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Abstract

We show that the least-mean fourth (LMF) adaptive algorithmis not mean-square stable when the regressor input

is not strictly bounded (as happens, for example, if the input has a Gaussian distribution). For input distributions

with infinite support, even for the Gaussian distribution,the LMF has always a nonzero probability of divergence, no

matter how small the step-size is chosen. We prove this result for a slight modification of the Gaussian distribution

in an one-tap filter, and corroborate our findings with several simulations.

In addition, we give an upper bound for the probability of divergence of LMF as a function of the filter length,

input power, step-size, and noise variance, for the case of Gaussian regressors. Our results provide tools for designers

to better understand the behavior of the LMF algorithm, and decide on the convenience or not of its use for a given

application.

Index Terms

Adaptive filters, Stability, Stochastic processes

I. I NTRODUCTION

The least-mean fourth (LMF) algorithm was proposed almost 20 years ago [1] as an alternative to the least-

mean square (LMS) algorithm. The goal was to achieve a lower steady-state misadjustment for a given speed of

convergence using a different cost-function. It is not difficult to intuitively understand how this is accomplished if

we compare the update laws of both algorithms:

LMS:

W 2(n + 1) = W 2(n) + µe2(n)X(n),

e2(n) = d(n) − W 2(n)T
X(n),

(1)
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LMF:

W (n + 1) = W (n) + µe(n)3X(n),

e(n) = d(n) − W (n)T
X(n),

(2)

whereW 2(n) andW (n) ∈ R
M are current estimates of a parameter (column) vectorW o ∈ R

M . X(n) ∈ R
M is

a known regressor vector, andd(n) is a known scalar sequence, usually calleddesiredsequence. Note that we use

capital bold lettersW and X for the filter parameter and regressor vectors (in the sequence, we also useV for

the filter parameter error vector).

It is well-known [2], [3] that, if
{

d(n), X(n)
}

are zero-mean, jointly wide-sense stationary sequences, one can

always model the relationship betweend(n) andX(n) as

d(n) = W
T
o X(n) + e0(n), (3)

wheree0(n) is a zero-mean scalar sequence, uncorrelated withX(n) and with varianceE
{

e0(n)2
}

= σ2
0 (E

{

·
}

is

the statistical expectation operator). In this context,W o is called theWiener solution. The LMS estimateW 2(n)

converges in the mean toW o with a finite covariance matrix, as long as the step-sizeµ is small enough. It is also

known that, for smallµ, the LMS steady-state mean-square estimation error (MSE) is approximately given by

lim
n→∞

E
{

e2(n)2
}

≈ σ2
0 + µσ2

0

Tr(Rx)

2
, (4)

whereRx = E
{

X(n)X(n)T
}

is the autocorrelation matrix ofX(n), andTr(Rx) is its trace. The second term in

the right-hand side of (4) is the steady-state excess MSE, which is caused by the fluctuations ofW 2(n) around

W o after convergence. This term is proportional toµ. It can also be shown that the worst-case rate of convergence

of E
{

e2(n)2
}

is 1 − 2µλmin for small µ, whereλmin is the smallest eigenvalue ofRx.

One can see thatµ controls the behavior of the algorithm, and that two important goals are competing: for fast

convergence, one would use a large step-sizeµ, but to achieve low steady-state MSE, a smaller step-size would be

better. One intuitive way to understand the LMF algorithm is to consider it as a variant to LMS with a variable

step-sizēµ(n) = e(n)2µ. When the error is large, adaptation is faster, when the error is small, adaptation is slower,

resulting in a fast convergence with small steady-state error.

Regarding the LMF algorithm in this way also highlights its main drawback: if the error gets too large, the

“equivalent step-size”̄µ(n) may get large enough for the algorithm to diverge. This happens for inputs with long

tail distributions (and even for the Gaussian distribution, as we show in the following sections). Thus, one can

expect the convergence properties of the LMF algorithm to be dependent on: (i) The initial weight vector estimate

W (0); (ii) The probability that the error gets too large at any given algorithm iteration.
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Recent works [4]–[7] studied the behavior of the LMF algorithm for Gaussian noise and regressors, finding

approximate mean-square stability conditions. Several other works also studied the stability of LMF. For example,

[8] proves thatW (n) converges to a ball aroundW o when the regressor vector sequence is bounded, i.e., when

there is aB < ∞ such that||X(n)|| < B for all n (|| · || is the Euclidean norm). Deterministic results such as [8]

tend to be very conservative, requiring that the step-size be quite small in order to guarantee stability. However, the

fact that the regressor vector attains large values with a small probability will usually not de-stabilize an algorithm:

this is why LMS is mean-square stable for distributions with finite fourth-order moments (this condition is for

independent regressors, see [3], [9]), and is one of the reasons why LMS is so robust.

In this work we argue that there is always a nonzero probability of divergence in any given realization of the

LMF algorithm when the entries ofX(n) have a probability density function (pdf) with infinite support, i.e., there

is a small (but nonzero) probability that an entry is larger than anyC > 0. This is what happens, for example, with

the Gaussian distribution. The practical consequence of this result is that LMF is not robust to inputs that have

small probabilities of large errors. Rare gross errors in the regressor sequence may make the algorithm unstable.

We prove this property for a simple case, whenM = 1 (scalar filter) and the distribution ofX(n) is a slight

modification of the normal, with pdf given by

pX(x) =



















0, if |x| < ǫ,

1√
2πσx

e
−(|x| − ǫ)2

2σ2
x , if |x| ≥ ǫ,

(5)

for ǫ > 0.

This result means that the LMF algorithm isnot mean-square stable with these near-Gaussian inputs. In other

words, the steady-state mean-square error (MSE) is unbounded. Notice that this result does not imply thatevery

realization of the LMF algorithm will result in divergence. In fact, the probability of divergence on a single

realization of the algorithm decreases as the step-size is decreased to zero, as we show in a few examples further

on.

In light of this result, we can better understand the approximations given in the literature for the MSE of the LMF

algorithm. For small step-sizes, the probability of divergence is very small and the approximations in the literature

are in fact computingE
{

e(n)2| the filter coefficients did not diverge
}

. Thus, there is not a step-size boundary

µ = µmax above which the algorithm starts diverging. What happens isthat the probability of divergence increases

with µ. This property has a similarity with what happens with LMS, as explained in [10] — The LMS algorithm

has a range of step-sizes for which it converges with probability one, but diverges in the mean-square (MS) sense;

a range for which the algorithm diverges almost always (and in the MS sense); and a range for which it converges
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in the MS sense. The LMF properties differ in that MS convergence happens only when both the regressor and the

noise are bounded. In practical terms, this means that the step-size should be chosen rather conservatively.

We also find an approximation for the probability of divergence, assuming that
{

X(n)
}

is an independent,

identically distributed (iid) vector sequence with anM -dimensional Gaussian distribution and covarianceσ2
xI. Our

approximation is a function of the filter lengthM , of the initial weight vectorW (0), of σ2
x, and of the distribution

of e0(n). In [11] we present some simulations for LMF and extend these results to the least-mean mixed-norm

algorithm (LMMN) [3].

In the next sections we find an approximate model for this behavior, and provide several simulations corroborating

our affirmations.

II. A SIMPLE EXAMPLE OF INSTABILITY

Our goal here is to give a simple example showing that LMF will have a nonzero probability of divergence for a

rather nice distribution of the regressor input, no matter how small we choose the (nonzero) step-size. We believe

that this scalar example explains clearly what is the mechanism of divergence, so there is no need to expand the

example for longer filters1.

A. Proof of instability for scalar filters

Consider the LMF algorithm (2) applied with filter lengthM = 1 to identify a constantWo, given an iid sequence

X(n) with pdf given by (5). Assume also that there is no noise, sod(n) = WoX(n). Defining the weight estimation

error V (n) = Wo − W (n), the LMF weight-error update equation is written

V (n + 1) =
(

1 − µX(n)4V (n)2
)

V (n). (6)

We show first that there is a value0 < K < ∞ such that, if|V (n)| > K for any n, then limn→∞ |V (n)| = ∞.

Later we will show that the probability of|V (n + 1)| > K given |V (n)| = α is nonzero for allα > 0. Let K be

such that (δ > 0 is any positive number)

µǫ4K2 − 1 > 1 + δ ⇔ K >

√

2 + δ

µǫ4
. (7)

Given inequality (7) and since|X(n)| ≥ ǫ by (5), it necessarily holds that

|1 − µX(n)4K2| > |1 − µǫ4K2| > 1 + δ. (8)

1Part of this section was presented at [12]. The paper may be obtained from http://www.lps.usp.br/∼vitor/nascimentorev.pdf
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If we now assume that|V (n)| > K, (6) yields

|V (n + 1)| =
∣

∣1 − µX(n)4V (n)2
∣

∣|V (n)|

> |1 − µǫ4K2||V (n)| > (1 + δ)|V (n)|,
(9)

and we conclude that|V (n)| → ∞ if at any time instant it happens that|V (n)| > K.

We complete our argument by showing that the probability of|V (n + 1)| > K given |V (n)| = α is nonzero for

any α > 0. Define, for a givenα > 0,

β(α)
∆
=

K

µα3
+

1

µα2
. (10)

Then, for |V (n)| = α, an inputX(n) such thatX(n)4 > β(α) leads to

µX(n)4V (n)2 − 1 >
K

|V (n)| , (11)

and thus

|V (n + 1)| = |1 − µX(n)4V (n)2||V (n)| > K. (12)

Expressions (9) and (12) show that|V (n)| → ∞ if X(n)4 > β(α) for any given |V (n)| = α. Thus, to

prove that there is a nonzero probability of divergence, it remains to show that there is a nonzero probability that

X(n)4 > β(α), given that|V (n)| = α. Using (5), it follows that

Pr {|V (n + 1)| > K | |V (n)| = α} >

> Pr
{

X(n)4 > β(α)
∣

∣ |V (n)| = α
}

= 2

∫ ∞

β(α)1/4

pX(x)dx > 0,

(13)

wherePr{A|B} is the probability of occurrence ofA given B. This concludes the proof.

B. Gaussian regressors

WhenX(n) is normal (ǫ = 0 in (5)), the simple proof above does not apply. However, we now present simulations

showing that the result still holds.

Assume that LMF is applied to the same situation as before, butwith ǫ = 0. In our simulations, we evaluated:

• The probability of divergence of LMF, measured as follows: we ran L = 106 realizations of the algorithm,

starting from the same initial conditionV (0) = 1 and with zero noise. We counted a “divergence” every time

the absolute error|V (n)| became larger than10100 (choosing this value in a very large range does not affect

the results),
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• The probabilityP> of |V (1)| > |V (0)|,

• The valueV1/2 for which the probabilityPr
{

|V (n + 1)| > |V (n)| | |V (n)| = V1/2

}

= 0.5,

• The probabilityP>V1/2
that |V (1)| > V1/2, given the initial condition.

The probability of divergence was obtained experimentally.All other values can be computed as follows. We start

by computing the pdf ofV (n + 1) given V (n). From (6), it is clear that

Pr{V (n + 1) < z|V (n) = Z > 0} =

= Pr{(1 − µX(n)4Z2)Z < z} =

= Pr

{

X(n)4 >
1 − z/Z

µZ2

}

(14)

The pdf ofX(n)4 is given by

pX4(y) =
d Pr{X4 < y}

dy
=

=

d

(

2

∫ y1/4

0

1√
2πσx

e
− x2

2σ2
x dx

)

dy
=

=
1√

8πσxy3/4
e
−

√
y

2σ2
x , y ≥ 0.

(15)

Thus

Pr{V (n + 1) < z | V (n) = Z > 0} =

= Pr

{

X(n)4 >
1 − z/Z

µZ2

}

=

=

∫ ∞

1−z/Z

µZ2

1√
8πσxy3/4

e
−

√
y

2σ2
x dy.

(16)

Finally, the desired pdf is obtained by differentiating (16)with respect toz:

pV (n+1) | V (n)(z | V (n) = Z) =

=
d Pr{V (n + 1) < z|V (n) = Z > 0}

dz

=
1√

8πσxµ1/4Z3/4(Z − z)3/4
e
−

√

Z−z

2σ2
x

√
µZ3 .

(17)

Assumingσ2
x = 1, we can use (17) withV (0) = 1 (fixed) to determine the probabilitiesP> = Pr{|V (1)| >

|V (0)|} and P>V1/2
= Pr{|V (1)| > |V1/2| | V (0) = 1}, and the pointV1/2 > 0 for which Pr{|V (1)| >

V (0) | V (0) = V1/2} = 0.5. These values are given, for several choices ofµ, in Table I. The table also showsNdiv,

the observed number of realizations of the LMF algorithm for which |V (n)| > 10100 for somen, as explained

above.

The last column in Table I shows that the probability of divergence grows with the step-size. However, even
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for the largest step-size in the table, the filter coefficients behave rather nicely in most realizations. Fig. 1 shows

three realizations for a scalar filter (M = 1 coefficient), with Gaussian iid inputX(n) with unit variance, step-

size µ = 0.03 (probability of divergence of 0.16% according to Table I), and initial condition V (0) = 1. The

figure shows two realizations where the algorithm converged, and one for which the algorithm diverged. Note

that divergence does not take long to become clear. This has been verified to be a typical algorithm behavior. In

addition, we note that the probability of divergence depends on the initial condition: the larger the initial error

V (0), the larger the probability of divergence. This behavior is in agreement with the results derived in [7]. The

same behavior is observed for filters withM > 1.

III. PROBABILITY OF DIVERGENCE

We now turn to the problem of estimating the probability of divergence of LMF for filters of any length. First

of all, we need to define clearly what is meant by divergence.Unacceptable behavior could be of many forms:

the estimation error could grow to large values before decreasing, or it might stay at reasonable values for most

of the time, but with bursts of large errors, or the estimation error could grow unboundedly. The usual definition

of stability in adaptive filtering involves the variance ofthe estimates; i.e., one wishes that the variance of the

estimation error remains bounded and not much larger than the noise variance. Given the kind of behavior we saw

in the previous section, we shall employ in this paper the following definition for divergence:

Definition 1 (Divergence):In this work we say that a realization (a single run) of the LMF recursion diverged if

limn→∞ ‖W (n)‖ = ∞. We shall also say that a realization of the algorithm converged if it did not diverge (note

that this is not the usual definition of divergence, but is adequate for our study).

We are interested in the following question: given the initial conditionW (0), the step-sizeµ, the filter length

M , and the noise and regressor statistics, what is the probability that a realization of the filter will diverge?

For the scalar filter with the modified Gaussian distribution, if the absolute error|V (n)| becomes as large as a

certain valueV , the LMF algorithm will necessarily diverge, as we saw in the previous section. The analysis is more

complicated for the unmodified Gaussian distribution, since in this case, no matter how large|V (n)| gets, there is

a small nonzero probability that the error may return to reasonable values (however, this small probability quickly

decreases as|V (n)| increases). This makes the estimation of the probability of divergence a difficult problem. We

propose here an approximate model that attempts to capture the essence of the dependence of the probability of

divergence onµ, M , the variance of the input sequenceσ2
x, and the distribution of the noisee0(n).

A. Recursion for‖V (n)‖2

We start by finding an approximated recursion for‖V (n)‖2. We assume that{X(n)} is iid and Gaussian, and that

the entries ofX(n) are uncorrelated. Thus,E
{

X(n)X(m)T
}

= 0 for m 6= n andRx = E
{

X(n)X(n)T
}

= σ2
xI,
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whereI is the identity matrix. We further assume that the probability density function (pdf) ofe0(n) in (3) is even,

so thatE
{

e0(n)k
}

= 0 wheneverk is an odd integer.

Substitutingd(n) from (3) in (2), we obtain

e(n) = V (n)T
X(n) + e0(n), (18)

whereV (n) = W o − W (n). Writing the LMF recursion (2) in terms ofV (n), we obtain

V (n + 1) = V (n) − µ

(

V (n)T
X(n) + e0(n)

)3

X(n), (19)

Defining p(n) = V (n)T
X(n) to shorten the notation,

V (n + 1) = V (n) − µ

[

p(n)3 + 3p(n)2e0(n) + 3p(n)e0(n)2+

+ e3
0(n)

]

X(n).

(20)

Now definey(n)
∆
= V (n)T

V (n) = ‖V (n)‖2. From (20) we have

y(n + 1) = y(n) − 2µ

[

p(n)4 + 3p(n)3e0(n) + 3p(n)2e0(n)2+

+ p(n)e0(n)3
]

+ µ2

[

p(n)6 + 6p(n)5e0(n)+

+ 15p(n)4e0(n)2 + 20p(n)3e0(n)3 + 15p(n)2e0(n)4+

+ 6p(n)e0(n)5 + e0(n)6
]

‖X(n)‖2.

(21)

Our goal is to estimate the probability thatlimn→∞ y(n) = ∞.

We need to simplify (21) to proceed. Thus, we make the approximationy(n) ≈ E
{

y(n)| y(n−1), X(n)
}

. This

approximation replaces the noisee0(n) and its powers by their means.

y(n + 1) = y(n) − 2µ

[

p(n)4 + 3p(n)2σ2
0

]

+

+ µ2

[

p(n)6 + 15p(n)4σ2
0 + 15p(n)2ψ4

0 + η6
0

]

‖X(n)‖2,

where we used our assumption thatE
{

e0(n)
}

= E
{

e0(n)3
}

= E
{

e0(n)5
}

= 0, and definedψ4
0 = E

{

e0(n)4
}

,

η6
0 = E

{

e0(n)6
}

.

To proceed we need to approximate
(

V (n)T
X(n)

)2k
in terms of y(n)k and of ‖X(n)‖2k. Recalling our

assumption that the entries ofX(n) are uncorrelated and Gaussian (and thus also independent),we note that

the vectorX(n) can point to any direction inRM with equal probability. Under our assumption of iidX(n),

the directions ofV (n) and ofX(n) are independent, and using this observation we show in Appendix I that the
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following approximations can be used:

(

V (n)T
X(n)

)2k

(

‖V (n)‖‖X(n)‖
)2k

≈ E

{

(

V (n)T
X(n)

)2k

(

‖V (n)‖‖X(n)‖
)2k

}

∆
=

∆
= αM (k),

(22)

with αM (1) =
1

M
, αM (2) =

3

M(M + 2)
, andαM (3) =

15

M(M + 2)(M + 4)
.

Substituting
(

V (n)T
X(n)

)2k
by αM (k)y(n)k‖X(n)‖2k, we obtain

y(n + 1) ≈
[

1 − µ
(

6σ2
0 − 15µψ4

0‖X(n)‖2
) ‖X(n)‖2

M
−

−3µ
(

2 − 15µσ2
0‖X(n)‖2

) ‖X(n)‖4

M(M + 2)
y(n)+

+15µ2 ‖X(n)‖8

M(M + 2)(M + 4)
y(n)2

]

y(n) + µ2η6
0‖X(n)‖2.

(23)

B. Estimating the probability of divergence

What we want to evaluate now is the probability that they(n) given by recursion (23) grows unboundedly, given

the initial conditiony(0) = V (0)T
V (0), andµ, σ2

x, σ2
0, ψ4

0, η6
0, andM .

Denote byD(n) the factor between brackets multiplyingy(n) in (23), i.e.,

D(n) = 1 − µ
(

6σ2
0 − 15µψ4

0‖X(n)‖2
) ‖X(n)‖2

M
−

− 3µ
(

2 − 15µσ2
0‖X(n)‖2

) ‖X(n)‖4

M(M + 2)
y(n)+

+ 15µ2 ‖X(n)‖8

M(M + 2)(M + 4)
y(n)2.

(24)

We show in Appendix II thatD(n) is always nonnegative.

We find an approximationPd for the probability of divergence as follows. Recursion (23) converges if there is a

fixed D0 such that0 ≤ D(n) < D0 < 1 for all n, since in this casey(n + 1) ≤ D0y(n) + µη6
0‖X(n)‖2, and thus

y(n) ≤ Dn
0 y(0) + µη6

0

n−1
∑

k=0

Dn−1−k
0 ‖X(k)‖2. (25)

If D(n) ≤ D0 < 1 for all n, ‖X(n)‖2 must necessarily be bounded (sinceD(n) → ∞ when ‖X(n)‖ → ∞).

This boundedness of‖X(n)‖ together with (25) imply thaty(n) remains bounded (and therefore, according to our

definition, the algorithm converges).

However, it may happen that the algorithm converges even if afew of the D(n) are larger than 1. Thus,

Pc = Pr
{

0 < D(n) < 1 for all n ≥ 0
}

is a lower bound for the probability of convergence, andPd = 1 − Pc is

an upper bound for the probability of divergence. To evaluate Pc, we:

1) Find the probabilitiesPr
{

D(n) < 1| y(n) = ŷ(n)
}

, for 0 ≤ n ≤ N , starting from a giveny(0),
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2) A problem in the previous expression is thaty(n), for n > 0, varies for each realization of the filter. In order

to proceed, we must find an approximationŷ(n) for y(n).2

3) Make

Pc ≈
N
∏

n=0

Pr
{

D(n) < 1| y(n) = ŷ(n)
}

(26)

Assuming for now that we have an approximationŷ(n), let us find the probability in Step 1. From (24), we see

that D(n) < 1 means

1 − µ
(

6σ2
0 − 15µψ4

0‖X(n)‖2
) ‖X(n)‖2

M
−

− 3µ
(

2 − 15µσ2
0‖X(n)‖2

) ‖X(n)‖4

M(M + 2)
y(n)+

+ 15µ2 ‖X(n)‖8

M(M + 2)(M + 4)
y(n)2 < 1,

which, if we let z
∆
= ‖X(n)‖2, reduces to

Q(z)
∆
= 6σ2

0 +

(

6

M + 2
y(n) − 15µψ4

0

)

z − 45µσ2
0

M + 2
y(n)z2−

− 15
µ

(M + 2)(M + 4)
y(n)2z3 > 0.

Q(z) has no positive zero ify(n) = σ2
0 = ψ4

0 = 0; otherwiseQ(z) has one and only one positive real zeroz0(n)

for y(n) ≥ 0, as we show now:

1) If the noise is identically zero (i.e.,σ2
0 = ψ4

0 = 0), thenQ(z) reduces to

Q(z)|zero noise= z

(

6

M + 2
y(n)−

− 15µ

(M + 2)(M + 4)
y(n)2z2

)

,

and the only positive zero is trivially

z0(n)|zero noise=

√

2(M + 4)

5µy(n)
.

2) If y(n) = 0 andσ2
0 > 0, Q(z) has degree one, and the single positive zero is

z0(n)|y(n)=0 =
2σ2

0

5µψ4
0

.

3) For nonzero noise andy(n) > 0, note thatQ(z) is of the forma + bz − cz2 − dz3, wherea, c, d > 0, but b

is indefinite. Sincea > 0, Q(0) > 0, and sinced > 0, limz→∞ Q(z) = −∞, so there is at least one positive

2The use ofŷ(n), of (22), and of the expected values of the powers ofe0(n), makes our analysis approximate. We validate our
approximations in Sec. IV.
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zero forQ(z). We argue that this zero is unique as follows. The first and second-order derivatives ofQ(z)

areQ′(z) = b− 2cz− 3dz2, Q′′(z) = −2c− 6dz. SinceQ′′(z) < 0 for z > 0, Q′(z) is strictly decreasing for

z > 0. Q′(z) will therefore have only one positive zero ifb > 0, and none ifb ≤ 0. SinceQ′(z) is strictly

decreasing, it may have at most one positive zeroz1 > 0. This implies thatQ(z) may have at most one finite

extremum pointz1 > 0. Q(z) may therefore either:

a) if b > 0, Q(z) starts fromQ(0) > 0, increases for0 < z < z1, reaches a maximum atz1, then strictly

decreases to−∞; or

b) if b ≤ 0, Q(z) starts atQ(0) > 0 and strictly decreases to−∞ for z > 0.

In both cases,Q(z) crosses thez−axis once and only once forz > 0, and the zeroz0(n) > 0 must be unique. The

sets
{

z ∈ R| z > 0, Q(z) > 0
}

and
{

z ∈ R| 0 < z < z0(n)
}

are therefore equal, and our probability is given by

(recall thatz0(n) depends ony(n))

Pr
{

D(n) < 1| y(n) = ŷ(n)
}

=

= Pr
{

‖X(n)‖2 ≤ z0(n)
∣

∣ y(n) = ŷ(n)
}

.

(27)

Since the entries ofX(n) are Gaussian and iid,‖X(n)‖2/σ2
x follows aχ2 distribution withM degrees of freedom,

and the last probability in (27) can be easily evaluated.

We still need approximationŝy(n) to y(n) = ‖V (n)‖2 at every time instantn. The most reasonable choice would

be the median of the distribution of‖V (n)‖2, but this quantity is not easily computable. Another approximation

would be to usêy(n) = E
{

‖V (n)‖2
}

. However, this choice turns out to be inconvenient, sinceE
{

‖V (n)‖2
}

in fact diverges, as we noted in Sec. II. We propose in the next section an alternative choice for̂y(n) that gives

reasonable results.

C. Evaluation ofŷ(n)

The expected value of (19) forX(n) Gaussian with covarianceσ2
xI has been evaluated in [6] as

E
{

V (n + 1)
}

= E
{

V (n)
}

−

− 3µ
[

σ2
0 + σ2

xE
{

V (n)T
V (n)

}]

σ2
xE

{

V (n)
}

(28)

To proceed with the determination of the estimateŷ(n), we use the approximationsV (n) ≈ E
{

V (n)
}

, ŷ(n) ≈

E
{

V (n)
}T

E
{

V (n)
}

. These approximations are good in the beginning of the adaptation phase, whenV (n) is

dominated by its mean value (divergence is most likely to occur in the initial iterations, as our simulations show).
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Multiplying (28) by its transpose leads to a recursion forE
{

V (n)
}T

E
{

V (n)
}

, which we use to definêy(n) as

ŷ(n + 1) =
[

1 − 3µσ2
x(σ2

0 + σ2
xŷ(n))

]2
ŷ(n),

ŷ(0) = y(0) = E
{

V (0)T
V (0)

}

= V (0)T
V (0).

(29)

Note that this choice for̂y(n) is only reasonable ifµ is small. If the step-size is so large that1−3µσ2
x(σ2

0+σ2
xŷ(0)) =

0, then ŷ(n) = 0 for n ≥ 1, which would be far from the actual behavior of the algorithm.

We now have all the necessary elements for our estimate of theprobability of divergence for LMF.

Probability of divergence
Pd ≈ 1 − Pc, (30)

where

Pc =
N
∏

n=0

Pr
{

‖X(n)‖2 ≤ z0(n)
∣

∣ y(n) = ŷ(n)
}

,

where‖X(n)‖2/σ2
x follows a χ2 distribution with M degrees of freedom, andz0(n) is the only positive root of

(if ŷ(n) = 0 andσ2
0 = 0, Pc = 1)

Q(z) = 6σ2
0 +

(

6

M + 2
ŷ(n) − 15µψ4

0

)

z−

− 45µσ2
0

M + 2
ŷ(n)z2 − 15µ

(M + 2)(M + 4)
ŷ(n)2z3,

(31)

with σ2
0 = E(e0(n)2), ψ4

0 = E(e0(n)4), and ŷ(n) is computed from the recursion

ŷ(n + 1) =
[

1 − 3µσ2
x(σ2

0 + σ2
xŷ(n))

]2
ŷ(n),

ŷ(0) = y(0) = E ‖V (0)‖2,

for µ <
[

3σ2
x(σ2

0 + σ2
xŷ(0))

]−1
.

Algorithm 1: Computation of the probability of divergence.

IV. SIMULATIONS

In this section we compare our estimates for the probabilityof divergence of LMF with the results of several

experiments. We tested our estimates for the probability ofdivergence for Gaussian measurement noise and for

Gaussian regressors of two types: Truly independent vectors X(n) (referred to as “IND regressors” hereafter), and

vectorsX(n) formed from a tap-delay line (referred to as “TDL regressors”), as usual in adaptive filtering. The

covariance matrix ofX(n) was alwaysσ2
xI (i.e., in the independent case,E{X(n)X(n − k)} = 0 for all k 6= 0,

and in the TDL case,E{X(n)X(n − k)} is non-zero and constant on thekth off-diagonals and zero elsewhere.)

Our first example validates the procedure used for the simulations. We compare the probabilities of divergence

as a function of the step-size obtained under different simulation conditions. Each curve in Figure 2 was obtained

runningL independent realizations of LMF forNit time-steps each. For this example, we usedM = 100, σ2
x = 1,

σ2
z = 0.01, and initial conditiony(0) = ‖V (0)‖2 = 1. We labeled a curve as “diverging” if‖V (Nit)‖ ≥ 10100,
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and computed the observed probability of divergence asPd,o = (Number of curves diverging)/L. There are seven

curves in Figure 2. The two curves to the left were obtained using our theoretical model forNit = 100 (o) and

1000 (solid). The five curves to the right were obtained by simulation (observed probabilitiesPd,o). The rightmost

curve (+) was obtained using TDL regressors. The remaining four simulation curves were obtained using IND

regressors.

Looking at the simulation curves, note that there is basically no difference between the curves obtained with

L = 103 and L = 104 (cases (a) and (b) in the figure). Regarding the number of iterations, we notice a shift of

the estimated curve (divergence for smallerµ) whenNit is increased from102 to 103, but practically no variation

for L ≥ 103. Regarding the type of regressor, comparison of both curvesobtained forNit = L = 104 (the curve

marked (+) and the curve marked♦ for case (b)), it is clear that the difference between the simulation results

with IND and TDL regressors have little impact on the theoretical model’s accuracy. The theoretical model indeed

upper-bounds the observed probability of divergence in both cases.

In Figure 3 we used only TDL regressors. The solid (unbroken) curves are the results of simulations, with

y(0) = 0.01 andσ2
x = 1, σ2

0 = 0.01, Nit = 104, andL = 103; and the broken curves give our approximationPd,

using103 steps for the iterations (the same theoretical results wereobtained using104 steps). Note that for smaller

initial error y(0) (smaller thany(0) = 1 used previously), our approximations are closer to the simulations.

Figure 4 shows again results for TDL regressors,M = 102, σ2
x = 1, Nit = 104, andL = 103, but now with

Gaussian noise withσ2
0 = 0.1. The top curves are fory(0) = 0.1, and the bottom curves, fory(0) = 1. Again, the

theoretical approximations are better for smallery(0).

Figure 5 again shows simulations for TDL regressors andM = 100, now with different values forσ2
x. In all

cases, the solid lines are simulations made withNit = 104, L = 103, andσ2
z = 0.01; and the broken lines are from

the theoretical model. In (a),y(0) = 0.1 andσ2
x = 2, in (b), y(0) = 0.1 andσ2

x = 4, in (c), y(0) = 1 andσ2
x = 0.5,

and in (d),y(0) = 1 andσ2
x = 4.

The figures show that our estimates indeed upper bound the probability of divergence of LMF. We noticed that

our approximation is closer to the observed probability of divergence for smaller values of the initial conditiony(0),

and if the noise variance is not larger than the initial condition. We ran many other simulations, varying all possible

parameters, always with similar results. Simulations for which σ2
0 ≥ y(0) are more difficult to perform, since in

this case the number of time-steps necessary for stabilization of Pd,o tends to be too large, and the simulations, too

lengthy. The same happens ifσ2
x is decreased too much.

Our results may be compared with the bounds for the step-sizegiven in [7]. These results are shown in Table II.

Comparing the maximum step-sizes predicted by Table II withour simulations and the observed probability of

divergence in Figures 2–4, one can see that the maximum step-sizes given in [7] fall in the region where the
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observed probability of divergence is increasing rapidly.

V. CONCLUSIONS

In this paper we argued that the least-mean fourth algorithmcannot be mean-square stable when the regressor

sequence is not strictly bounded, and provided an upper bound for the probability of divergence of the algorithm.

In practice (since all actual regressor sequences are bounded), our result means that the algorithm is very sensitive

to large values of the regressor sequence, even if they occurvery rarely, as is the case for the Gaussian distribution.

Other conclusion is that the step-size for the LMF algorithm should be chosen rather conservatively, mainly when

a good initial guess for the Wiener solution is not available.

The behavior of the LMF algorithm in this respect is very different from that of LMS. If the weight error vector

V (n) is taken by chance to a large value in a particular realization of the LMS algorithm, it tends to return quickly

to reasonable behavior [10]. The LMF algorithm, on the other hand, may become completely unstable if the weight

error vector becomes too large. This behavior is due to its cubic nonlinearity.

Our upper bound for the probability of divergence provides designers with tools to decide whether using the

LMF algorithm in a particular situation is a sensible choice.Since step-sizes too close to the stability margin often

lead to slow convergence and poor performance, the fact thatthe bound is not tight is not a major hindrance. Our

results also open a new way of looking at adaptive filter behavior, which may lead to better ways of increasing

algorithm robustness and performance.

APPENDIX I

AN APPROXIMATION TO
(

V (n)T
X(n)

)2k

In Sec. III-A we approximated

(V (n)T
X(n))2k ≈ αM (k)‖V (n)‖2k‖X(n)‖2k, k = 1, 2, 3. (32)

Our choice ofαM (k) is as given in (22),αM (k) = E

{

(

V (n)T
X(n)

‖V (n)‖‖X(n)‖

)2k
}

.

We now derive expressions forαM (k) for k = 1, 2, 3, under the following assumptions:

1) Thevectorsequence
{

X(n)
}

is iid,

2) The entries ofX(n) are independent (and thusE{X(n)X(n)T } = σ2
xI).

From these assumptions and from (22), it follows that

1) The weight error vectorV (n) is independent ofX(n),

2) If V (n) = 0 or X(n) = 0, (32) holds for any finiteαM (k),
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3) We can rewriteαM (k) as

αM (k) = E

{

E

[

(

V (n)T
X(n)

‖V (n)‖‖X(n)‖

)2k
∣

∣

∣

∣

∣

V (n)

]}

,

4) Note that in the inner expectationV (n) is fixed. SinceX(n) has independent entries,X(n) may point to

any direction inR
M with equal probability, so the inner probability is independent of the particular direction

taken byV (n). Therefore the outer expectation is over a constant. Recalling assumption 2. and defining

e1 = [ 1 0 ... 0 ]T ∈ R
M , X̄

∆
= X(n)/‖X(n)‖, we are left with

αM (k) = E
[

(

e
T
1 X̄

)2k
]

, (33)

where bothe1 andX̄ have unit Euclidean length.

Before tackling the general solution for (33), let us consider the three-dimensional case.X̄ is a vector whose

tip lies in the unit sphere, and the scalar producte
T
1 X̄ equals the co-sine of the angleθ betweenX̄ ande1 (see

Fig. 6).

All vectorsX̄ with tips in the circle indicated in the figure have the same angleθ with respect toe1. The distance

of any point in the circle to thee1-axis is sin(θ) (since the length ofX̄ is one, andsin(θ) =
√

1 − cos(θ)2 for

0 ≤ θ ≤ π). The element of area for all̄X with angleθ will then be2π sin(θ)dθ. Thus we may evaluateα3(k) by

the expression

α3(k) =

∫ π
0 cos(θ)2k2π sin(θ)dθ

Area of the unit sphere
.

The area of the unit sphere isA3 = 4π. It is given by

A3 =

∫ π

0
2π sin(θ)dθ.

The generalM -dimensional case is similar. Fixing the angleθ betweenX̄ ande1, the unit length vector̄X is

constrained to aM −1-dimensional hyper-sphere of radiussin(θ) (since we fixed the projection of̄X with respect

to e1 to cos(θ), the otherM − 1 coordinates ofX̄ must have total lengthsin(θ) =
√

1 − cos(θ)2, for 0 ≤ θ ≤ π).

The expression forαM (k) is then

αM (k) =

∫ π
0 cos(θ)2kAM−1 sin(θ)M−2dθ

∫ π
0 AM−1 sin(θ)M−2dθ

,

whereAM−1 is the “area” of the surface of anM − 1-dimensional hyper-sphere of radius 1,AM−1 sin(θ)M−2 is

the surface area for anM − 1-dimensional hyper-sphere of radiussin(θ), and the denominator is the area of the

surface of theM -dimensional hyper-sphere of radius 1 (i.e., the denominator is AM ). Note thatAM−1 may be



16 IEEE TRANSACTIONS ON SIGNAL PROCESSING

canceled, so

αM (k) =

∫ π
0 cos(θ)2k sin(θ)M−2dθ

∫ π
0 sin(θ)M−2dθ

. (34)

We can further simplify this expression integrating the numerator by parts. Taking the casek = 1, let u =

cos(θ) and dv = cos(θ) sin(θ)M−2dθ. We obtain du = − sin(θ)dθ, v = 1/(M − 1) sin(θ)M−1, and, since

cos(θ) sin(θ)M−1|π0 = 0,

αM (1) =
1

M − 1

∫ π
0 sin(θ)Mdθ

∫ π
0 sin(θ)M−2dθ

. (35)

For k = 2 and3 the integration by parts must be repeated twice and thrice, respectively, with the final result

αM (2) =
3

(M + 1)(M − 1)

∫ π
0 sin(θ)M+2dθ

∫ π
0 sin(θ)M−2dθ

(36)

αM (3) =
15

(M + 3)(M + 1)(M − 1)

∫ π
0 sin(θ)M+4dθ

∫ π
0 sin(θ)M−2dθ

. (37)

We now need to evaluate
∫ π
0 sin(θ)ndθ for any integern > 1. This integral can be computed directly, or with

the help of a book of tables, such as [13]. The result is

∫ π

0
sin(θ)ndθ =

1

2n

(

n

n/2

)

π, n even, (38a)

∫ π

0
sin(θ)ndθ =

√
π · Γ

(

(n + 1)/2
)

Γ
(

(n + 2)/2
) , n odd, (38b)

where
(

n
k

)

= n!
k!(n−k)! . Using (38a) and (38b) we obtain (22) (which holds for alln.) Sinceα1(k) = 1 for all k,

(22) holds forM ≥ 1.

APPENDIX II

PROOF THAT D(n) ≥ 0

From (24), we have (for simplicity we omit the dependence onn in this section)

D = D(y) = 1 − µ
(

6σ2
0 − 15µψ4

0‖X‖2
) ‖X‖2

M
−

− µ
(

6 − 45µσ2
0‖X‖2

) ‖X‖4

M(M + 2)
y+

+ 15µ2 ‖X‖8

M(M + 2)(M + 4)
y2

We prove now thatD(y) ≥ 0 for all y ≥ 0. Our proof goes as follows.

1) First, we show thatD(0) ≥ 0 always.

2) Next, we find the minimumDmin of D(y), and find conditions forDmin < 0.

3) We then show that whenDmin < 0, the valueymin at which the minimum is achieved is necessarily negative.
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4) We conclude noticing that, since the coefficient ofy2 in D(y) is positive, D(y) is strictly growing for

y > ymin, so 1) and 3) imply thatD(y) ≥ 0 for y ≥ 0 if Dmin < 0 (if Dmin ≥ 0, there is nothing to prove).

We now prove 1), 2), 3). Recalling that for any random variable x it holds that 0 ≤ E
(

x2 − E(x2)
)2

=

E(x4) −
(

E(x2)
)2, we haveψ4

0 ≥ σ4
0, thus

D(0) = 1 + 15µ2ψ4
0

‖X‖4

M
− 6µσ2

0

‖X‖2

M
>

> 1 + 15µ2σ4
0

‖X‖4

M
− 6µσ2

0

‖X‖2

M
.

This last quantity may be rewritten as

D(0) ≥
(

1 − 3µσ2
0

‖X‖2

M

)2

+ 15µ2σ4
0

‖X‖4

M
−

− 9µ2σ4
0

‖X‖4

M2
≥ 0.

This proves 1). For 2), consider first a generic second-degree polynomialc+ by +ay2, with a > 0. Its minimum

is achieved at

ymin =
−b

2a
,

and the minimum value is

c + b
−b

2a
+ a

(−b

2a

)2

= c − b2

4a
.

Applying this result toD(y), recalling thatψ4
0 ≥ σ4

0, and definingβ = µσ2
0‖X‖2, we have

ymin =
2 − 15µσ2

0‖X‖2

10µ‖X‖4
(M + 4),

Dmin = 1 + 15µ2ψ4
0

‖X‖4

M
− 6µσ2

0

‖X‖2

M
−

− 3(M + 4)
4 − 60µσ2

0‖X‖2 + 225µ2σ4
0‖X‖4

20M(M + 2)
=

= 1 − 3

5

M + 4

M(M + 2)
−

− 60(2 − 5βψ4
0/σ4

0)β(M + 2) + (M + 4)β(675β − 180)

20M(M + 2)
≥

≥ 1 − 3

5

M + 4

M(M + 2)
− (75M + 420)β − (12M + 96)

4M(M + 2)
β.

We now prove 3).Dmin may be negative only if(75M +420)µσ2
0‖X‖2−(12M +96) > 0. Under this condition,

ymin is bounded by

ymin <
M + 4

10µ‖X‖4

(

2 − 15
12M + 96

75M + 420

)

=

= − M + 4

10µ‖X‖4

2M + 40

5M + 28
< 0.
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This concludes our proof.
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Fig. 1. Three runs of LMF with scalar regressors, trueWo = 0, V (0) = W (0) = 1, µ = 0.03, X(n) ∼ N(0, 1).
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Fig. 2. Probability of divergence, Gaussian noise,M = 100, σ2

x
= 1, y(0) = 1, σ2

0 = 0.01. To the left are two superimposed curves
obtained from our theoretical model, computed with102 (o) and103 (solid line) iterations. The rightmost curve, marked by+, was obtained
from simulations, using TDL regressors,Nit = L = 104. The solid curve next to it was obtained with IND regressors,Nit = 102 and
L = 104. In the middle are three superimposed curves, obtained with IND regressors and (a)Nit = 103 and L = 104 (solid line), (b)
Nit = L = 104 (♦), and (c)Nit = 2.5 × 104 andL = 103 (×).
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Fig. 3. Probability of divergence, TDL regressors, Gaussian noise,σ2

x
= 1, y(0) = 0.01, σ2

0 = 0.01, andM = 10, 100, and 1000. There
is a pair of curves for each value ofM . The solid curves are simulations, and the broken, the theoretical approximations. The left-most pair
is for M = 103, the center pair is forM = 102, and the right-most is forM = 10. In all cases,Nit = 104 andL = 103.
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Fig. 4. Probability of divergence, TDL regressors, Gaussian noise,σ2

0 = 0.1, σ2

x
= 1, andM = 100. Top: y(0) = 0.1, bottom:y(0) = 1.

In all cases,Nit = 104 andL = 103. The solid curves are simulations, the broken curves are from our theoretical model using103 iterations.
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Fig. 5. Probability of divergence as a function of signal power, TDL regressors, Gaussian noise,M = 100. Solid lines: simulations,
Nit = 104, L = 103, and σ2

z
= 0.01. Broken lines: theoretical model, computed with103 iterations. (a),y(0) = 0.1 and σ2

x
= 2; (b),

y(0) = 0.1 andσ2

x
= 4; (c), y(0) = 1 andσ2

x
= 0.5; (d), y(0) = 1 andσ2

x
= 4.
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TABLE I

OBSERVED PROBABILITY OF DIVERGENCE FOR SEVERAL STEP-SIZES, ALWAYS FOR M = 1 AND INITIAL CONDITION |V (0)| = 1.

COLUMN DEFINITIONS ARE GIVEN IN THE TEXT.

µ P> V1/2 P>V1/2
Ndiv/L

0.01 1.7 × 10−4 31.1 5.2 × 10−14 7 × 10−6

0.02 1.6 × 10−3 22.0 5.8 × 10−9 3.0 × 10−4

0.03 4.3 × 10−3 17.9 5.4 × 10−7 1.6 × 10−3

0.04 7.8 × 10−3 15.5 6.5 × 10−6 4.4 × 10−3

0.05 1.2 × 10−2 13.9 3.3 × 10−5 8.5 × 10−3

0.06 1.6 × 10−2 12.7 1.0 × 10−4 1.4 × 10−2

0.07 2.1 × 10−2 11.7 2.4 × 10−4 2.0 × 10−2

0.08 2.5 × 10−2 11.0 4.7 × 10−4 2.8 × 10−2

0.09 3.0 × 10−2 10.4 8.0 × 10−4 3.5 × 10−2

0.10 3.4 × 10−2 9.8 1.3 × 10−3 4.3 × 10−2

0.20 7.5 × 10−2 7.0 1.2 × 10−2 1.3 × 10−1
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TABLE II

MAXIMUM STEP-SIZESµMAX FOR DIFFERENT NOISE VARIANCES AND FILTER LENGTHS, FOR GAUSSIAN REGRESSORS[7].

σ2
0 M µmax y(0)

0.01 100 0.00370 1
0.01 10 0.7692 0.01
0.01 100 0.097087 0.01
0.01 1000 0.00997008 0.01
0.1 100 0.00313 1
0.1 100 0.009709 0.1


