
N−1]

T is the vector of the model parameters,x(n) is assumed stationary, white, zero-

mean and Gaussian with varianceσ2
x. x(n) = [x(n), x(n− 1), ..., x(n−N + 1)]T is the observed data vector with

correlation matrixR = E[x(n)xT (n)] = σ2
xI, with I being theN × N identity matrix. The sequencez(n) is a

zero-mean i.i.d. random sequence, with varianceσ2
z and statistically independent of any other signal. Moreover, it is

assumed thatz(n) can have any distribution with an even pdf. The sequencez(n) in (1) accounts for measurement

noise and modeling errors. Vectorw(n) = [w0(n), w2(n), ..., wN−1(n)]T is the adaptive weight vector, ande(n)

is the error signal.

−

+

Σ
x(n) y(n)

d(n)

e(n)

LMF

Algorithm

w(n)

Fig. 1. Adaptive system under study.
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The LMF algorithm weight update equation is given by [2]

w(n + 1) = w(n) + µe3(n)x(n), (2)

whereµ is the step size and

e(n) = d(n) − y(n) = w
oT

x(n) + z(n) − w
T (n)x(n). (3)

Defining the weight error vectorv(n) = w(n) − w
o = [v0(n), . . . , vN−1(n)]T about the optimal solution, (2)

can be written as

v(n + 1) = v(n) + µe3(n)x(n) (4)

with

e(n) = z(n) − v
T (n)x(n). (5)

The convergence properties of this algorithm are studied in the following.

III. SECOND MOMENT ANALYSIS

Though the conditions for convergence in the mean can providesome insight on algorithm behavior, second

moment stability is far more important in determining conditions for algorithm convergence [19], [20]. Thus,

we restrict the analysis to the study of the conditions for mean-square convergence. As shown in [1], under the

assumption of Gaussian regressors, the LMF algorithm is not mean-square stable no matter how small the step size.

However, as the step size decreases (if the initial condition is close enough to the optimum weight vectorw
o), the

probability of good behavior (convergence) of a single realization of the algorithm increases, tending to 1 as the

step size decreases to zero. The analysis provided here (and other analyses in the literature) therefore give a step

size for which the probability of divergence is still small,as our simulations show.

For white inputs and neglecting the statistical dependencebetweenx(n)xT (n) andv(n), straightforward calcu-

lation using (5) shows that the second order moments of the weights are related to the mean-square error (MSE)
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through [20]

E[e2(n)] = σ2
z + σ2

x E[vT (n)v(n)], (6)

Hence, the MSE convergence can be studied through the convergence properties ofE[vT (n)v(n)]. The convergence

analysis then reduces to the study of a recursive scalar equation.

A recursive expression for the behavior ofE[vT (n)v(n)] could be easily obtained by taking the trace of

the recursion derived in [9, Eq. (22)] for the weight error correlation matrix K(n) = E[v(n)vT (n)] of the

LMF algorithm. However, terms neglected in [9] which were notsignificant for the analysis done there become

important for a stability analysis, since large values of the step sizeµ must be considered in this case3. The model

derived for the MSE in [9] indicates that the MSE tends to−∞ when the algorithm becomes unstable, which is

obviously incorrect. The model in [9] is valid only in the stability region. Therefore, a new recursive expression

for E[vT (n)v(n)] must be determined for the convergence analysis by startingagain from the LMF weight-error

update equation (4).

Pre-multiplying (4) by its transpose, using (5), taking the expected value and using the statistical properties of

z(n),4 leads to

E[vT (n + 1)v(n + 1)] = E[vT (n)v(n)] − 2µ

(1)
︷ ︸︸ ︷

E{[xT (n)v(n)]4} − 6µE[z2(n)]

(2)
︷ ︸︸ ︷

E{[xT (n)v(n)]2}

+ µ2

(3)
︷ ︸︸ ︷

E{[xT (n)v(n)]6xT (n)x(n)} + 15µ2 E[z2(n)]

(4)
︷ ︸︸ ︷

E{[xT (n)v(n)]4xT (n)x(n)}

+ 15µ2 E[z4(n)]

(5)
︷ ︸︸ ︷

E{[xT (n)v(n)]2xT (n)x(n)} + µ2 E[z6(n)]

(6)
︷ ︸︸ ︷

E[xT (n)x(n)].

(7)

The following analysis assumes that the effects of the statistical dependence ofx(n)xT (n) and v(n) can be

neglected. This assumption is weaker than assumingx(n) and v(n) statistically independent [21]. The expected

values in (7) are then calculated as follows:

3The recursion forK(n) was derived in [9] by neglecting the higher-order termsE[(xT (n)v(n))2k
x(n)xT (n)] for k > 1, and considering

a small step sizeµ.
4The two important properties ofz(n) used in evaluating (7) were its independence of any other signal and the even pdf, which leads to

zero odd-order moments.
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A. Expected Value 1:E[(xT (n)v(n))4]

Forx(n) zero-mean, Gaussian and independent ofv(n), x
T (n)v(n) is also zero-mean Gaussian when conditioned

on v(n). Thus, we can write [22]

E{[xT (n)v(n)]2k|v(n)} = E{[xT (n)v(n)]2|v(n)}k

k∏

m=1

(2m − 1). (8)

and then

E{[xT (n)v(n)]4|v(n)} = 3 E{[xT (n)v(n)]2|v(n)}2

= 3
{
E[vT (n)x(n)xT (n)v(n)|v(n)]

}2

≈ 3
{
v

T (n)Rv(n)
}2

= 3
{
σ2

xv
T (n)v(n)

}2

= 3σ4
xv

T (n)v(n)vT (n)v(n)

(9)

Averaging (9) overv(n) requires extra approximations, since the pdf ofv(n) is unknown. We use the following

approximation:

E[vT (n)v(n)vT (n)v(n)] ≈ E[vT (n)v(n)] E[vT (n)v(n)] (10)

Approximation (10) assumes that the variance ofv
T (n)v(n) is much smaller than its mean value5. This assump-

tion is valid in the beginning of the adaptation process, since its is reasonable to expect that the adaptive weights

will be initialized far (relative to the steady-state standard deviation
√

E[vT (n)v(n)]) from the optimal weights.

Then, the mean value ofvi(n), i = 0, . . . , N −1, can be assumed much larger than its fluctuations in the beginning

of adaptation.6 When instability does occur, its onset is usually during theinitial adaptation phase and due to the

unbounded increase of the second order moments, which can bedetected using (10). Extensive simulation results

have shown that this approximation leads to good accuracy indetermining the stability conditions.

Reference [23] approximates (10) by assuming thatv(n) is Gaussian-distributed. However, the analysis in [1]

shows that this assumption is not satisfied. [23] does not provide estimates of the range of step sizes for stable

5Note thatE[vT (n)v(n)vT (n)v(n)] = E2[vT (n)v(n)] + σ2
v

T (n)v(n), whereσ2
v

T (n)v(n) is the variance ofvT (n)v(n).
6For the purpose of this analysis, beginning of adaptation is the phase during which E[v(n)] is much larger than its fluctuations. The

actual duration of this phase depends on the weight initialization, the step size, the adaptive filter length, the noise power and the input
signal power.
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behavior, mainly because of the complexity of the model.

Using (10) and the property thatE{XY } = EY {EX{XY |Y }} for any random variablesX and Y [22], (9)

becomes

E{[xT (n)v(n)]4} ≈ 3σ4
x E[vT (n)v(n)vT (n)v(n)] ≈ 3σ4

x E[vT (n)v(n)] E[vT (n)v(n)] (11)

B. Expected Value 2:E{[xT (n)v(n)]2}

Conditioning onv(n),

E{[xT (n)v(n)]2|v(n)} = E[vT (n)x(n)xT (n)v(n)|v(n)]

= v
T (n) E[x(n)xT (n)|v(n)]v(n)

≈ v
T (n)Rv(n) = σ2

xv
T (n)v(n) (12)

Averaging (12) overv(n) gives

E{[xT (n)v(n)]2} ≈ σ2
x E[vT (n)v(n)] (13)

Next, we evaluate the expected values that are multiplied byµ2 in (7). They are evaluated using the same

methodology presented in [9] and [24], and also using approximations similar to (10).

C. Expected Value 3:E{[xT (n)v(n)]6xT (n)x(n)}

Using the properties of higher moments of zero-mean Gaussian variables [22], the expected value conditioned

on v(n) can be written as:

E
{[

x
T (n)v(n)

]6
x

T (n)x(n)|v(n)
}

= tr
{

E
[
[xT (n)v(n)]6x(n)xT (n)|v(n)

]}

≈ (15N + 90)σ8
xv

T (n)v(n)vT (n)v(n)vT (n)v(n)

(14)

To average (14) overv(n), we again neglect the higher order moments ofv
T (n)v(n). Thus, vT (n)v(n) ≈

E[vT (n)v(n)] and

E{[vT (n)v(n)]3} ≈ E[vT (n)v(n)] E[vT (n)v(n)] E[vT (n)v(n)] (15)
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Thus,

E{[xT (n)v(n)]6xT (n)x(n)} = tr
{

E[xT (n)v(n)]6x(n)xT (n)
}

≈ (15N + 90)σ8
xE3[vT (n)v(n)]

(16)

D. Expected Value 4:E{[xT (n)v(n)]4xT (n)x(n)}

Using the same methodology as above,

E{[xT (n)v(n)]4xT (n)x(n)} ≈ (3N + 12)σ6
xE2[vT (n)v(n)] (17)

E. Expected Value 5:E{[xT (n)v(n)]2xT (n)x(n)}

Using again the same technique,

E{[xT (n)v(n)]2xT (n)x(n)} ≈ (N + 2)σ4
x E[vT (n)v(n)] (18)

F. Expected Value 6:E[xT (n)x(n)]

E[xT (n)x(n)] = Nσ2
x (19)

Using the expected values 1-6 in (7), we obtain the followingexpression forE[vT (n + 1)v(n + 1)]:

y(n + 1) = (1 − a)y(n) − by2(n) + cy3(n) + d (20)

wherey(n) = E[vT (n)v(n)] and

a = A1µ − A2µ
2 b = B1µ − B2µ

2 c = Cµ2 d = Dµ2 (21)

with

A1 = 6σ2
zσ

2
x A2 = 15 E[z4(n)]σ4

x(N + 2) B1 = 6σ4
x

B2 = 15σ2
zσ

6
x(3N + 12) C = σ8

x(15N + 90) D = E[z6(n)]σ2
xN. (22)
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In the following, we study the convergence properties of (20).

At this point, a clarification is necessary. The model (20) has been derived to predict algorithm instabilities

caused by unbounded growth of second order moments. These areusually the instabilities of greatest interest, as

they occur at the initial stages of adaptation and for small or moderate step size values. However, we have also

verified experimentally that using large step sizes may lead to a significant probability of divergence after LMF has

initially converged to a small region about the optimum weights, which corresponds to the steady-state solution

of (20). This is specially true for low-order filters. This so-called steady-state divergence is a function of higher

moments of the weight vector and cannot be predicted using the approximation in (10). As we show in Section IV,

large step-sizes imply that the initial weights are very close to their optimum values (not a practical situation), which

implies that approximation (10) does not hold. If the step-size is chosen reasonably smaller then the maximum

for a given value ofy(0), the phenomenon of steady-state divergence becomes less likely. Thus, the model (20)

should be useful for most practical designs7. It should also be added that the possibility of steady-state divergence

cannot be detected by the model in [23]. Experimental resultson the steady-state instability will be presented in

Section V.

IV. STABILITY ANALYSIS

Expression (20) is a nonlinear difference equation that approximates the dynamics of the LMF algorithm. Its

convergence depends in general on the initial conditiony(0) = E[vT (0)v(0)], the squared Euclidean norm of the

initial weight error vector. To study the stability conditions for (20), we need to find its equilibrium points.

Making y(n + 1) = y(n) = y∞ in (20), we obtain

y∞ = (1 − a)y∞ − by2
∞

+ cy3
∞

+ d. (23)

Sincec > 0, we can rewrite (23) as

y3
∞

− b

c
y2
∞

− a

c
y∞ +

d

c
= 0. (24)

7For practical situations, when the initial condition is reasonably far from theoptimum weights and the step size is relatively smaller than
the maximum value predicted by our model (µmax), we never did observe “steady-state divergence”. If a filter is designed so that the initial
probability of divergence is reasonably small (say, less than 0.1%), the probability of “steady-state divergence” must be very small.
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Equation (24) has three roots, which represent the equilibrium points. These roots can be expressed in analytical

form as follows [25]:

y1∞ = (s1 + s2) +
b

3c
,

y2∞ = −1

2
(s1 + s2) +

b

3c
+

j
√

3

2
(s1 − s2),

y3∞ = −1

2
(s1 + s2) +

b

3c
− j

√
3

2
(s1 − s2),

(25)

where

s1 =
(

r +
√

q3 + r2
) 1

3

,

s2 =
(

r −
√

q3 + r2
) 1

3

,

(26)

with

q = − a

3c
− b2

9c2
,

r =
1

6

(ab

c2
− 3d

c

)

+
b3

27c3
.

(27)

Depending on the values ofq andr, three cases can occur:

A. Case 1:q3 + r2 < 0 (three real roots)

In this case, (24) has either three negative real roots or onenegative and two distinct positive real roots8. The

first option is of no interest, sincey(n) is a squared magnitude and thus must be non-negative. The second option

has two non-negative roots which are of interest to our study. Fig. 2 illustrates the case of one negative and two

positive roots, denotedyneg, yc andy(0)max respectively. Rooty(0)max corresponds to a stability limit9. Thusy(0)max

is the maximum value ofy(0) that guarantees stability of (20) for a specific value ofµ. The smaller the value of

µ, the larger the value ofy(0)max. As µ → 0, y(0)max → ∞. Root yc corresponds to the stable equilibrium point,

and thus is the steady-state solutiony(∞) for this case.

To study the behavior of the curvey(n + 1) in Fig. 2 in the range0 < y(n) < y(0)max we determine its slope

in the region. Given thatd > 0 and that we assume the two roots of (25) to be real and positive, the derivative

8Note that one root is always negative in this case becaused > 0 in (24) implies thaty(n + 1) > 0 for y(n) = 0, andc > 0 implies that
y(n + 1) → −∞ wheny(n) → −∞.

9Note from Fig. 2 thaty(0) > y(0)max implies y(n + 1) > y(n) for all n > 0, and thus instability.



12 SUBMITTED TO THE IEEE TRANSACTIONS ON SIGNAL PROCESSING OCTOBER 23, 2006

y(n)d

y(n+1)

y(n+1)=y(n)

f(y(n))

STABLE UNSTABLE

yneg

yc y(0)max

Fig. 2. Equilibrium points: case 1 (yc << y(0)max).

of y(n + 1) with respect toy(n) at y(n) = yc is less than one. Therefore, the condition foryc to be a stable

equilibrium point is thatdy(n + 1)/dy(n) > −1 at y(n) = yc. Differentiating (20) with respect toy(n) yields

dy(n + 1)

dy(n)
= 1 − a − 2by(n) + 3cy2(n) (28)

Differentiating again with respect toy(n) and equating the result to zero results in the condition for astationary

point of dy(n + 1)/dy(n):

d2y(n + 1)

dy(n)2
= 6cy(n) − 2b = 0 (29)

Values ofy(n) satisfying (29) may correspond to a maximum or to a minimum ofdy(n + 1)/dy(n). Another

differentiation with respect toy(n) yields

d3y(n + 1)

dy(n)3
= 6c (30)

Sincec > 0, y(n) satisfying (29) corresponds to a minimum ofdy(n + 1)/dy(n). Using y(n) = b/3c obtained
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from (29) in (28) yields the value of the smallest derivative:

min

{
dy(n + 1)

dy(n)

}

=
3c(1 − a) − b2

3c
. (31)

Thus,yc will be a stable equilibrium point if (31) is greater than−1. In particular, the convergence will be monotonic

if (31) is greater or equal to zero (see below). A necessary and sufficient condition for (31) to be greater or equal

than zero is

b2 ≤ 3c(1 − a). (32)

We determine in Appendix I the conditions for (32) to be satisfied for large values ofN . It is shown that extra

restrictions may apply to the possible values ofµ, depending on the relationship betweenE[z4(n)] andσ4
z .

If (32) is satisfied,y(n + 1) is monotonically increasing withy(n) in [0, y(0)max], andy(n) converges monoton-

ically to yc wheny(n) is initialized in the range0 < y(0) < y(0)max, as shown in Fig. 3. Thus,yc will be a stable

equilibrium point of (20) whenever the conditions derived in Appendix I are satisfied.

y(n+1)=y(n)

y(n)d

f(y(n))

y(n+1)

yneg

yc y(0)max

tg(α) > 0

Fig. 3. Equilibrium points: case 1 - derivatives.

If (32) is not satisfied, there is still a possibility thatyc be a stable equilibrium point, though the convergence

to it will not be monotonic. It is easy to verify thatyc will be a stable equilibrium point with non-monotonic
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convergence if

−1 <
dy(n + 1)

dy(n)

∣
∣
∣
y(n)=yc

< 0. (33)

In this casey(n) will show decreasing oscillations aboutyc. This situation is illustrated in Fig. 4. Applying (33)

to (31) we obtain a condition for convergence in this situation:

3c(1 − a) < b2 < 3c(2 − a). (34)

The conditions for (34) to be satisfied are determined in Appendix II. These conditions are similar to those

derived for (32).

y(n+1)=y(n)

y(n)

y(n+1)

d

yneg

ycy(0) y(0)max

Fig. 4. Equilibrium points: case 1 - non-monotonic convergence.

B. Case 2:q3 + r2 = 0 (only real roots, and two of them are equal and nonzero)

In this case, (24) has two real, positive, and equal roots (yc andy(0)max coincide) and one negative root (yneg),

which is again not of interest for the convergence analysis.The curvey(n+1) is tangent to the liney(n+1) = y(n)

at the saddle pointyc = y(0)max as shown in Fig. 5.

This case clearly determines the stability limit for the stepsizeµ, as it defines the value ofµ for which there is

no gap betweenyc andy(0)max. To determine the step size stability limit, we writeq3 + r2 as a function ofa, b, c
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y(n)d

f(y(n)) y(n+1)=y(n)

y(n+1)

STABLE

UNSTABLE

yneg

yc = y(0)max

Fig. 5. Equilibrium points: case 2 (yc = y(0)max).

andd, yielding

q3 + r2 =
{

− a

3c
− b2

9c2

}3
+

{1

6

(ab

c2
− 3d

c

)

+
b3

27c3

}2

= − 1

729c6

(

3ac + b2
)3

+
1

729c6

(9

2
abc − 27

2
dc2 + b3

)2
.

(35)

Since (35) is equal to zero for Case 2, we conclude that

4
(

3ac + b2
)3

=
(

9abc − 27dc2 + 2b3
)2

. (36)

Writing (36) as a polynomial inµ, and substituting the variablesa, b, c andd as functions ofA1, A2, B1, B2,

C, D according to (21) and (22) leads to

P4µ
4 + P3µ

3 + P2µ
2 + P1µ + P0 = 0, (37)

where:
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P4 = −4A3
2C + A2

2B
2
2 + 18A2B2CD − 4B3

2D − 27C2D2;

P3 = 12A1A
2
2C − 2(A1A2B

2
2 + A2

2B1B2) − 18(A1B2 + A2B1)CD + 12B1B
2
2D;

P2 = −12A2
1A2C + A2

1B
2
2 + A2

2B
2
1 + 4A1A2B1B2 + 18A1B1CD − 12B2

1B2D;

P1 = 4A3
1C − 2(A1A2B

2
1 + A2

1B1B2) + 4B3
1D;

P0 = A2
1B

2
1 .

The smallest positive real rootµo of (37) corresponds to the stability limit. If the weights were initialized equal to

the optimum weight vectorwo or with values such thatvT (1)v(1) ≤ yc, the LMF recursion would start apparently

converging, but any noise would drive the recursion to instability. This is the situation in which what we called

“steady-state divergence” occurs: in practice, noise willbe able to drive the filter to instability whenyc is close

(not necessarily equal) toy(0)max.

C. Case 3:q3 + r2 > 0 (two complex roots)

In this case (24) may have three real negative roots (a situation of no interest) or one negative real and two

complex roots. There is no solutiony(n + 1) = y(n) for y(n) > 0. Therefore, there is no value ofy(0) ≥ 0 that

guarantees stability of (20). The complex roots case is illustrated in Fig. 6, and occurs for values ofµ larger than

the limit valueµo.

The results derived in this section allow the explicit determination of the stability conditions for the LMF algorithm

when applied to the system in Fig. 1. Given the system parameters, the maximum value ofµ (µ = µo) can be

determined from (37). Then, for anyµ < µo, y(0)max can be determined from the solutions of (24). The value of

√

y(0)max is the maximum initial distance from the initial weight vector w(0) to the optimum weight vector that

guarantees algorithm stability for a given value ofµ. Thus, the use of this information directly for design purposes

requires a reasonably good estimate ofw
o, the response of the system to be identified. This is a consequence of

the fact that the stability limit is a function of the weight vector initialization. Such property is common to adaptive

algorithms employing higher (greater than 2) order momentsof the estimation error. Nevertheless, the analysis

results provide an analytical model that can be used to studythe robustness of the algorithm in solving practical

problems, and to design the algorithm for an expected marginof error in the initial estimate ofwo.

The theoretical model can also be used to estimate the range ofstep-sizes that guarantee stability of (20) for a
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y(n)d

y(n+1)

f(y(n))

y(n+1)=y(n)UNSTABLE

yneg

Fig. 6. Equilibrium points: case 3 (yc andy(0)max complex).

given initializationy(0). To this end, (24) can be used iteratively to determine the maximum step size associated

with a desired initial conditionyd(0). First, it is important to notice that there will be a different value ofy(0)max for

each value ofµ. Defineµk as the value ofµ for which the maximum possible value ofy(0) is y(0)maxk (determined

from (24) with µ = µk). Then, forµ = µo evaluated from (37),y(0)max0 = min{y(0)max}. Given a desired initial

conditionyd(0), we start by comparingyd(0) with y(0)max0 . If yd(0) > y(0)max0 , µ must be reduced. We then make

µ1 = µo −∆µ. Using nowµ1 in (24) leads toy(0)max1 , which must be compared withyd(0). If yd(0) > y(0)max1 ,

µ2 = µ1 − ∆µ is evaluated as a new candidate forµmax. The cycle continues untilyd(0) ≤ y(0)maxk . Then,

µmax ≈ µk.

V. SIMULATION EXAMPLES

This section presents simulation examples to verify the accuracy of the theoretical analysis. Initially, we illustrate

the accuracy of (20) through an example withσ2
x = 1, z(n) uniform with zero-mean andσ2

z = 0.1, N = 29,

µ = 0.004 for µmax = 0.0468, y(0) = 1. The plant’s impulse responsewo was a delayed raised-cosine function

given by [26]

w
o(k) =

{

sin
[
6πfo(n − no)/N

]

6πfo(n − no)/N

}{

cos
[
6πrfo(n − no)/N

]

1 − 12rfo(n − no)/N

}

, (38)
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Fig. 7. E[vT (n)v(n)] for LMF with white input and zero-mean uniform noise.σ2
x = 1, σ2

z = 0.1, y(0) = 1, N = 29 taps and
µ ≃ µmax/10. Ragged curve: Monte Carlo simulation averaged over 50 runs. Smoothcurve: Theoretical model (20).

whereN is the number of coefficients,r is roll-off factor (0 ≤ r ≤ 1), no is the right-shift delay relative to the even

function case andfo is the expansion factor. For this example,r = 0.1, no = (N − 1)/4 = 14 andfo = 0.58. The

mean-square deviationE[vT (n)v(n)] is shown in Fig. 7. The simulation (ragged) curve was obtained from Monte

Carlo simulation averaged over 50 realizations for which nosteady-state divergence was observed. The theoretical

(smooth) curve was obtained from (20).

To test the theoretical stability limit we estimate the algorithm’s probability of divergencePd obtained from

several experiments (see also [1]). To estimatePd, each experiment is repeatedL times, starting from the same

initial conditiony(0) = ‖v(0)‖2. A sample function is labeled as “diverging” if‖v(Nit)‖ ≥ 104 afterNit iterations10.

We then compute the observed probability of divergence asPd,o = (Number of curves diverging)/L and draw the

curves forPd,o versusµ. The instability onsets obtained from these curves can then be compared with the theoretical

stability limit obtained using the procedure described in the last paragraph of the previous section.

Fig. 8 shows a typical example, comparing the probabilities of divergence observed when the noise is uniform

10The results reported in these simulations are very insensitive to divergence threshold used, as the divergence is “explosive” when it
occurs. Thresholds varying from104 to 1010 have been used with basically the same results.
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with σ2
z = 0.01, N = 100, σ2

x = 1, y(0) = 1, L = 103, Nit = 104. The vectorwo was obtained from (38) with

r = 0, no = 2 andfo = 2. The value ofµmax(y(0)) computed from (24) corresponds to the vertical line11.

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020 0.022
0

10

20

30

40

50

60

70

80

90

100

Observed probability of divergence forN = 100

µ

Fig. 8. Probability of divergence, uniform noise,N = 100, σ2
x = 1, y(0) = 1, σ2

z = 0.01, L = 103, Nit = 104. The vertical line shows
the value ofµmax.

Table I lists the values ofµmax obtained for different noise variancesσ2
z , signal variancesσ2

x, filter lengthsN

and initial conditionsy(0), for both uniform and Gaussian noise distributions. The table also shows the step sizes

for which the observed probability of divergence was1% (µ1%) and99% (µ99%). In order to keep the simulation

time manageable,µ1% andµ99% were obtained by interpolation from a grid of actually measured values. Note that,

except for three situations (cases 2, 6, and 28, out of the 33 displayed)12, µmax is always betweenµ1% andµ99%.

We should also note that asy(0) is decreased belowy(0)max, the correspondingµmax initially increases. However,

µmax cannot become larger thanµo, so there is a limityl below which a reduction iny(0) will not translate to an

increase inµmax.

Figures 9 and 10 show the probability of divergence as a function of the initializationy(0), for six different

values ofµ. The vertical lines show the values ofy(0)max computed from (24) for each value ofµ.

In order to illustrate the LMF steady-state instability described at the end of Section III (but not predictable by

the present model), Table II shows observed steady-state probabilities of divergence as a function of the number of

iterations for three different cases. In the first four examples, the number of iterations does not affect significantly

the observed probability of divergence. In the fifth case, this probability clearly increases with the number of

11The number of repetitionsL = 103 used to estimate the probabilities was somewhat small to reduce simulation time.Since our goal with
these simulations is simply to show the region of fast increase inPd,o, there is no need to estimate these probabilities with great accuracy.

12This may be due the approximations used to estimate the values ofµ1% andµ99%.
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Fig. 9. Probability of divergence, uniform noise,N =
100, σ2

x = 1, µ = 0.0010772 (solid), µ = 0.0023208
(long dash), andµ = 0.005 (short dash),σ2

z = 0.01,
L = 103, Nit = 104. The vertical lines show the values
of y(0)max computed for each value ofµ.
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Fig. 10. Probability of divergence, uniform noise,N =
100, σ2

x = 1, µ = 0.0107722 (solid), µ = 0.0232079
(long dash), andµ = 0.05 (short dash),σ2

z = 0.01,
L = 103, Nit = 104. The vertical lines show the values
of y(0)max computed for each value ofµ.

iterations. As one would expect, the observed probability of divergence is less affected by the number of iterations

when the noise variance is lower, and the initial conditiony(0) is larger, since these cases correspond to situations

in which Approximation (10) is better.

The analytical results derived here and the experimental verification of the possibility of steady-state instability

provide important guidelines for the use of the LMF algorithmin practical applications. First, the step size used

should be a small fraction of the maximum step sizeµmax derived from the theory, given the expected range of

values ofy(0)max inferred from the available knowledge about the problem at hand. Second, depending on the

degree of confidence in the available information, it may be advisable to incorporate some form of re-initialization

procedure to be applied if, for instance, the error signal starts diverging.

VI. CONCLUSIONS

This paper presented a new convergence analysis for the LMF adaptive algorithm, based on mean-square

arguments. Although [1] showed that LMF with Gaussian regressors is not mean-square stable for any step size,

the present analysis shows that mean-square results may still be very useful to predict the region of useful step

sizes for a nonlinear adaptive filter, providing useful information at a much lower cost than the model in [1]. The

analysis further improves previous results in that the dependence of stability on the initial conditions is explicitly

shown, for additive noise having any even p.d.f. The results reveal a relationship between the initial conditions and
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TABLE I

MAXIMUM STEP SIZESµMAX FOR DIFFERENT CONDITIONS, FOR GAUSSIAN REGRESSORS.

Case N σ2
x y(0) σ2

z µmax µ1% µ99%

Uniform noise
1 10 0.1 0.1 0.01 9.7357 6.1 12.3
2 10 0.1 0.1 0.1 1.18 0.67 1.16
3 100 0.1 0.1 0.01 1.12753 0.93 1.78
4 100 0.1 0.1 0.1 0.14406 0.113 0.182
5 1000 0.1 0.1 0.01 0.131606 0.113 0.173
6 1000 0.1 0.1 0.1 0.014744 0.0148 0.0183
7 10 1 0.1 0.01 0.21549 0.135 1.38
8 10 1 0.1 0.1 0.0974 0.0614 0.172
9 100 1 0.1 0.01 0.0316 0.0210 0.0744
10 100 1 0.1 0.1 0.0127528 0.00931 0.0182
11 1000 1 0.1 0.01 0.00332 0.00211 0.00789
12 1000 1 0.1 0.1 0.0013161 0.00120 0.00278
13 10 0.1 1 0.01 2.1549 1.48 10.9
14 10 0.1 1 0.1 0.974 0.610 1.23
15 100 0.1 1 0.01 0.3164 0.202 0.757
16 100 0.1 1 0.1 0.12753 0.0928 0.177
17 1000 0.1 1 0.01 0.033195 0.0202 0.0586
18 1000 0.1 1 0.1 0.0131606 0.0113 0.0173
19 10 1 1 0.01 0.0246 0.0178 0.337
20 10 1 1 0.1 0.0215 0.0146 0.120
21 100 1 1 0.01 0.00370 0.00231 0.0108
22 100 1 1 0.1 0.00316 0.00199 0.00741
23 1000 1 1 0.01 0.000390 0.000221 0.000821
24 1000 1 1 0.1 0.000332 0.000204 0.000557

Gaussian noise
25 10 1 0.01 0.01 0.7692308 0.352 0.848
26 10 1 0.01 0.1 0.0779754 0.0356 0.0849
27 100 1 0.01 0.01 0.0970874 0.0700 0.113
28 100 1 0.01 0.1 0.0128305 0.00701 0.0112
29 1000 1 0.01 0.01 0.0099701 0.00888 0.0135
30 1000 1 0.01 0.01 0.0009970 0.000892 0.00143
31 100 1 0.1 0.01 0.0313480 0.0197 0.0694
32 100 4 0.1 0.01 0.0022479 0.00124 0.00632
33 100 0.5 1 0.01 0.0145243 0.00822 0.0416

the step size in determining convergence. The smaller the value of µ, the larger the allowable values for the initial

weight error vector. Simulations show that the theoretical predictions can be useful for design purposes.
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APPENDIX I

CONDITIONS FORb2 ≤ 3c(1 − a) IN (32)

Using the values ofa, b andc from (21) in the expressionb2 ≤ 3c(1 − a), yields:

B2
1µ2 − 2B1B2µ

3 + B2
2µ4 ≤ 3Cµ2 − 3A1Cµ3 + 3A2Cµ4 (39)

Using nowA1, A2, B1, B2 andC from (22) in (39) yields

{
36 σ8

xµ2 − 180 σ2
zσ

10
x (3N + 12)µ3 + 225σ4

zσ
12
x (3N + 12)2µ4

}

≤
{
3σ8

x(15N + 90)µ2 − 18 σ2
zσ

10
x (15N + 90)µ3 + 45 E[z4(n)]σ12

x (15N + 90)(N + 2)µ4
}

(40)

Dividing (40) by 3σ8
xµ2, results

{
12 − 60 σ2

zσ
2
x(3N + 12)µ + 75σ4

zσ
4
x(3N + 12)2µ2

}

≤
{
(15N + 90) − 6 σ2

zσ
2
x(15N + 90)µ + 15 E[z4(n)]σ4

x(15N + 90)(N + 2)µ2
}

(41)

For largeN , the following approximations are valid (forF = 90 or F = 78):

N + 2 ≈ N

3N + 12 ≈ 3N

15N + F ≈ 15N

(42)

Therefore, for largeN and definingp = σ2
xNµ, (41) can be written as

225
{

E[z4(n)] − 3σ4
z

}

p2 + 90σ2
zp + 15N ≥ 0 (43)

Straightforward analysis of inequality (43) shows that it issatisfied for anyµ ≥ 0 if E[z4(n)] ≥ 3σ4
z (i.e., z(n) is

Gaussian or has a distribution with longer tails than the Gaussian). IfE[z4(n)] < 3σ4
z (i.e., z(n) has a distribution

with shorter tails than the Gaussian), (43) is satisfied for

0 ≤ µ ≤ −β −
√

∆1

2Nσ2
xα

, (44)
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where

α = 225{E[z4(n)] − 3σ4
z} (45)

β = 90σ2
z (46)

∆1 = 900

{

9σ4
z − 15N

{

E[z4(n)] − 3σ4
z

}
}

. (47)

APPENDIX II

CONDITIONS FOR3c(1 − a) < b2 < 3c(2 − a) IN (34)

The left inequality is the opposite of (32). Therefore from (43) we conclude that the convergence cannot be

non-monotonic for largeN if E[z4(n)] ≥ 3σ4
z . On the other hand, ifE[z4(n)] < 3σ4

z , the left inequality in (34)

will be satisfied for

µ >
−β −

√
∆1

2Nσ2
xα

(see (44)).

If the above conditions are satisfied, we may check the second condition in (34). Using the values ofa, b andc

from (21) in the expressionb2 < 3c(2 − a), yields:

B2
1µ2 − 2B1B2µ

3 + B2
2µ4 < 6Cµ2 − 3A1Cµ3 + 3A2Cµ4 (48)

Using nowA1, A2, B1, B2 andC from (22) in (48) yields

{
36 σ8

xµ2 − 180 σ2
zσ

10
x (3N + 12)µ3 + 225σ4

zσ
12
x (3N + 12)2µ4

}

<
{
6 σ8

x(15N + 90)µ2 − 18 σ2
zσ

10
x (15N + 90)µ3 + 45 E[z4(n)]σ12

x (15N + 90)(N + 2)µ4
}

(49)

Dividing (49) by 3σ8
xµ2, results in

{
12 − 60 σ2

zσ
2
x(3N + 12)µ + 75σ4

zσ
4
x(3N + 12)2µ2

}

<
{
2(15N + 90) − 6 σ2

zσ
2
x(15N + 90)µ + 15 E[z4(n)]σ4

x(15N + 90)(N + 2)µ2
}

(50)
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Using again approximations (42) for largeN and makingp = σ2
xNµ, (50) can be written as

225
{

E[z4(n)] − 3σ4
z

}

p2 + 90σ2
zp + 30N > 0. (51)

Straightforward analysis of inequality (51) shows that forE[z4(n)] < 3σ4
z , (51) is satisfied for

0 ≤ µ ≤ −β −
√

∆2

2Nσ2
xα

, (52)

whereα andβ are given by (45) and (46), respectively, and∆2 is given by

∆2 = 900

{

9σ4
z − 30N

{

E[z4(n)] − 3σ4
z

}
}

. (53)
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TABLE II

OBSERVED PROBABILITY OF DIVERGENCE AS A FUNCTION OF THE NUMBER OF ITERATIONS.

Nit Pd,o

N = 10, µ = 0.01, L = 103,
σ2

x = 1, y(0) = 1, σ2
z = 0.01,

uniform noise
104 0.0%

5 · 104 0.1%
105 0.0%

2 · 105 0.1%

N = 10, µ = 0.0246, L = 103,
σ2

x = 1, y(0) = 1, σ2
z = 0.01,

uniform noise
104 4.0%

5 · 104 6.0%
105 6.5%

2 · 105 5.7%

N = 1000, µ = 0.00025, L =
103, σ2

x = 1, y(0) = 1, σ2
z =

0.1, uniform noise
104 3.6%

5 · 104 3.4%
105 4.5%
106 3.0%

N = 1000, µ = 0.000332, L =
103, σ2

x = 1, y(0) = 1, σ2
z =

0.1, uniform noise
104 22.2%

5 · 104 19.6%
105 21.8%
106 23.7%

N = 10, µ = 0.0617917, L =
103, σ2

x = 1, y(0) = 0.1, σ2
z =

0.1, uniform noise
104 0.8%

3 · 105 6.7%
5 · 105 9.8%
106 18.5%

2 · 106 35.4%


