
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 6, JUNE 2000 1609
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Abstract—This paper highlights, both analytically and by sim-
ulations, some interesting phenomena regarding the behavior of
ensemble-average learning curves of adaptive filters that may have
gone unnoticed. Among other results, the paper shows that even en-
semble-average learning curves of single-tapLMS filters actually
exhibit two distinct rates of convergence: one for the initial time in-
stants and another,fasterone, for later time instants. In addition,
such curves tend to converge faster than predicted by mean-square
theory and can converge even when a mean-square stability anal-
ysis predicts divergence. These effects tend to be magnified by in-
creasing the step size. Two of the conclusions that follow from this
work are 1) mean-square stability alone may not be the most ap-
propriate performance measure, especially for larger step sizes. A
combination of mean-square stability and almost sure (a.s.) sta-
bility seems to be more appropriate. 2) Care is needed while inter-
preting ensemble-average curves for larger step sizes. The curves
can lead to erroneous conclusions unless a large number of exper-
iments are averaged (at times of the order of tens of thousands or
higher).

Index Terms—Adaptive filter, almost-sure convergence, Cheby-
shev’s inequality, law of large numbers, learning curve, mean
square convergence, rate of convergence.

I. INTRODUCTION

A DAPTIVE filters are inherently nonlinear and
time-variant devices that adjust themselves to an

ever-changing environment; an adaptive system changes its
parameters in such a way that its performance improves through
a continuing interaction with its surroundings.

The learning curve of an adaptive filter provides a measure of
how fast and how well it reacts to its environment. This learning
process has been extensively studied in the literature for slowly
adapting systems, that is, for systems that employ infinitesi-
mally small step sizes. In this paper, we will discuss several in-
teresting phenomena that characterize the learning capabilities
of adaptive filters when larger step sizes are used. These phe-
nomena actually occur even for slowly adapting systems but are
less pronounced, which explains why they may have gone un-
noticed.
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The phenomena however become significantly more pro-
nounced for larger step sizes (faster adaptation) and lead to
several observations. In particular, we will show that after an
initial phase, an adaptive filter generally learns at a rate that
is better than that predicted by mean-square theory, that is,
they seem to be “smarter” than we think. We will also show
that even simple single-tap adaptive filters actually have two
distinct rates of convergence; they learn at a slower rate initially
and at a faster rate later. We will also argue that special care is
needed in interpreting learning curves. Several examples will
be provided.

A. Background and Objectives

As is well known, computable theoretical formulas for
learning curves exist only for a few idealized situations.
Ensemble-average learning curves (EALC’s) are therefore
commonly used to analyze and demonstrate the performance
of adaptive filters; anEALC is obtained by averaging several
error curves over repeated experiments or simulations and by
plotting the resulting average curve.

EALC’s have been used to extract, among other things, in-
formation about the rate of convergence of an adaptive filter, the
value of its steady-state error, and choices of step sizes for faster
convergence. Under certain independence conditions (see, for
example, [1]–[6]), or for infinitesimally small step sizes (e.g.,
[7]–[19]), it is well understood that data extracted from such
EALC’s provide reasonably accurate information about the real
performance of an adaptive filter.

But what about the performance of an adaptive scheme for
larger step sizes and without the independence assumptions?1

Will EALC’s provide satisfactory information in these cases as
well? In the process of comparing results obtained fromEALC’s
with results predicted by an exact theoretical analysis for such
scenarios (as in [20]–[22]), we noticed considerable differences
between simulation and theory. These differences persisted no
matter how many experiments we averaged.

A first explanation of the discrepancies was to blame the sim-
ulation program and possible numerical errors. After careful
study, however, we realized that the differences have an analyt-
ical explanation and that they do occur for both small and large
step sizes, although they are more pronounced in the latter case.
Even more importantly, this led us to observe some other phe-
nomena regarding the behavior ofEALC’s that may have gone
unnoticed in the literature. More specifically, we will establish
in this paper the following factsbothby theory and by simula-
tion.

1) Even ensemble-average learning curves (EALCs) of
single-tap adaptive filters actually exhibit two distinct

1By larger step sizes, we do not mean step sizes that are necessarily large in
value but, rather, step sizes that are not infinitesimally small.
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rates of convergence: one for the initial time instants and
another,fasterone, for later time instants.

2) EALC’s tend to converge faster than predicted by mean-
square theory.

3) EALC’s can and do converge even when a mean-square
stability analysis predicts divergence.

4) The more experiments we average to construct anEALC,
the more time it takes to observe the distinction between
theory and simulation. Nevertheless, the difference al-
ways exists, and we need only simulate for a longer period
(and possibly also reduce the noise level) to observe it.

5) Mean-square analysis alone may not be the most appro-
priate performance measure for larger step sizes. Acom-
binationof mean-square (MS) and almost sure (a.s.) sta-
bility results seems to be more appropriate.

6) Establishing that an adaptive filter is a.s. convergent (i.e.,
converges almost surely to zero in the noiseless case) does
not necessarily guarantee satisfactory performance.

7) For filters with multiple taps, the behavior ofEALC’s
may be dependent on the initial condition. This depen-
dency does not exist for single tap filters (which are used,
for example, in some frequency-domain implementa-
tions—see [6] and [23]).

The purpose of this paper is therefore to report on these phe-
nomena and to provide an analytical explanation for their ex-
istence. In order to do so, we will resort to bothMS and a.s.
convergence analyses. In particular, we will show that (for a
noiseless filter),MS analysis describes well the initial learning
phase of an adaptive filter, whereas a.s. analysis describes well
the latter phase of the learning process. We will also support the
findings by several simulation results.

We may mention that there are already several works in the lit-
erature of adaptive filtering that relate to both kinds of analyses:
MS and a.s. analyzses. As examples ofMS-based studies, we
may cite [7]–[9], [15], [17], and [19]–[21] and for a.s.-based
studies [12], [14], [16], [18]. In some of these works (e.g., [14]
and [16]), it is actually shown that both methods of analysis
provide the same estimates for the rates of convergence of an
adaptive filter when the step size is vanishingly small and that
(at least for scalar systems) stability in theMS sense implies
stability in the a.s. sense [12]. Still, the emphasis so far in the
literature has been on the similarity of both approaches for van-
ishingly small step sizes. This paper focuses on the interesting
phenomena and differences that arise when larger step sizes are
used and on how to interpret these differences.

II. SIMULATIONS AND MOTIVATION

The purpose of the examples in this section is to demonstrate
that for larger step sizes, there exists a noticeable difference
between learning curves derived fromMSE analysis and en-
semble-average learning curves, even when the latter are con-
structed by averaging over a large number of repeated experi-
ments. Later in the paper, we will show that this phenomenon
has an analytical justification and that (for noiseless filters) it
cannot be completely removed by indefinitely increasing the
number of repeated experiments. We will also show analytically

that this phenomenon disappears for infinitesimally small step
sizes.

First, however, let us recall the definitions of learning curves
and ensemble-average learning curves.

A. Learning Curves

Two important performance measures for adaptive filters are
the mean-square error (MSE) and the mean-square deviation
(MSD), which are defined by

MSE curve

MSD curve (1)

where
desired sequence;
input (regressor) sequence;
weight estimate at time .

The signal is further assumed to be generated via the linear
model for some unknown length-
vector that is to be estimated. The sequence denotes
measurement noise. In this paper, we assume thatis con-
stant and that both the input and desired sequences
are stationary. We also define the weight error vector

.
The LMS algorithm updates the weight estimates by

means of the recursion [2], [6]

(2)

for some initial condition and using a positive step size pa-
rameter .

The plot of theMSE as a function of the time instant is
known as thelearning curveof the algorithm, and it is depen-
dent on the step size. In general, it is not a simple task to
find an analytic expression for the learning curve or for the
steady-stateMSE, except when the assumptions ofindepen-
dence theory[1]–[6] are used. In this framework, we assume
the following:

i) The input sequence is independent.
ii) The noise sequence is independent.
iii) The noise sequence is independent of the input sequence.

Despite the fact that these assumptions are seldom satisfied in
practice, it is known that the learning curves that are obtained
using the independence theory are good approximations for the
true learning curves when the step sizeis vanishingly small
(see, e.g., [7], [8], and [15]). However, what about the case of
larger step sizes?

There have been studies on the evaluation of the exact
learning curve in this case. For example, if the correlation of
the sequence is zero for large lags (i.e., if there exists a
finite such that the correlation of and is zero when

), [20] and [21] discuss a method to analytically
evaluate the learning curve ofLMS filters that is exact for any
step size . Unfortunately, this method is computationally
feasible only for small filter lengths (at most or ,
depending on the correlation of the regressor sequence) since
its complexity grows extremely fast with the filter length. The
method also requires a detailed knowledge of the statistics of
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Fig. 1. Learning curves computed by simulation and theoretically with Gaussian iid inputs,M = 10, � = 0:08, andL = 100.

the regressor sequence , which is usually not available.
(We may remark that [22] studies the case of large filter lengths
and derives a computable lower bound on how large the step
size can be for stable mean-square performance.)

B. Ensemble-AverageLearning Curves

Therefore, for many situations of relevance, there are no prac-
tical ways to evaluate the exact learning curve of an adaptive
filter. For this reason, it is common practice to estimate the
learning curve by experimentation or by repeated simulations.
More specifically, we perform several independent experiments
(or simulations), say, of them. In each of the experiments, the
LMS algorithm is applied for iterations, always starting from
the same initial condition and under the same statistical condi-
tions for the sequences and . From each experiment
, a sample curve is obtained. After all

experiments are completed, an approximation for the learning
curve is computed by averaging as follows:

is referred to as anensemble-average learning curve
(EALC).

Although it is less common, we can also plot theMSD versus
time. We will normally refer to this plot also as “the learning
curve,” or as theMSD learning curve, if we need to distinguish
between the plots for theMSE and for theMSD. The MSD
EALC is

For vanishingly small step sizes, it is known [7], [8], [15] that
an average of a few tens of experiments is enough to obtain ex-
perimental learning curves that are good approximations
for the actual learning curve (we will also give an analytical jus-
tification for this fact later in Theorem 2). It is thus common in
the literature to use the average of a few independent repeated
experiments to predict or confirm theoretical results by means
of simulations (a few relatively recent examples include [3]and

[25], which use 10–20 independent experiments, and [24], [27],
and [28], which use 100 independent experiments).

However, what about larger step sizes? WillEALC’s still pro-
vide good approximations for the actual learning curves?

C. Examples

Consider a length LMS adaptive filter operating
with Gaussian inputs with covariance matrix , step
size , and no noise. The learning curve for this case was
computed theoretically in [24]. In Fig. 1, we plot the theoretical
curve over the first 500 instants of time, in addition to anEALC
that is obtained from the average of simulations. Note
how both plots are close to each other.

Consider now the sameLMS filter of length but with
the larger step size (and noise variance ).
Since the independence assumptions are satisfied in this case, it
is possible to compute the learning curve exactly, as fol-

lows [3], [4]. Let the input covariance matrix be .
Under the conditions of the example, . Define further the

weight error covariance matrix . With these def-
initions, theMSD andMSE are given by Tr
and Tr Tr , where Tr stands for the
trace of a matrix. That is, for this example, both theMSD and
theMSE depend only on the diagonal entries of. Moreover,
it is possible to find recursions for these diagonal entries that
do not depend on the off-diagonal entries in the following way.
Define the vectors

and the matrix . Then, the
diagonal entries of satisfy the recursion

(3)

with initial condition

where is the th entry of the error vector , which is as-
sumed deterministic.
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Fig. 2. Learning curves computed by simulation and theoretically with Gaussian independent input vectors, Gaussian noise with� = 10 ;M = 10; � = 0:16;
L = 100; andL = 10 .

In Fig. 2, we plot the resulting theoretical learning curve
as well asEALC’s computed over and

simulations, all with step size (which is
twice the value of the step size used to generate Fig. 1).

Note how the simulation curves are now noticeably far (and
most of the time) below the (smooth) theoretical curve, although
the simulations get closer (but not close enough) to the theo-
retical curve as is increased from 100 to 10 000. Note also
that the simulation curves converge faster than the theoretical
curve. This situation should be compared with Fig. 1, where
an almost-perfect agreement was obtained between theory and
simulation (in fact, had we computed more iterations in Fig. 1,
a distinction between the theoretical curve and the simulations
would have been observed as well, just as in Fig. 2).

When the independence assumptions do not hold, these ef-
fects still occur, as we show next. Assume now that the input
vectors are not iid as above but have a delay-line struc-
ture of the form col .
The results of [20] and [21] can be used to obtain, analytically,
the learning curve for small values of . In Fig. 3, we
plot this theoretical curve, as well as ensemble-average curves
for to , with filter length , step
size , and, for iid, uniformly distributed between

0.5 and 0.5. With this value of, the actual learning curve
can be shown to diverge (and we observe in the figure

that it indeed diverges). However, the simulations show the en-
semble-average curves converging [see Fig. 3(a)] for var-
ious values of . Notice further that for increasing, the en-
semble-average curve stays closer to the actual learning curve
for a longer period of time toward the beginning of the simula-
tion—although the curves ultimately separate afterwards, with
the theoretical curve diverging and the ensemble-average curves
converging (no matter how largeis). We will explain this fact
analytically (for iid sequences) in Section III-F.

The simulations presented so far show that the behavior of
the ensemble-average curves may be significantly different than
that of the theoretical learning curves (e.g., convergence can

occur even when divergence byMSE analysis is expected; faster
convergence can occur even when slower rates are predicted by
MSE analysis; the averaged curves and the theoretical curve es-
sentially coincide during the initial training phase but separate
thereafter, which indicates the existence of two distinct rates of
convergence: a slow one initially and a faster one later). These
differences can lead to erroneous conclusions when we attempt
to predict performance from simulation results. One interesting
fact to stress is that these differences may occur even for very
large .

In the next section, we explain the origin of these effects by
focusing first on the scalarLMS case, which serves as a good
demonstration and helps highlight the main ideas. In a later sec-
tion, we extend the analysis to the vector case (see Section IV).
The reason why we distinguish between the scalar and the vector
cases is that more can be said in the former case, and the anal-
ysis methods are also more explicit (and in closed form).

III. T HEORETICAL ANALYSIS IN THE SCALAR CASE

A simple model is used in this section to explain the differ-
ences observed between the simulations and theoretical results.
More specifically, we study the scalarLMS recursion with inde-
pendent and identically-distributed stationary inputs and
zero noise. Thus, assuming , we obtain a single-tap adap-
tive filter with update equation of the form

(4)

where all variables are now scalar valued. Re-
call that the weight error vector is denoted by ,
which therefore satisfies the recursion .

A. Condition for Mean-Square Stability

We first determine conditions on the step sizefor the above
one-tap filter to be mean-square stable, i.e., for the variance of
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Fig. 3. Learning curves computed by simulation and theoretically with tap-delayed input vectors,M = 2, � = 8:3, and (a)L = 100, L = 1 000, and
L = 10 000. (b) Theoretical curve andL = 100 only. (c) Theoretical andL = 1000 only. (d) Theoretical andL = 10 000 only.

, to converge to zero. This is a standard step in mean-
square stability analysis.

We start by squaring both sides of the aboveLMS error equa-
tion to obtain

(5)

This is a stochastic difference equation relating two positive
quantities and . The relation between both quantities

is a random multiplicative factor, which we denote by
. Note that from our assumptions on , it follows

that the are iid. To simplify the notation further, we also

denote . In our simplified notation, the recursion (5)
becomes

(6)

where the initial condition is assumed deterministic.
As mentioned above, we want to determine conditions under

which converges to zero. For this purpose, we denote the
variance and the fourth-order moment of the regressorby

, and . From (6), and using the indepen-
dence of the , we then obtain

(7)

where we are denoting the iid non-negative variablesgener-
ically by (their expected value is equal to

). From the above equation, we conclude that will
converge to 0 if, and only if, is such that the mean of is
strictly less than 1. We will refer to the resulting rate of conver-
gence of , viz., , as theMS rate of
convergence. For ease of comparison with a later condition [see
(12)], we will rewrite the requirement in the equivalent
form (in terms of the natural logarithm)

(8)

Observe further that the logarithm of theMS rate of conver-
gence is equal to [which is a result that we will also

invoke later—in the discussion following (12)]. We summarize
the above conclusions in the following statement.

Lemma 1 (Mean-Square Stability):Consider the scalarLMS
algorithm (4) with stationary iid inputs . Assume also that
the noise is identically zero. Then, tends to zero if, and
only if, the step size is such that .

Consider now the square error . Since is
stationary and independent of . This
implies that the behavior of is the same as that of ,
i.e., will converge when does, and the rates of
convergence will be the same.

B. Behavior of a Sample Curve

Our experiments in Section II showed that there is a clear dis-
tinction between the plots of and of the ensemble-average
curve . We explain this fact in this section.

We focus first on the behavior of a typical (single) curve
and show that for large decays (or increases) at a rate
significantly different than that of . We obtain this result by
studying conditions under which a typical curve converges
to zero with probability one (or almost surely). Later, we will
show how this effect manifests itself when several such curves
are averaged together to yield an ensemble-average curve.

We start by computing the logarithm of in (6)

which shows that the difference is equal to the sum
of iid random variables . We assume for now that
the variance of is bounded (Theorem 2 gives conditions
for this to hold). Therefore, we can use the strong law of large
numbers [29] to conclude that

(9)

where a.s. denotes almost-sure convergence. That is, for large
will almost surely converge to a constant .
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[We will evaluate for different distributions in Sec-
tion III-D.] We now need to translate the above result directly
in terms of , instead of its logarithm. To do so, we must find
how fast the convergence of is to its limit. We use a
result from [29, pp. 66 and 437], stating that

a.s. (10)

where denotes the variance of , which we assumed to
be finite (see Theorem 2). Relation (10) can be interpreted as
follows. Denote by the experiment of choosing a regressor se-
quence . For each experiment, compute the resulting
sequence for all (starting always from the same
initial condition ). Then, the statement (9) that “
converges to a.s.” means that the set of experiments

such that

has probability 1. Moreover, (10) implies that with probability
one, there exists for each experiment a finite positive number

(dependent on the experiment) such that for all
, the corresponding curve satisfies

where the error satisfies

We stress that depends on the experiment.
Therefore, (9) and (10) imply that with probability one, a typ-

ical curve will eventually enter and stay inside the
set

(11)
In other words, for large enough, a typical curve will

be upper bounded by the curve . The
convergence of to the above set, however, is not uniform.
That is, there isnofinite such that for almost all experiments,

for .
Now, since does not depend on the time, the first

exponential in (11) dominates the second whenis large, which
implies that the upper bound tends
to zero if, and only if, . We thus conclude that a
typical curve converges to zero a.s. (or with probability one)
if, and only if, the step size is such that

(12)

This leads to a different condition onthan the one derived for
mean-square stability in (8). In addition, note that for large,
when is already close to or inside, the rate of con-
vergence of a typical curve is dictated primarily by the term

. This implies that for large , the logarithm of the rate
of convergence of is given by [which should
be contrasted with in the mean-square analysis case right

after (8)]. We will refer to the above rate as thea.s. rate of con-
vergence. The following theorem has thus been proven.

Theorem 1—A.S. Convergence:Consider the scalarLMS al-
gorithm (4) with stationary iid inputs . In addition, assume
that the noise is identically zero. Then, with probability one,
there is a finite constant (dependent on the realization) such
that stays inside the set defined above for all .
In particular, a typical curve converges to zero with prob-
ability one if, and only if, (which is equivalent to

).
We may remark that there are related works in the literature

that have studied the a.s. stability ofLMS (e.g., [12], [14], and
[18]) or even of continuous-time systems (e.g., [10] and [11]).
These works, however, do not emphasize thedistinctionsthat
arise betweenMS stability and a.s. stability, nor do they note the
implications of these differences on the behavior of theEALC’s
of adaptive filters. Reference [14] obtains condition (12) but
compares the a.s. andMS notions of stability only for
when they in fact agree, thus proving by means of different tools
a version of Theorem 2 further ahead for ergodic signals (and
for considerably larger values of). Therefore, while the em-
phasis so far in the literature has been mainly on the similarity
of the a.s. andMS methods of analyses for vanishingly small
step sizes, we will instead focus on the phenomena and differ-
ences that arise when larger step sizes are used.

C. Comparisons

Comparing the statements of Lemma 1 and Theorem 1, we
see that there is a fundamental difference in the conditions re-
quired for convergence in both cases. The lemma shows thatMS
convergence requires the step sizeto be such that ,
whereas the theorem shows that a.s. convergence requiresto
be such that . The two conditions are not equiva-
lent, and in fact, one implies the other since, for any non-neg-
ative random variable for which and both exist,
it holds that . (This result follows directly
from Jensen’s inequality since the function is convex;
see, e.g., [29, p. 14]). Therefore, values offor whichMS con-
vergence occurs always guarantee a.s. convergence while the
converse is not true. A value for which (and, thus,
MS divergence occurs) can still guarantee a.s. convergence, or

, which explains the phenomenon in Fig. 3.
We will elaborate more on these distinctions in the sequel and

explain how they can be used to explain the phenomena that we
observed in the simulations in Section II. For now, however, we
show that these distinctions disappear for infinitesimally small
step sizes (which is a fact that does not depend on a specific input
signal distribution). Although, as mentioned above, a version of
this result for infinitesimally small step sizes is presented in [14]
for ergodic signals and for larger values of, we provide in Ap-
pendix A an independent argument under different assumptions
by using a sequence of integration results. (We remark that the
requirement on the probability density function in the statement
of the theorem below is not restrictive, and it does not rule out
most well-known distributions.)

Theorem 2—Rates of Convergence for Small: Let
denote the probability density function of the iid regressor se-
quence . Assume there exist constants and
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Fig. 4. Graphs ofE ln(1� �x ) (continuous line) andlnE(1� �x ) (broken line). (a) Uniformly distributedx . (b) Gaussianx .

such that satisfies for . Then, the
quantities var , and

exist, are finite, and satisfy

where is a function satisfying .
The theorem therefore shows that and are ap-

proximately the same whenis infinitesimally small. This ex-
plains why learning curves andEALC’s tend to agree reason-
ably well for such small step sizes. However, we are particularly
interested in explaining the discrepancies that arise when larger
step sizes are used.

D. Some Examples

We now provide two examples showing that for larger step
sizes, the difference between and can be consider-
ably large. In particular, the difference can be large around the
step size that achieves fastest convergence.

Assume first that is a uniform random variable with values
in the interval . For this input distribution, we have

and so that

We can also evaluate as a function of explicitly
and obtain the equation shown at the bottom of the page.

Fig. 4(a) compares the plots of (the continuous line in
the figure) and of . Note that both plots are close together
for small (as predicted by Theorem 2), but they become sig-
nificantly different as increases. In particular, they are quite
different at the minima of each plot (which correspond to the
fastest rates of convergence from theMS and a.s. convergence
points of view). In the ranges of for which the curves are
significantly different, the rate of convergence of a typical curve

will be significantly different than the rate of convergence of
(for large ).

With this result, we can explain why the ensemble-average
curves computed for small step sizes are close to the “theoret-
ical” predictions using and why these plots are so different
for larger step sizes. For sufficiently small step sizes, the rates
of convergence of both and are, with probability one,
very close; therefore, we expect that an average of a few simu-
lations will produce a reasonable approximation for . For
larger step sizes, and for large, however, the rate of conver-
gence of is significantly different (and faster) than that pre-
dicted by (7). Thus, we should expect to need a larger number
of simulations to obtain a good approximation for . This
latter point will be better clarified by the variance analysis that
we provide in Section III-F.

Another interesting observation is that is negative well
beyond the point where becomes positive. This implies
that there is a range of step sizes for which a typical curve
converges to zero with probability one but diverges. This
explains the simulations in Fig. 3. This is not a paradox. Since
the convergence is not uniform, there is a small (but nonzero)
probability that a sample curve will exist such that it assumes

arctanh if

arccoth if
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very large values for a long interval of time before converging to
zero.

Assume now that is Gaussian with zero mean and unit
variance so that , and . Then,

. We computed numerically (using the
symbolic toolbox in Matlab2 ), obtaining the results shown in
Fig. 4(b). Note, again, how and are approximately
equal for small . An interesting fact that appears here is that the
value of that achieves fastestMS convergence is noticeably
smaller than the step size that achieves fastest a.s. convergence.
In distributions with heavier tails (such as the exponential), this
difference is even more pronounced.

E. Differences Between Theory and Simulation

The above results can thus be used to understand the dif-
ferences between theoretical and simulated learning curves for
large and for larger step sizes. Indeed, let be in-
dependent experiments with the corresponding sample curves

. We know from Theorem 1 that for each curve, there
exists an integer such that will remain inside the
set for all . In particular, if the step size is such
that , then this means that with probability
one, will be converging to zero for all .

Now, let be theEALC. Since
stays inside for , will also stay

inside for . This means that eventually
(for large enough ), all EALC’s will stay far away from the av-
erage curve . This is because the actual average curve
and typical sample curves will converge at different rates for
large (one rate of convergence is dictated by , whereas
the other is dictated by ).

Thus, we can say that the a.s. analysis allows us to clarify
what happens when we fix (the number of repeated exper-
iments) and increase (the time variable). The ensemble-av-
erage curve tends to separate from the true average curve for
increasing due to the difference in the convergence rates.

On the other hand, the more simulations we average, the
larger we expect to be; therefore, the difference between the
ensemble-average curve and the true average will be significant
only for increasingly large . That is, the more we average,
the longer it takes for us to see the difference between the
ensemble-average curve and the true-average curve. We will
explain this fact more clearly in Section III-G by means of
a variance analysis. We summarize these conclusions in the
following statement for ease of reference.

Lemma 2—A.S. Analysis:Consider the scalarLMS algo-
rithm (4) with stationary iid inputs . Assume that the
noise is identically zero and that the distribution ofis such
that (i.e., strict inequality holds). Then, the
following conclusions hold.

1) If we fix , then for large enough, the ensemble-average
curve will be noticeably different from the true-average
curve due to different rates of convergence.

2) The more we average (i.e., the larger the value of), the
longer it takes for the difference between the ensemble-
average curve and the true-average curve to be noticed.

2Matlab is a trademark of The MathWorks, Inc.

F. Variance Analysis

The a.s. convergence analysis of the previous sections estab-
lishes that for large enough time, there always exists a differ-
ence between the ensemble-average curve and the true-average
curve and that this difference is explained by the fact that the
convergence rates of both curves are distinct. In view of this,
we will say that the a.s. analysis helps us explain the distinction
between both curves for large time instants.

If we, however, re-examine the curves of Figs. 2 and 3, we see
that for small (that is, close to the beginning of the curves),
there is usually a good match between the learning curve and
the ensemble-average curve. Put another way, we notice that
the rates of convergence of the true learning curve and the en-
semble-average curve tend to be identical for these initial time
instants. Only for later time instants, do the rates of convergence
become different as predicted by the a.s. analysis.

To explain this initial effect, we rely on a different argument
that employs Chebyshev’s inequality. We start by evaluating the
variance of var , rather than its mean (as in Section III-A).
This is because we will now study the evolution of the following
ratio:

var
(13)

which we stress is a function of the time instant, that is, with
each , we associate a value . We claim that for values
of for which , the average value will be a
good approximation for the values of the sample curveat
these time instants. To see this, assume that for a
particular value of . Using Chebyshev’s inequality [29, p. 15],
we obtain

This means that we have a 99% probability thatwill be in
the interval .

Now, when we formEALC’s, we average several sample
curves to obtain

Assuming that we use independent experiments, then the ex-
pected value of is still equal to . The ratio that is
associated with the curves will then be given by

var

where the variance of is equal to var . This implies
that

var
(14)

That is, the process of constructingEALC’s reduces the value of
. Therefore, if we choose large enough, theEALC should
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Fig. 5. �(n) computed for� = 0:001; 0:01; 0:1; 0:25, and0:4.

be a good approximation for at those time instants where
is sufficiently small.3

Thus, a small is desirable to conclude that or is
close to . However, it turns out that the ratio increases
with (and thus approximates less effectively for
larger , which is consistent with the results of our a.s. analysis).
To see this, we evaluate

where and are assumed finite. Define
further

(15)

With these definitions, is given by

(16)

Now, since

var

3Although a small�(k) implies thatY � EY andD̂(k) � EY , a large
�(k) does not implythat the differencejY � EY j or jD̂(k)� EY j should
be large with a significant probability (but it does hint that this may be the case).
For example, take a random variablez satisfying

z =
10; with probability10

10 ; with probability0:9999:

In this caseEz = 0:0101 andEz = 0:0110, and thus,� = 9:1. Despite the
large value of�; jz �Ezj � 10 = 0:1Ez in 99.99% of the realizations.

we conclude that (with equality only if is a constant
with probability one). Therefore, except for this trivial case,

is strictly increasing, and thus, . We
have thus proven the following lemma.

Lemma 3—Variance of : Assume and defined above
are finite and that the initial condition to the scalarLMS al-
gorithm (4) is deterministic. Then, the ratio between the
standard deviation of and is either 0 for all or is
strictly increasing with and tends to infinity as tends to
infinity.

Note that from our assumption that is deterministic, we ob-
tain . In general (for step sizes for which converges
in theMS sense), remains small for some time, which im-
plies (via Chebyshev’s inequality) that is well approximated
by when is small. We give below examples of the be-
havior of for two different input distributions.

1) Binary inputs. We first give a simple example for which
. Assume that with probability 0.5.

Then, is a constant, and thus, .
In this trivial case, we have ,
and for all .

2) Gaussian inputs. Let be Gaussian with zero mean and
unit variance so that and

We plot the value of for several values
of in the range in Fig. 5.
Note how grows increasingly quickly asincreases.
In addition, note that the rate of increase of is very
small for .

G. Two Rates of Convergence

Let us consider again the differences between theory and sim-
ulation. Assume that we fix the time instantand compare the
values of and at that particular time instant for dif-
ferent values of . We know from the expression for that
the larger the value of is, the smaller the value of will
be. Hence, the more we average, the closer will the value of
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be to that of . That is, the closer will both curves be
at that time instant . This again confirms an earlier conclusion
in Lemma 2, viz., that the more we average, the longer it takes
for us to see the differences between both curves.

Another major conclusion that follows from the a.s. and vari-
ance analyzes is that theLMS recursion exhibitstwo different
rates of convergence(even for single-tap adaptive filters) At
first, for small , a sample curve is close to and, there-
fore, converges at a rate that is determined by . For larger

, the sample curve will converge at a rate that is determined
by .

We can now justify our sixth claim in the introduction, viz.,
that the knowledge that an adaptive filter is a.s. convergent does
not necessarily guarantee satisfactory performance. Thus, as-
sume that a filter is a.s. stable but thatMS is unstable. It fol-
lows from our analysis that a learning curve will tend to diverge
in the first iterations (by following the divergent mean-square
learning curve), and only after anunknowninterval of time will
the learning curve start to converge. In simulations, we noticed
that the estimation error may reach quite large values before
starting to decrease again. Therefore, the performance of an a.s.
stable filter need not always be satisfactory in applications.

IV. THEORETICAL ANALYSIS IN THE VECTORCASE

In this section, we extend the ideas presented above to larger
filter lengths. It turns out that the behavior of theLMS algorithm
for filter lengths is richer than what we saw in the scalar
case and is (except when the step size is vanishingly small) very
dependent on the actual input distribution. Therefore, the exam-
ples shown in this section cannot be exhaustive, i.e., the exam-
ples do not show all possible kinds of behavior—but they do
illustrate the phenomena in which we are interested. As before,
we will provideMS, a.s., and variance analyses. We start with
the latter and explain how to compute the variance of in
the vector case (by generalizing the results of Section III-F).

A. Variance Analysis

We continue to assume that the input sequence
is iid and that the noise is identically zero . The indi-
vidual entries of each regressor vector, however, are not as-
sumed to be independent. The ratio is defined in the vector
case as

var
(17)

whose computation requires that we evaluate both the mean and
the variance of . We consider first the evaluation of the
mean.

1) Evaluating the Mean of : Recall that in Section II,
we computed by finding a recursion for the diagonal
entries of and by using the fact that
Tr . In that section, a recursion for the diagonal entries of
was all we needed since we assumed that the individual entries
of were independent. When the entries ofare not indepen-
dent, which is the general case we are treating here, the off-diag-
onal elements of should enter into the recursion. Therefore,
let us first show how such a general recursion can be obtained.

Subtracting from both sides of theLMS recursion (2), we
obtain the error equation

(18)

Then, we have

(19)

Taking expectations and using the independence offrom
, we obtain

(20)

where the last expectation is in general difficult to evaluate in
closed form, except when the entries of are mutually inde-
pendent.4 To address the above general case, it is necessary to
know all the fourth-order moments and cross correlations be-
tween the entries of . Assuming that these fourth-order mo-
ments are known, we can simplify (20) using Kronecker prod-
ucts, as we now show.

The Kronecker product of two matrices and
is defined as [30]

...
... (21)

This operation has several useful properties, but the one that in-
terests us is the following. Define the symbol vec to repre-
sent an column vector formed by stacking the columns
of the matrix one above the other. Let , where

, and are matrices of compatible dimensions. Then, the fol-
lowing equality holds [30, p. 254]:

vec vec (22)

Applying this property to (20) and using the independence of
, we obtain

vec vec (23)

where

and represents the identity matrix of dimension. We thus
have a recursion for vec , which can be used to evaluate
Tr and, consequently, the mean .

In the following, we will often use repeated Kronecker prod-
ucts, as in . We will denote such “Kronecker powers”
as and similarly for .

2) Evaluating the Variance of : We still need to eval-
uate the numerator of in (17), which requires that we eval-
uate var . We start by noting that

var (24)

and that, as shown in Appendix B, we can rewrite as

Tr

4Whenx is Gaussian, this problem can also be simplified and be reduced
to the case of independent entries inx .
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Fig. 6. �(n), computed forM = 2; � = 0:25, and Gaussian regressor sequence withR = I .

Using this result, we can establish the following recursion for
vec .

Lemma 4—Recursion for Variance Calculation:The ex-
pected value can be computed from the recursion

vec

vec

vec (25)

The above recursion allows us to evaluate , which in
turn can be used in (24) to evaluate var . Thus, in prin-
ciple, we know how to evaluate the ratio in the vector case.
A drawback of this method is that the matrixlies in ,
and it becomes difficult to solve the recursion of Lemma 4 ex-
plicitly for large filter lengths. If the entries of are mutually
independent, several elements ofvanish, and sparse matrix
techniques can be used to simplify the problem.

In any case, our recursions allow us to evaluate [as de-
fined in (17)]. An example with Gaussian inputs and is
shown in Fig. 6 with the curve for for and .
The value of is chosen to be close to the value that achieves
fastest convergence of in this case. Notice that, as in
the scalar case, the simulation shows growing with . It
also shows that assumes relatively small values at the be-
ginning of the simulation so that there will be good agreement
between the actual learning curve and theEALC for small .
Fig. 8 further ahead confirms this effect for filters of length

.

B. A.S. Convergence: Solution for a Simplified Model

As we mentioned in the scalar case, the variance analysis ex-
plains reasonably well the initial behavior of theEALC, but it
cannot predict the behavior for large. For that, we need an a.s.
convergence analysis similar to what we did in Section III-B. We
start by considering asimplifiedmodel here that will show that
the effects we observed in the scalar case still exist in the vector
case. It will also show that some new effects arise, especially
the sensitivity of the behavior of theEALC to the direction of
the initial condition. In Section IV-C, we will present a method
of analysis that applies to more general models and input distri-
butions.

Therefore, let represent theth basis vector, i.e.,
if and zero otherwise, and assume that the input sequence

is of the form

(26)

where is a random variable with zero mean. The vector
is independent of and satisfies with probability

. In other words, may assume only one out of orthog-
onal directions (a similar model was used in a different context
in [27]). Note that the entries of aredependentin this case.
As we did before, we assume that the noise is identically zero.

With these definitions, the weight vector is given by

diag

Using this relation, we can compute and as fol-
lows:

(27)

(28)

with probability .
1) Mean-Square Analysis:Let , and
. Since all and are independent and , the

MSD andMSE are given by

(29)
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Fig. 7. Graphs ofE ln(1� �r ) (continuous line) andlnE(1� �r ) (broken line), forX distribution with 100 degrees of freedom.

These relations express theMSD and theMSE in terms of ex-
ponential terms that depend on the factors ,
which are equal to

Therefore, theMS convergence of all the modes will require
that be such that

(30)

or, equivalently, for all
.
2) A.S. Analysis:Consider now one of the products in (27),

i.e.,

Since this product has the same form as (5) in the scalar case,
we can use our results of Section III-B to analyze its behavior.
Evaluating the logarithm of , we can verify that

We thus conclude that a.s. convergence requires [in contrast with
(30)]

(31)

or, equivalently, . The distinction be-
tween conditions (30) and (31) highlights again the same phe-
nomenon that occurred in the scalar case, viz., for large, the
rates of convergence of the true learning curve and theEALC
will be distinct with the latter decaying faster.

3) Sensitivity to the Initial Condition:A new feature of the
vector case is that the behavior of is now dependent on
the direction of the initial condition . Indeed, assume for ex-
ample that all the probabilities are equal, i.e., , and
that all the entries of the vector are also equal. To further
simplify the discussion, we normalize so that ,

that is, we choose . In this situation, the norm
of the weight error vector becomes

(32)

where the distribution of each of the terms in the sum is exactly
the same. This means that is, in fact, an average of
(not independent) scalar learning curves, each described by a
term of the form

That is

Therefore, we should expect the variance of to be
smaller than that of each term in the sum [as we saw in (14)
and in Section III-E].

On the other hand, if (for example) and
, then

(33)

Since there is no averaging effect in the computation of the norm
anymore, we should see exactly the same kind of behavior as for
the scalarLMS algorithm. For other values of the initial condi-
tion , we have an averaging effect between the extremes of
(32) and (33).

In Fig. 7, we plot the curves and
for a variable that is distributed as a variable with

100 degrees of freedom (this is exactly the distribution of
if the entries of the random vector are Gaussian in-
dependent variables with unit variance). For a variablewith
this distribution, we have and

. Assuming that , we
conclude from (30) that

(34)

Summarizing, the above discussion shows that anLMS filter
with length and with input satisfying (26) will behave
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Fig. 8. Ê(n) computed withL = 1000; M = 100 and� = 0:0042. The input sequence satisfies (26), andr is aX . (a) All entries of the initial condition
~w are equal. (b) Only the first entry of the initial condition~w is nonzero. The upper smooth curves areEe(n) computed theoretically, and the lower curves
are the rate of convergence predicted by a.s. convergence analysis.

in a manner similar to that of a scalarLMS filter for which
has the same probability distribution as but with three main
differences.

1) The rate of convergence will now be smaller (depending
on the values of the probabilities).

2) A single realization of the error will tend to be
close to its mean for a longer time because of
the averaging performed when computing the norm (32).

3) The behavior of anEALC is sensitive to the initial condi-
tion.

Fig. 8 illustrates the above results for a filter with 100 taps
and such that is a with 100 degrees of freedom and mean
100. In Fig. 8(a), all entries of the initial condition are equal,
whereas only the first entry in the initial condition for
Fig. 8(b) was nonzero. Both plots showEALC’s computed with

. Note how the first simulation stays close to
for a longer time, as we predicted above. Note, however, that in
both simulations, theEALC’s eventually tend to decrease with
the (fastest) rate predicted by a.s. analysis (which, in this case,
is equal to 0.9646, whereas the (slowest) rate predicted byMS
analysis is 0.9905).

C. A.S. Convergence: A Solution for General Models

The analysis in the previous section assumed a special regres-
sion sequence [see (26)].

Although restrictive, the resulting simplified model showed
that the effects we observed in the scalar case still occur in the
vector case. We now provide an analysis that applies to general
regression vectors .

Thus, using (18), we obtain

where we defined the state-transition matrix. In the simpli-
fied model prior to (27), the matrix was assumed diagonal,
which led to (27). Now, we get .

The rate of convergence of will be dependent on the
modes (eigenvalues) of . For the simple model (26) of

the previous section, we were able to determine the properties
of each individual eigenvalue of . In order to extend the
analysis to more general input distributions, we study in this
section the evolution of the determinant of , i.e., we now
study the product of the eigenvalues of and compare this
product with det since

1) Mean-Square Determinant Analysis:The computation of
det can be performed in the case of iid input regres-
sors by using our recursion for vec in (23). Indeed

det det

On the other hand, from (20), we obtain

(35)

The covariance can be evaluated using Kronecker products,
as we showed in (23). We can use the same method to compute
det as follows. Let be obtained from (35) but with

replaced by the identity matrix. Since is stationary and
iid, the order of the matrices in the product is irrelevant, and

. Therefore, we have

det det (36)

where vec satisfies (with initial condition )

vec vec

with defined according to the equation following (23).
We will shortly present an example where the computation

of det simplifies, and a simple formula for its rate of
convergence can be obtained.
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2) A.S. Determinant Analysis:The determinant of satis-
fies

det det

where we used the fact that the matrix has
eigenvalues at 1 and one eigenvalue at . We then
obtain

det

which has the same form as a scalarLMS algorithm with input
sequence so that

det

Therefore, all of our previous results can be directly applied to
this case. In particular, the rate of convergence (or divergence)
of det for large is a.s. given by , which
in general will be different than the rate obtained from (36).

To explicitly find the a.s. rate of convergence, it is necessary
to know the distribution of , which depends on the distri-
bution of itself. We consider a few special cases below.

For example, let be iid and such that the entries of each
vector are mutually independent and Gaussian with unit vari-
ance. We saw in the previous section that in this case, is
distributed as a with degrees of freedom. In this case, the
computation of det simplifies considerably, as follows:

Since this is a multiple of the identity, det reduces to

det

This is similar to the expression that we obtained for the simpli-
fied model of Section IV-B2 [see (34) and Fig. 7], except that
the factor is now raised to the power .
This means that for , the plots of Fig. 7 (with the ver-
tical scale multiplied by 100) also apply to this example. Note
that this example and that of Section IV-B2 are in fact very dif-
ferent—in this section, may takeanydirection in , unlike
what happened in the previous example. It only happens that the
determinants have the same properties in both situations.

As another example for the computation of ,
assume that the entries of have the same (non-Gaussian) dis-
tribution and are independent. In this situation, we can use the
central limit theorem [29, p. 112] to conclude that for large,
the distribution of will be approximately Gaussian with
mean and variance , where
and are, respectively, the variance and the fourth moment
of each entry of . This is true as long as both and
are finite.

V. CONCLUDING REMARKS

In this paper, we have shown that there are situations in which
the actual behavior of theLMS errors is significantly different
than that of their averages. These situations arise when one uses

larger step sizes (i.e., noninfinitesimal) to obtain faster conver-
gence. Our simulations and analyses show that in some cases,
it may be necessary to average a significantly large number of
simulations to obtain a good approximation to the mean-square
behavior of an adaptive filter. In particular, we must be careful
when analyzing ensemble-average learning curves.

Moreover, it follows from Section III-G that the performance
of an a.s. convergent adaptive filter may be poor if the filter
is not alsoMS stable. Looking at these results from another
perspective, we might conclude that with larger step sizes, we
should take into account both average and a.s. points of view for
design purposes in order to get a clearer perspective.

We have proven our claims analytically and studied the be-
havior of the scalarLMS algorithm in detail. We also extended
the conclusions to the vector case and showed that additional
effects arise here.

Although our analysis was performed only for theLMS al-
gorithm, a similar behavior can be expected by some other sto-
chastic gradient algorithms.

APPENDIX A

In this Appendix, we prove the statement of Theorem 2. We
do so by showing that both and
are differentiable with respect toat and that both deriva-
tives are equal at that point. Now, the derivative of the second
function evaluates to

The evaluation of the other derivative is more involved and
will be obtained in several steps in the lemmas below. The first
lemma proves that is well defined for all .

Lemma 5: Under the conditions of Theorem 2, the expected
value

exists and is finite for all .
Proof: Let be a positive constant such that

, and split the above integral as

Using the assumptions of Theorem 2, all three terms
can be bounded. Indeed, using the assumption that

, we first have that
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Now, by noting that is nonpositive if
and positive otherwise and by evaluating the integral

we can conclude that is bounded. Consider next the term.
Using the fact that and the assumptions of
Theorem 2, we have

Since for all positive and , the above
integral is finite. The first term can be bounded in a similar
manner.

With a small modification, the same arguments can be used
to prove that var is finite.

Having proved that exists, we now show that
this function is differentiable at . Unfortunately, we cannot
simply apply the formula

because is not a bounded function, and its deriva-
tive is not integrable, except at [31, pp. 236–239]. We
need to compute the derivative of directly from
the definition, that is, we will show that

The computation of the above limit is carried out in the three
lemmas below. The first two results show that we can avoid the
singular points at by restricting the integration
limits to and , where is a small
positive parameter.

Lemma 6: Assume that the conditions of Theorem 2 hold
and that is small enough such that . Then, there
exists a finite constant such that

(37)

Proof: Let denote the expression on the left-hand side
of the above inequality. Then, we can bound it by

Performing the change of variables , we further obtain

By evaluating the above integrals, we can easily verify that

and

for some finite constants . Inequality (37) fol-
lows from these results.

Lemma 7: The inequality below is satisfied under the condi-
tions of the previous lemma.

where is a finite constant.
Proof: Since , we have

Up to now, we have shown that for sufficiently small

(38)

for some finite constants , and (note that
the exponents of in the above inequality can be made positive
if by choosing a sufficiently small).

In order to bound the remaining integral above, we need
to find out the dependence on of the convergence of

to zero as . This is done in the
next lemma.

Lemma 8: The following inequality holds for all and

(39)
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Proof: First, note that

(40)

We find a bound for this function by studying the convergence
of to as .

We begin our analysis by noting that the sequence
is strictly increasing and upper bounded by

. This implies that the inequality
below holds for

Taking this inequality to the limit as and dividing the
result by , we have

(41)

Next, we translate this inequality to the case by
considering the change of variables . Thus, note
that we can write

so that applying (41) to this relation, we obtain, for

where the last inequality is true for . Performing the
change of variables (for some ), we further
obtain

Finally, raising these inequalities to the power and taking
the logarithm, we find that

Now, since for a small positive number, it holds that

we get for large enough

Applying this inequality to (40) with and , we
obtain the desired result (39).

With the above lemma, we can bound the remaining integral
in (38), as below. Assume that . It then follows
from Lemma 8 that

Now note that

so that in the interval , and for small enough,
the above expression is smaller than

Integrating, we get

Substituting this result into (38), we conclude that all inequal-
ities are satisfied with positive powers of if (and

) so that

which is our desired result.

APPENDIX B

Here, we prove the statement of Lemma 4. From (19), we
have

(42)

This expression can be simplified using another property of
Kronecker products. For any matrices and , it holds
that [30, p. 244]

(43)

Now, apply this property to (42) with
and to obtain
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Applying (43) again, now with and
, we obtain

We can now apply (22) and take expected values to obtain the
desired result.
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