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On the Learning Mechanism of Adaptive Filters

Vitor H. Nascimento and Ali H. Saye&enior Member, IEEE

Abstract—This paper highlights, both analytically and by sim- The phenomena however become significantly more pro-
ulations, some interesting phenomena regarding the behavior of nounced for larger step sizes (faster adaptation) and lead to

ensemble-z_average learning curves of adaptive filters that may have several observations. In particular, we will show that after an
gone unnoticed. Among other results, the paper shows that even en-.

semble-average learning curves of single-tapMS filters actually initial phase, an adaptive filter generally learns at a rate that

exhibit two distinct rates of convergence: one for the initial ime in- 1S better than that predicted by mean-square theory, that is,
stants and another,fasterone, for later time instants. In addition, they seem to be “smarter” than we think. We will also show

such curves tend to converge faster than predicted by mean-square that even simple single-tap adaptive filters actually have two
theory and can converge even when a mean-square stability anal- yistinct rates of convergence; they learn at a slower rate initially

ysis predicts divergence. These effects tend to be magnified by in- d at a fast te later. We will al that il 4
creasing the step size. Two of the conclusions that follow from this and at a taster rate later. Vve will also argue that special care 1S

work are _’]_) mean-square stab”ity alone may not be the most ap- needed in Interpretlng Iearnlng curves. Several examples will
propriate performance measure, especially for larger step sizes. A be provided.

combination of mean-square stability and almost sure (a.s.) sta-

bility seems to be more appropriate. 2) Care is needed while inter- A, Background and Objectives

preting ensemble-average curves for larger step sizes. The curves . .
can lead to erroneous conclusions unless a large number of exper- AS IS well known, computable theoretical formulas for

iments are averaged (at times of the order of tens of thousands or learning curves exist only for a few idealized situations.
higher). Ensemble-average learning curveSALC’s) are therefore
Index Terms—Adaptive filter, almost-sure convergence, Cheby- COmmonly used to analyze and demonstrate the performance
shev’s inequality, law of large numbers, learing curve, mean Of adaptive filters; arEALC is obtained by averaging several
square convergence, rate of convergence. error curves over repeated experiments or simulations and by
plotting the resulting average curve.
EALC'’s have been used to extract, among other things, in-
formation about the rate of convergence of an adaptive filter, the
DAPTIVE filters are inherently nonlinear andyalue ofits steady-state error, and choices of step sizes for faster
time-variant devices that adjust themselves to abnvergence. Under certain independence conditions (see, for
ever-changing environment; an adaptive system changesef@ample, [1]-[6]), or for infinitesimally small step sizes (e.g.,
parameters in such a way that its performance improves throygh.[19]), it is well understood that data extracted from such
a continuing interaction with its surroundings. EALC's provide reasonably accurate information about the real
The learning curve of an adaptive filter provides a measure gérformance of an adaptive filter.
how fast and how well it reacts to its environment. This learning But what about the performance of an adaptive scheme for
process has been extensively studied in the literature for slowdyger step sizes and without the independence assumptions?
adapting systems, that is, for systems that employ infinitesisill EALC’s provide satisfactory information in these cases as
mally small step sizes. In this paper, we will discuss several ifell? In the process of comparing results obtained fE?k.C’s
teresting phenomena that characterize the learning capabilifiggh results predicted by an exact theoretical analysis for such
of adaptive filters when larger step sizes are used. These p&€snarios (as in [20]-[22]), we noticed considerable differences
nomena actually occur even for slowly adapting systems but gj&ween simulation and theory. These differences persisted no
less pronounced, which eXpIainS Why they may have gone YRatter how many experiments we averaged_
noticed. A first explanation of the discrepancies was to blame the sim-
ulation program and possible numerical errors. After careful
study, however, we realized that the differences have an analyt-
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rates of convergence: one for the initial time instants arndat this phenomenon disappears for infinitesimally small step

anotherfasterone, for later time instants. sizes.

2) EALC's tend to converge faster than predicted by mean- First, however, let us recall the definitions of learning curves
square theory. and ensemble-average learning curves.

3) EALC's can and do converge even when a mean-square
stability analysis predicts divergence. A. Learning Curves

4) The more experiments we average to ConstruBAIC,  Tywo important performance measures for adaptive filters are

the more time it takes to observe the distinction betwegRe mean-square erroMSE) and the mean-square deviation
theory and simulation. Nevertheless, the difference glsp), which are defined by
ways exists, and we need only simulate for a longer period
(and possibly also reduce the noise level) to observe it. MSE curve 2 Ee(n)2 - F (y(n) — sznfl)
5) Mean-square analysis alone may not be the most appro-
priate performance measure for larger step sizesom-
binationof mean-squareMS) and almost sure (a.s.) sta here
bility results seems to be more appropriate. 0o ; .
6) Establishing that an adaptive filter is a.s. convergent (i.e.,{i(?inzl %es&;e(?es?ggsegrc):es,e uence-
converges almost surely to zero in the noiseless case) doe%vn"' 1"=1 ngght egtimate at ti?ne _ 1’

not necessarily guarantee satisfactory performance. The si : . .
. . : i e signa is further assumed to be generated via the linear
7) For filters with multiple taps, the behavior &ALC’s modeI%(n%(n:) Tw, + v(n) for somegunknown lengthid

may be dependent on the initial condition. This depe ectorw, that is to be estimated. The sequeticén)} denotes

dency does no't exist for single tap filters ('vvh.ich are use%easurement noise. In this paper, we assumewhat con-
for example, in some frequency-domain implementas, . and that both the input and desired sequefwes), x,,
tions—see [6] land [23],)' are stationary. We also define the weight error vestor =
The purpose of this paper is therefore to report on these ptw*- —w,.
nomena and to provide an analytical explanation for their ex-The | MS algorithm updates the weight estimates,, } by
istence. In order to do so, we will resort to bd#6 and a.s. eans of the recursion 121, [6]
convergence analyses. In particular, we will show that (for a
noiseless filter)MS analysis describes well the initial learning W, = Wp_1 + uxpe(n) 2
phase of an adaptive filter, whereas a.s. analysis describes well L . ) - )
the latter phase of the learning process. We will also support rlg%sggrz initial conditionwo and using a positive step size pa-
findings by several simulation results. ) . L .
We may mention that there are already several works in the wﬁl-\?vi glgttr?e];etgrenl\i/lancSrSvso;utﬂgglg(;)rfit:]hrﬁ tgzg ;PZEZZI;;Zn—
erature of adaptive filtering that relate to both kinds of analysegé '

MS and a.s. analyzses. As examplesv-based studies, we nt on the st_ep SIZR. In_ general, it is nqt a simple task to
find an analytic expression for the learning curve or for the

may cite [7]-{9], [15], [17], and [19]-[21] and for a.s.-based teady-stateMSE, except when the assumptions ioflepen-

studies [12], [14], [16], [18]. In some of these works (.g., [14jence theor|1]-[6] are used. In this framework, we assume
and [16]), it is actually shown that both methods of analyshg e following: ' '

provide the same estimates for the rates of convergence of an i) The input sequencéx,,} is independent
adaptive filter when the step size is vanishingly small and that ii) The noise sequenc@(h)} is independent.

(at least for scalar systems) stability in thtS sense implies iil) The noise sequence is independent of the input sequence
stability in the a.s. sense [12]. Still, the emphasis so far in the q P P q )

literature has been on the similarity of both approaches for ve{R?Spite the fact that these assumptions are seldom satisfied in

ishingly small step sizes. This paper focuses on the interestﬁlgcnce’ it is known that the learning curves that are obtained

phenomena and differences that arise when larger step sizes[ 3red the independence theory are good approximations for the

; . rue learning curves when the step sjzés vanishingly small
used and on how to interpret these differences. (see, e.qg., [7], [8], and [15]). However, what about the case of

larger step sizes?

There have been studies on the evaluation of the exact
learning curve in this case. For example, if the correlation of
The purpose of the examples in this section is to demonstréte sequencéx,,} is zero for large lags (i.e., if there exists a

that for larger step sizes, there exists a noticeable differerfagte /N. such that the correlation of,, andx; is zero when
between learning curves derived fradSE analysis and en- |k — n| > N.), [20] and [21] discuss a method to analytically
semble-average learning curves, even when the latter are cewaluate the learning curve bMS filters that is exact for any
structed by averaging over a large number of repeated expstep size: > 0. Unfortunately, this method is computationally
ments. Later in the paper, we will show that this phenomendeasible only for small filter lengths (at most/ = 6 or 7,

has an analytical justification and that (for noiseless filters) depending on the correlation of the regressor sequence) since
cannot be completely removed by indefinitely increasing this complexity grows extremely fast with the filter length. The
number of repeated experiments. We will also show analyticaltyethod also requires a detailed knowledge of the statistics of

2

MSD curve 2 E|jw. — w,||? 1)

Il. SIMULATIONS AND MOTIVATION
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Fig. 1. Learning curves computed by simulation and theoretically with Gaussian iid idguts,10, ¢ = 0.08, andL = 100.

the regressor sequende,, }, which is usually not available. [25], which use 10-20 independent experiments, and [24], [27],
(We may remark that [22] studies the case of large filter lengthsd [28], which use 100 independent experiments).

and derives a computable lower bound on how large the stegHowever, what about larger step sizes? \BHLC'’s still pro-
size can be for stable mean-square performance.) vide good approximations for the actual learning curves?

B. Ensemble-AvageLearning Curves C. Examples

Therefore, for many situations of relevance, there are no pracConsider a lengttld = 10 LMS adaptive filter operating
tical ways to evaluate the exact learning curve of an adaptiwith Gaussian inputs with covariance matfix,, x} = I, step
filter. For this reason, it is common practice to estimate trgizey = 0.08, and no noise. The learning curve for this case was
learning curve by experimentation or by repeated simulatiormputed theoretically in [24]. In Fig. 1, we plot the theoretical
More specifically, we perform several independent experimeritgrve over the first 500 instants of time, in addition toEakL.C
(or simulations), sayi. of them. In each of the experiments, thdéhat is obtained from the averagebf= 100 simulations. Note
LMS algorithm is applied fofV iterations, always starting from how both plots are close to each other.
the same initial condition and under the same statistical condi-Consider now the sameMS filter of lengthA7 = 10 but with
tions for the sequencdg(n)} and{x, }. From each experiment the larger step size = 0.16 (and noise variance? = 10™*).

i, asample curvée®(n),1 < n < N} is obtained. After all. ~ Since the independence assumptions are satisfied in this case, it
experiments are completed, an approximation for the learniisgpossible to compute the learning cuie(n)? exactly, as fol-

curve is computed by averaging as follows: lows [3], [4]. Let the input covariance matrix B 2 Ex,,xZ.
I Under the conditions of the examplg,= I. Define further the
Ee(n)? = E(n) = 1 > eDm)?, 1<n<N. weight error covariance matrit,, 2 Evw,w. With these def-
L4 initions, theMSD and MSE are given byE||w,||*> = TrC,

andEe(n)? = Tr(RC,,) = Tr(C,,), where T(-) stands for the
trace of a matrix. That is, for this example, both ¥18D and
theMSE depend only on the diagonal entries(¢f. Moreover,

it is possible to find recursions for these diagonal entries that
%o not depend on the off-diagonal entries in the following way.

E(n) is referred to as arnsemble-avage learning curve
(EALC).

Although itis less common, we can also plot M&8D versus
time. We will normally refer to this plot also as “the learnin
curve,” or as théMSD learning curveif we need to distinguish Define the vectors
between the plots for th®ISE and for theMSD. The MSD
EALC is L, 2[(Cs (Coan - (Co)am]®

2 L& 1 - 1t
1<n<N.

7

L
~ R 1 iy
E|l¥e|? & D(n) = 7 3 ||
i=1

and the matrixd 2 I — 2uR + 2;2R? + u?LLT. Then, the
For vanishingly small step sizes, it is known [7], [8], [15] thafliagonal entries of’;, satisfy the recursion

an average ofa few tens of experiments is enough tp ob?aln ex- T, = AT, | + i20°L 3)

perimental learning curveg(n) that are good approximations

for the actual learning curve (we will also give an analytical jugvith initial condition

tification for this fact later in Theorem 2). It is thus common in Lo = [(601)° -+ (o))"

the literature to use the average of a few independent repeated 0= L\F0.L 0.M

experiments to predict or confirm theoretical results by meanderew, ; is theith entry of the error vectow,, which is as-

of simulations (a few relatively recent examples include [3]Jarslmed deterministic.
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Fig.2. Learning curves computed by simulation and theoretically with Gaussian independent input vectors, Gaussiansgise Witit*, M = 10, 4 = 0.16,
L =100, andL = 10%.

In Fig. 2, we plot the resulting theoretical learning curveccur even when divergence M\SE analysis is expected,; faster
Ee(n)? as well asEALC’s computed overL = 100 and convergence can occur even when slower rates are predicted by
L = 10 000 simulations, all with step sizg = 0.16 (whichis MSE analysis; the averaged curves and the theoretical curve es-
twice the value of the step size used to generate Fig. 1). sentially coincide during the initial training phase but separate

Note how the simulation curves are now noticeably far (artlereafter, which indicates the existence of two distinct rates of
most of the time) below the (smooth) theoretical curve, althouglonvergence: a slow one initially and a faster one later). These
the simulations get closer (but not close enough) to the thetifferences can lead to erroneous conclusions when we attempt
retical curve ad. is increased from 100 to 10 000. Note alsdo predict performance from simulation results. One interesting
that the simulation curves converge faster than the theoretitadt to stress is that these differences may occur even for very
curve. This situation should be compared with Fig. 1, whetarge L.
an almost-perfect agreement was obtained between theory ankth the next section, we explain the origin of these effects by
simulation (in fact, had we computed more iterations in Fig. focusing first on the scaldtMS case, which serves as a good
a distinction between the theoretical curve and the simulatiodemonstration and helps highlight the main ideas. In a later sec-
would have been observed as well, just as in Fig. 2). tion, we extend the analysis to the vector case (see Section V).

When the independence assumptions do not hold, these®fe reason why we distinguish between the scalar and the vector
fects still occur, as we show next. Assume now that the inpcises is that more can be said in the former case, and the anal-
vectors{x, } are not iid as above but have a delay-line strugsis methods are also more explicit (and in closed form).
ture of the formx,, = co{a(n),a(n —1),...,a(n — M +1)}.

The results of [20] and [21] can be used to obtain, analytically,  ||]. THEORETICAL ANALYSIS IN THE SCALAR CASE
the learning curvéZe(n)? for small values of\. In Fig. 3, we

plot this theoretical curve, as well as ensemble-average curveé‘ simple model is used in th|s sec.tlon to explain the differ-
for I = 100 to L = 10 000, with filter length M = 2, step ences observed between the simulations and theoretical results.

sizey = 8.3, and, fora(n) iid, uniformly distributed between More SpeCiﬁCa"y' we StUdYth.e scathS_recursi_on with inde-
—0.5 and 0.5. With this value qf, the actual learning curve pendent and identically-distributed stationary inp{xs, } and

Ee(n)? can be shown to diverge (and we observe in the figuf§'®N0IS€- Thus, assumidg = 1, we obtain a single-tap adap-

that it indeed diverges). However, the simulations show the ethv—e filter with update equation of the form

semble-average curvé¥n) converging [see Fig. 3(a)] for var-
ious values ofZ. Notice further that for increasing, the en-
semble-average curve stays closer to the actual learning curve e(n) =y(n) — Xy win_1 4
for a longer period of time toward the beginning of the simula- .
tion—although the curves ultimately separate afterwards, wiff1ere all variablegw.,, x,, ¢(n)} are now scalar valued. Re-
the theoretical curve diverging and the ensemble-average curgl that the weight error vector is denotedy, = We = W
converging (no matter how lardeis). We will explain this fact which therefore satisfies the recursian, = (1 — jix; )Wn—1.
analytically (for iid sequences) in Section IlI-F. . .

The simulations presented so far show that the behavior/df Condition for Mean-Square Stability
the ensemble-average curves may be significantly different thanWe first determine conditions on the step sizior the above
that of the theoretical learning curves (e.g., convergence aame-tap filter to be mean-square stable, i.e., for the variance of

W, =Wp_1+ [,LXnC(TL), y(TL) = XnWy
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Fig. 3. Learning curves computed by simulation and theoretically with tap-delayed input védtoss, 2, © = 8.3, and (a)L = 100, L = 1 000, and
L =10 000. (b) Theoretical curve anfi = 100 only. (c) Theoretical and: = 1000 only. (d) Theoretical and. = 10 000 only.

W, Ew?2, to converge to zero. This is a standard step in meanvoke later—in the discussion following (12)]. We summarize

square stability analysis. the above conclusions in the following statement.
We start by squaring both sides of the abbMS errorequa-  Lemma 1 (Mean-Square StabilitylConsider the scalarMS
tion to obtain algorithm (4) with stationary iid input§x,, }. Assume also that
2 o the noise is identically zero. The#w? tends to zero if, and

~2 2
Wi = (L= )" Wiy ®) only if, the step size: is such thain(Fu) < 0. O

L. . . . . .. i 2 252 H 2
This is a stochastic difference equation relating two positive Consider now the square errefn)® = x; w;,. Sincex;, is

> > - . . : H a2 2 _ 52 i
quantitiesw? andw2 . The relation between both quantitiesStationary and independent of,, Ec(n)® = o2Ew,. This
is a random multiplicative factor, which we denote o Implies thatthe behavior de(n)” is the same as that div,,

. 212 Not tﬁ o ' i 't:‘ml’ll) ~ i.e., Ee(n)? will converge whenEw? does, and the rates of
(1—px2)*. Note that from our assumptions éR,, }, it follows convergence will be the same.

that theu(n) are iid. To simplify the notation further, we also

denotey,, 2 w2. In our simplified notation, the recursion (5)B. Behavior of a Sample Curve

becomes Our experiments in Section Il showed that there is a clear dis-

Y, = u(n)Y, 1 = You(Du(2) ... u(n) (6) tinction betwe%n the plots df'Y,, and of the ensemble-average
_— i . o curve(1/L) S5 v, We explain this fact in this section.
where the initial conditiorty = w§ is assumed deterministic. We focus first on the behavior of a typical (single) culve

As mentioned above, we want to determine conditions undgﬁd show that for large, Y, decays (or increases) at a rate
Wh'.Ch EYy cc;)n;]/er?es tr? zedro. For this pufrpfc:se, we dent?te tgf‘gnificantly different than that aF’Y;,. We obtain this result by
Va”g“"e 2an the %urt 'Sr er moment of t .e regre.sgo ¥ studying conditions under which a typical curvg converges
o2 = Ex;,, andoy = Ex;,. From (6), and using the indepen+o zero with probability one (or aimost surely). Later, we will
dence of the{u(i)}, we then obtain show how this effect manifests itself when several such curves

EY, = (Bu)"Yy = [1 — 2u0s + pi20a]" Yo (7) ae averaged together to yield an ensemble-average curve.

We start by computing the logarithm &F, in (6)
where we are denoting the iid non-negative variablgsgener-

ically by « (their expected value is equal o = 1 — 205 + Y, =lnYy + zn: In (i)
1?o4). From the above equation, we conclude that, will ’ =

converge to 0 if, and on!y e is such that the mean af is which shows that the differenéeY,, —1n Y; is equal to the sum
strictly less than 1. We will refer to the resulting rate of conver-

gence ofEY, , viz., Eu = 1 — 2ucs + 204, as theMis rate of of n ||d_ random varla_bleilll u(i)}. We assume for now _that
: . " the variance ofu u(¢) is bounded (Theorem 2 gives conditions
convergenceror ease of comparison with a later condition [se .
; . : . . or this to hold). Therefore, we can use the strong law of large
(12)], we will rewrite the requiremerffu < 1 in the equivalent

form (in terms of the natural logarithm) numbers [29] to conclude that

InY, as. A
In(Fu) < 0. (8) =

= E(lnu(é))

- E(lnw) 9

Observe further that the logarithm of tihS rate of conver- where a.s. denotes almost-sure convergence. That is, for large
gence is equal ton(Ew) [which is a result that we will also », (InY;,)/» will almost surely converge to a constafiin .
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[We will evaluate E(In) for different distributions in Sec- after (8)]. We will refer to the above rate as the. rate of con-
tion 11I-D.] We now need to translate the above result directlyergenceThe following theorem has thus been proven.
in terms ofY,,, instead of its logarithm. To do so, we must find Theorem 1—A.S. Convergenc€onsider the scaldrMS al-
how fast the convergence @i Y;,)/n is to its limit. We use a gorithm (4) with stationary iid inputéx,, }. In addition, assume
result from [29, pp. 66 and 437], stating that that the noise is identically zero. Then, with probability one,
there is a finite constarf (dependent on the realization) such
InY, —InYo —nE(nu)\ _ that(n, w2) stays inside the s€ defined above for alt > K.
1/2 1/2 = \/Qalnu a.s. (10) . . -0 .
n'/2(lnlnn)t/ In particular, a typical curvev; converges to zero with prob-
. ] ability one if, and only if, £In« < 0 (which is equivalent to
wheres , denotes the variance bf u, which we assumed to Eln(l — px2)? < 0). 0
be finite (see Theorem 2). Relation (10) can be interpreted asye may remark that there are related works in the literature
follows. Denote by the experimt_ant of choosing a regressor S@nat have studied the a.s. stabilityld¥1S (e.g., [12], [14], and
quence{x, },~, . For each experiment, compute the resulting 18]y or even of continuous-time systems (e.g., [10] and [11]).
sequencé’,(w) for all n > 1 (starting always from the sameThese works, however, do not emphasize digtinctionsthat
initial condition Yo). Then, the statement (9) thali Y,,)/n  grise betweeMS stability and a.s. stability, nor do they note the
converges t& In(u) a.s.” means that the set of experiments jpjications of these differences on the behavior offi#é.C's
1Y, (w) of adaptive filters. Reference [14] obtains condition (12) but
Z = {w such that—">~~ — Eln(u)} compares the a.s. aMS notions of stability only for, =~ 0
" when they in fact agree, thus proving by means of different tools

has probability 1. Moreover, (10) implies that with probability? version of Theorem 2 further ahead for ergodic signals (and

one, there exists for each experiment a finite positive numb@f considerably larger values gf). Therefore, while the em-
K(w) (dependent on the experiment) such that forsall> phasis so far in the literature has been mainly on the similarity
K(w), the corresponding cunv, (w) satisfies — of the a.s. andMS methods of analyses for vanishingly small

step sizes, we will instead focus on the phenomena and differ-
InY,(w) = nE(Inw) +InY, + 6(n) ences that arise when larger step sizes are used.

lim sup

n—0o00

where the errofi(n) satisfies C. Comparisons

Comparing the statements of Lemma 1 and Theorem 1, we

6(n)] < V2013,n"*(Inlnn)*/2, see that there is a fundamental difference in the conditions re-
_ quired for convergence in both cases. The lemma showbiBat
We stress thak(w) depends on the experiment convergence requires the step siz® be such thaltn Ev < 0,

~ Therefore, (9) and (10) imply that with probability one, a typwhereas the theorem shows that a.s. convergence reguices
ical curve(n, Yy, (w)) will eventually enter and stay inside thepe such that Inu < 0. The two conditions are not equiva-

set lent, and in fact, one implies the other since, for any non-neg-
ative random variable; for which F« and £lnw both exist,
0= {(n,y(n)) ty(n) < YoenBinuey2nin(nn)on . } : it holds thatE(Inw) < In(Ew). (This result follows directly

(11) from Jensen’s inequality since the functipaln ) is convex;
In other words, fom large enough, a typical curvg, (w) will  see, e.g., [29, p. 14]). Therefore, valueg:dbr whichMS con-
be upper bounded by the curygenZ nuey2nIn(lnn)om. The vergence occurs always guarantee a.s. convergence while the
convergence df,, (w) to the above set, however, is not uniformconverse is not true. A value for whi¢h £« > 0 (and, thus,
Thatis, there imofinite Ky such that for almost all experiments MS divergence occurs) can still guarantee a.s. convergence, or
(n,Y.(w)) € ©forn > K. Elnu < 0, which explains the phenomenon in Fig. 3.

Now, sinceF In« does not depend on the time the first We will elaborate more on these distinctions in the sequel and
exponential in (11) dominates the second whéslarge, which explain how they can be used to explain the phenomena that we
implies that the upper bountc™Znuev2n nlnn)on « tands observed in the simulations in Section Il. For now, however, we
to zero if, and only if,E(lnu) < 0. We thus conclude that a show that these distinctions disappear for infinitesimally small
typical curve,, converges to zero a.s. (or with probability oneftep sizes (whichis a fact that does not depend on a specific input

if, and only if, the step size is such that signal distribution). Although, as mentioned above, a version of
this result for infinitesimally small step sizes is presented in [14]
Elnu <0. (12) forergodic signals and for larger valuesihfwe provide in Ap-

pendix A an independent argument under different assumptions
This leads to a different condition gnthan the one derived for by using a sequence of integration results. (We remark that the
mean-square stability in (8). In addition, note that for lange requirement on the probability density function in the statement
when (n,Y,,) is already close to or insid@, the rate of con- of the theorem below is not restrictive, and it does not rule out
vergence of a typical curvg, is dictated primarily by the term most well-known distributions.)
e"Flnu This implies that for large, the logarithm of the rate  Theorem 2—Rates of Convergence for SmallLet p(z)
of convergence o¥;, = w2 is given by Elnw [which should denote the probability density function of the iid regressor se-
be contrasted withh Fu in the mean-square analysis case riglguence{x,, }. Assume there exist constariis< oo andg > 6
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Fig. 4. Graphs o In(1 — px2 )? (continuous line) anth E(1 — px2)? (broken line). (a) Uniformly distributes,,. (b) Gaussiax., .

such thatp(z) satisfiesp(z) < 1/2° for |[#z| > B. Then, the  Fig. 4(a) compares the plots &fln « (the continuous line in
quantitiesE In(1 — px2)?, var(ln(1 — px2)?), andln E(1 — the figure) and ofn(E£u). Note that both plots are close together

px2)? exist, are finite, and satisfy for smallj.r (as predicted by Theorem 2), but they become sig-
) nificantly different agu«? increases. In particular, they are quite

Eln(l - uXi) = —2po2 + o(j) different at the minima of each plot (which correspond to the
InE (1 _ uxi)Q = —2u0s + o{p) fastest rates of convergence from & and a.s. convergence

points of view). In the ranges gfa? for which the curves are
whereo(y) is a function satisfyindim, .o o(z)/p =0. O significantly different, the rate of convergence of a typical curve
The theorem therefore shows thafn « andln Eu are ap- Y, will be significantly different than the rate of convergence of
proximately the same whenis infinitesimally small. This ex- EY,, (for largen).
plains why learning curves arieALC's tend to agree reason- With this result, we can explain why the ensemble-average
ably well for such small step sizes. However, we are particulardyrves computed for small step sizes are close to the “theoret-
interested in explaining the discrepancies that arise when larggai” predictions usingsw?2 and why these plots are so different

step sizes are used. for larger step sizes. For sufficiently small step sizes, the rates
of convergence of botl'w? andw? are, with probability one,
D. Some Examples very close; therefore, we expect that an average of a few simu-

We now provide two examples showing that for larger stdptions will produce a reasonable approximation £ . For
sizes, the difference betweéHn « andln Eu can be consider- larger step sizes, and for large however, the rate of conver-
ably large. In particular, the difference can be large around taence ofw? is significantly different (and faster) than that pre-

step size that achieves fastest convergence. dicted by (7). Thus, we should expect to need a larger number
Assume first thak,, is a uniform random variable with valuesof simulations to obtain a good approximation ##.. This
in the interval—a, ). For this input distribution, we have, = latter point will be better clarified by the variance analysis that
o?/3 andoy = «*/5 so that we provide in Section IlI-F.
Another interesting observation is thin « is negative well
mEuv=E(1- uxi)Q beyond the point wher( Ev) becomes positive. This implies

4 that there is a range of step sizes for which a typical ciofye
) . converges to zero with probability one btit,, diverges. This
explains the simulations in Fig. 3. This is not a paradox. Since
We can also evaluatE ln« as a function ofua? explicitly the convergence is not uniform, there is a small (but nonzero)
and obtain the equation shown at the bottom of the page.  probability that a sample curdg, will exist such that it assumes

2
= ln<1 — 2u% —i—/fa

5

4 .
In(1 — pa?)? + —— arctanfja/i) — 4, if pa? <1
_ /i
Flnu = A
In(1 — pa®)? + —— arccotlfa /i) — 4, if pa® > 1.
(1= + = arccotio /)
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very large values for a long interval of time before converging t& Variance Analysis
zero.

Assume now thak,, is Gaussian with zero mean and uni;
variance so that; = 1, andoy = 3. Then,EY,, = (1 — 2u +

The a.s. convergence analysis of the previous sections estab-
ishes that for large enough time there always exists a differ-
oo - " ) ence between the ensemble-average curve and the true-average
3p%)"Yo. We computed In(1 — pix;, )* numerically (using the ¢ ;ve and that this difference is explained by the fact that the

symbolic toolbox in Matlab), obtaining the results shown in ., ergence rates of both curves are distinct. In view of this,
Fig. 4(b). Note, again, holn Eu and£'ln u are approximately \ye il say that the a.s. analysis helps us explain the distinction

equal for small:.. Aninteresting fact that appears here is that thg.nveen both curves for large time instants
value of . that achieves faste8S convergence is noticeably If we, however, re-examine the curves of Figs. 2 and 3, we see

sma_lllertha_m the step siZt_a that_ achieves fastest a.s. CONVErgeRcs for smalln (that is, close to the beginning of the curves),
In dlstnbutl_ons with heavier tails (such as the exponential), thigare is usually a good match between the learning curve and
difference is even more pronounced. the ensemble-average curve. Put another way, we notice that
_ ) ) the rates of convergence of the true learning curve and the en-
E. Differences Between Theory and Simulation semble-average curve tend to be identical for these initial time
The above results can thus be used to understand the distants. Only for later time instants, do the rates of convergence
ferences between theoretical and simulated learning curvesfecome different as predicted by the a.s. analysis.
larger and for larger step sizes. Indeed, {e;}£ ; be L in- To explain this initial effect, we rely on a different argument
dependent experiments with the corresponding sample curtkat employs Chebyshev’s inequality. We start by evaluating the
{Y,.(wi)}. We know from Theorem 1 that for each curve, thereariance oft;,, varY;,, rather than its mean (as in Section Ill-A).
exists an integeK (w;) such tha®’, (w;) will remain inside the Thisis because we will now study the evolution of the following
set® for all n > K(w;). In particular, if the step size is suchratio:
that £ In(1 — px2)? < 0, then this means that with probability e
one,Y,, (w;) will be converging to zero for alb > K (w;). p(n) 2 };a;Yn
Now, let ¥, = (1/L)Y1, Y,(w;) be theEALC. Since n
(n, Y, (w;)) staysinsidé forn > K(w,), (n, ¥, ) willalso stay which we stress is a function of the time instanthat is, with
inside® for n > K = max; K(w;). This means that eventuallyeachn, we associate a valugn). We claim that for values
(for large enough), all EALC’s will stay far away from the av- of n for which p(n) <« 1, the average valu&’y,, will be a
erage curveél’Y,,. This is because the actual average cut¥g, good approximation for the values of the sample curyeat
and typical sample curvas, will converge at different rates for these time instants. To see this, assume ghaj = 0.05 for a
largen (one rate of convergence is dictatedliy®w, whereas particular value ofi. Using Chebyshev’s inequality [29, p. 15],
the other is dictated by 1n u). we obtain
Thus, we can say that the a.s. analysis allows us to clarify 1 (n)2(EY,)?
what happens when we fik (the number of repeated exper- p {|Yn —EY,| > —EYn} < p”—"Q —0.01.
iments) and increase (the time variable). The ensemble-av- 2 0.25(EYy)

erage curve tends to separate from the true average curve-lfmS means that we have a 99% probability thatwill be in
increasing due to the difference in the convergence rates. interval[0.5EY,, 1.5EY,] ’

On the other hand, the more S|mula_t|ons we average, t &ow, when we formEALC’s, we average several sample
larger we expeck to be; therefore, the difference between th8urvesY to obtain
ensemble-average curve and the true average will be significant "
only for increasingly large.. That is, the more we average, . L ‘
the longer it takes for us to see the difference between the Dn)==> v
ensemble-average curve and the true-average curve. We will i=1
explain this fact more clearly in Section 1lI-G by means o . . .

pa : yn - y . “Assuming that we usé independent experiments, then the ex-
a variance analysis. We summarize these conclusions in the ;. o . .

. pected value oD (n) is still equal toEY, . The ratiop(n) that is
following statement for ease of reference.

Lemma 2—A.S. AnalysiConsider the scalakMS algo- associated with the curvd€'Y,,, D(n)} will then be given by

rithm (4) with stationary iid inputs{x,,}. Assume that the
noise is identically zero and that the distribution:ofs such
that Elnuw < InFEwu (i.e., strict inequality holds). Then, the
following conclusions hold. )
1) Ifwefix L, thenfor large enough, the ensemble-averageWhere the variance dP(n) is equal tolvarY,,)/ L. This implies
curve will be noticeably different from the true-averagéhat
curve due to different rates of convergence. -
2) The more we average (i.e., the larger the valug)othe P ) = varD(n) _ ) (14)
longer it takes for the difference between the ensemble- EY, VL

average curve and the true-average curve to be notice . .
9 9 c1‘hat is, the process of constructiBg\LC’s reduces the value of
2Matlab is a trademark of The MathWorks, Inc. p(n). Therefore, if we choosg large enough, thEALC should

(13)

S

varD(n)

/ —
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Fig. 5. p(n) computed fopr = 0.001, 0.01, 0.1, 0.25, and0.4.

be a good approximation fdrY,, at those time instants wherewe conclude that, > »3 (with equality only ifx? is a constant

o' (n) is sufficiently smalk with probability one). Therefore, except for this trivial case,
Thus, a smalp(n) is desirable to conclude tht, or D(n)is  p(n) is strictly increasing, and thuln,, ... p(n) = +o00. We

close toFY,,. However, it turns out that the ratjgn) increases have thus proven the following lemma.

with » (and thusD(n) approximatestY;, less effectively for ~ Lemma 3—Variance af,: Assumer, andr, defined above

largern, which is consistent with the results of our a.s. analysisre finite and that the initial conditiow, to the scalat MS al-

To see this, we evaluatBY,? gorithm (4) is deterministic. Then, the ratign) between the
standard deviation of,, and EY,, is either 0 for alln or is

EY? = (BEv®)"YZ strictly increasing withn and tends to infinity as: tends to
= (1 — dpos + 6404 — ApPog + ptos) Y infinity. |

Note that from our assumption theg is deterministic, we ob-
whereog 2 Ex® andog 2 Ex% are assumed finite. Define?amp(o) = 0.Ingeneral (fo_r step sizes forWh'G.hl converges
further in theMS sense)p(n) remains small for some time, which im-
plies (via Chebyshev’s inequality) the, is well approximated
by EY,, whenn is small. We give below examples of the be-

R N 2 4.3 4
ra = But = (1= dpoy + 6oy — 4o + 1ihos) havior of p(n) for two different input distributions.

4 2
re = Eu = (1 — 2p09 + p o). (15) 1) Binary inputs. We first give a simple example for which
p(n) = 0. Assume thak, = 41 with probability 0.5.
With these definitionsp(n) is given by Then,u(n) = (1—u)? isa constant, and thuk, = EY,,.
In this trivial case, we have, = /% = o3/® = o2/*,
piny = Y7L [ (16) andp(n) = 0 for all n.
Ty r3m 2) Gaussianinputs. Letx,, be Gaussian with zero mean and
unit variance so thats = 1, o4 = 3, 0g = 15 and
Now, since og = 105. We plot the value op(n) for several values
of pin the ranged < u < 2/3 = 202/04 in Fig. 5.
0 <varY; = EY? — (EY;)? Note howp(n) grows increasingly quickly gsincreases.
— (B)YZ — (Bu)?Y? In addition, note that the rate of increasepéf.) is very

small forp ~ 0.
— 7,4%2 _ T%y;)? 2
SAlthough a smalp(k) implies thatY, ~ EY} andD(k:) ~ EY,, alarge

p(k) does not implyhat the differencéy;, — EYy| or|D(k) — EYi| should G Two Rates of Convergence
be large with a significant probability (but it does hint that this may be the case(gj. 9

For example, take a random variablsatisfying Let us consider again the differences between theory and sim-
ulation. Assume that we fix the time instantand compare the
values ofEY,, andD(n) at that particular time instant for dif-
ferent values of.. We know from the expression fof(n) that

In this caseE'z? = 0.0101 andEz = 0.0110, and thusp = 9.1. Despite the the larger the value ok is, the smaller the value ¢f (n) will

large value op, |z — Ez| < 10—% = 0.1E= in 99.99% of the realizations. be. Hence, the more we average, the closer will the value of

o { 10, with probability 10—
7 1102, with probability0.9999.
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f)(n) be to that ofF’Y,,. That is, the closer will both curves be Subtractingw.. from both sides of theMS recursion (2), we
at that time instant. This again confirms an earlier conclusiorobtain the error equation

in Lemma 2, viz., that the more we average, the longer it takes

for us to see the differences between both curves.

Another major conclusion that follows from the a.s. and variFhen, we have
ance analyzes is that thévS recursion exhibitéwo different R ™ ~ T T
rates of convergenceven for single-tap adaptive filters) At “7%Wn = (= 1) Woma Wiy (1 = paxy,) - (19)
first, for smalln, a sample curv&, is close toEY,, and, there- Taking expectations and using the independence,ofrom
fore, converges at a rate that is determinedidy ».. For larger w,,_;, we obtain
n, the sample curvi,, will converge at a rate that is determined
by In Eu. p " g Cn = Cn—l - NRCn—l - NCn—lR

We can now justify our sixth claim in the introduction, viz., + i°E (XnXZCn—lanZ) (20)
that the knowledge that an adaptive filter is a.s. convergent d%ﬁ’ere the last expectation is in general difficult to evaluate in

not necessariily gl_Jarantee satisfactory p.erformance. Thus, @8sed form, except when the entriessof are mutually inde-
sume that a filter is a.s. stable but tha8 is unstable. It fol- ohqene To address the above general case, it is necessary to
lows from our analysis that a learning curve will tend to divergg, \\, 4f the fourth-order moments and cross correlations be-
in the first iterations (by following the divergent mean-squargeen the entries of,,. Assuming that these fourth-order mo-

learning gurve), and only after amknownnterva! of time will _ ments are known, we can simplify (20) using Kronecker prod-
the learning curve start to converge. In simulations, we ”Ot'cﬁgts as we now show.

that the estimation error may reach quite large values before]-he Kronecker product of two matrices € IR™«*"« and
starting to decrease again. Therefore, the performance of an B8 Rmxm i defined as [30]
stable filter need not always be satisfactory in applications.

Wi = (I — pxXnXE) Wi 1. (18)

alle s a17naB
IV. THEORETICAL ANALYSIS IN THE VECTOR CASE A®B = : : . (21)

In this section, we extend the ideas presented above to larger Um, 1B - Gmyn, B
filter lengths. It turns out that the behavior of thilS algorithm  This operation has several useful properties, but the one that in-
for filter lengthsAf > 1 is richer than what we saw in the scalakerests us is the following. Define the symbol (¢ to repre-
case and is (except when the step size is vanishingly small) veant anm,n, column vector formed by stacking the columns
dependent on the actual input distribution. Therefore, the exastthe matrixA one above the other. L6t = AX B, whereA,
ples shown in this section cannot be exhaustive, i.e., the exaBy-andX are matrices of compatible dimensions. Then, the fol-
ples do not show all possible kinds of behavior—but they dewing equality holds [30, p. 254]:
illustrate the phenomena in which we are interested. As before, T
we will provide MS, a.s., and variance analyses. We start with veqC) = (B @ A)ved X). (22)

the latter and explain how to compute the varianciwf,||> in  Applying this property to (20) and using the independence of
the vector case (by generalizing the results of Section IlI-F). {x,}, we obtain

A. Variance Analysis veqC,) = AveqCroy) (23)

We continue to assume that the input sequencec IR} where
is iid and that the noise is identically zefe(n) = 0). The indi- Ay, = Ly — f(R@ Iny) — pllnr @ R)
vidual entries of each regressor vectyy, however, are not as- ) - i
sumed to be independent. The rat{a) is defined in the vector + 17 E (xnX,, @ XnX,,)

case as and I, represents the identity matrix of dimensienwWe thus
have a recursion for vé€,), which can be used to evaluate
(17) Tr(C,) and, consequently, the me&H|w,||.

In the following, we will often use repeated Kronecker prod-
whose computation requires that we evaluate both the mean H6t§, as i ® A® A. We will denote such “Kronecker powers”
the variance of|w,,||2. We consider first the evaluation of theasA“? = A ® A and similarly fork > 2.
mean. 2) Evaluating the Variance dffw,,||?: We still need to eval-

1) Evaluating the Mean dfé,.||?: Recall thatin Section II, uate the nymeQrator @f(n) in (17),_Which requires that we eval-

we computed||w,, || by finding a recursion for the diagonaluate va(||wy||*). We start by noting that

i — B wTl i = (12 — . . .
entries ofC,, = EWan and by using the fgct thd:_fHWnH = Vaf(||Wn||2) _ E||Wn||4 _ (E||Wn||2)2 (24)
Tr C,,. In that section, a recursion for the diagonal entrie€' pf _ _
was all we needed since we assumed that the individual ent@&sl that, as shown in Appendix B, we can rewiitgw,, |* as
of x,, were independent. When the entriexgfare notindepen- S LT\ ©2
dent, which is the general case we are treating here, the off-diag- Elwul” = £ Tr((w”’w”) ) '
onal el_emems of’, should enter into the recursion. Therefo_rev “Whenx,, is Gaussian, this problem can also be simplified and be reduced
let us first show how such a general recursion can be obtainedthe case of independent entries<p.

var(||wn|[%)
p(n) = =5
Ellw, |2
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Fig. 6. p(n), computed fotM = 2, ¢ = 0.25, and Gaussian regressor sequence Witk 1.

Using this result, we can establish the following recursion for Therefore, lee(®) represent théth basis vector, i.eqj(»z) =1

ved (w, wl)©2), if { = j and zero otherwise, and assume that the input sequence
Lemma 4—Recursion for Variance Calculatiolthe ex- {x,} is of the form

pected valueZ(w,, w1)®?2 can be computed from the recursion

Evec((ﬁvnﬁvg)m) x, =r(n)s (26)
B ({1 — T N pyec (v LW ®2 wherer(n) is a random variable with zero mean. The vestor

(( 1Xn X, ) ) ((W W, 1) ) is independent of(n) and satisfies,, = e with probability

2 0E vec((vifn_ﬁvf_l)m) ' (25) pi-In other wordsx,, may assume only one out &f orthog-

onal directions (a similar model was used in a different context
The above recursion allows us to evaluiew,, ||*, whichin  in [27]). Note that the entries of,, aredependenin this case.
turn can be used in (24) to evaluate g, ||*). Thus, in prin-  As we did before, we assume that the noise is identically zero.
ciple, we know how to evaluate the rafign) in the vector case.  With these definitions, the weight vectér,, is given by
A drawback of this method is that the matiidies inIRY " *M*
and it becomes difficult to solve the recursion of Lemma 4 ex-

n

plicitly for large filter lengths. If the entries of,, are mutually Wn = H (1 = pxix) Wo
independent, several elementsWbfvanish, and sparse matrix =1 N
techniques can be used to simplify the problem. — [ o eli\2sT (1)}

In any case, our recursions allow us to evaly#te) [as de- dlag{ZHl L-pr(ifsie™], ..
fined in (17)]. An example with Gaussian inputs ahd= 2 is n -
shown in Fig. 6 with the curve fgr(n) for R = I andp = 0.25. H [1 - ur(i)QS?e(M)} } Wo.
The value ofy: is chosen to be close to the value that achieves i1

fastest convergence @||w,,||? in this case. Notice that, as in

the scalar case, the simulation shaw(s) growing withn. It~ Using this relation, we can compufev,.||? ande(n)? as fol-
also shows that(n) assumes relatively small values at the bdows:

ginning of the simulation so that there will be good agreement

M n
between the actual learning curve and E®LC for smalln. -2 RO
o||” = 1— pur(i)ss; 27
Fig. 8 further ahead confirms this effect for filters of length 1wl ;i=l [ prii)sie } X 27)
M = 100. - n )
2 _ . 122 . 1= pr(i)2sT e 28
B. A.S. Convergence: Solution for a Simplified Model e(n) r{n+1)%00, Zl;ll [ pr(i)sie } (28)

As we mentioned in the scalar case, the variance analysis ex- N
plains reasonably well the initial behavior of tRALC, but it With probability p;. , - »
cannot predict the behavior for largeFor that, we need ana.s. 1) Méan-Square Analysistet £7(i)” = oy ,TarggEr(z) =
convergence analysis similar to what we did in Section I11-B. W& Since alls; andr(z) are independent ankls; et = p;, the
start by considering simplifiedmodel here that will show that MSD andMSE are given by
the effects we observed in the scalar case still exist in the vector M
case. It will also show that some new effects arise, especially Ellvw. |I2 n~2

. . o wWell” = 1-2 +

the sensitivity of the behavior of tHeALC to the direction of 1wl ;( HoapLt noapy) o,
the initial condition. In Section 1V-C, we will present a method M
of analysis that applies to more general models and inputdistri-  pe(p)2 = o, Zpl(l — 2p00p1 + poap)" 02, (29)

butions. —



1620 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 6, JUNE 2000

—-0.01

—-0.02

—-0.03

~0.04

—-0.05

H H H H
—0-085 ©0.005 0.01 0.016 0.02 0.025

Fig. 7. Graphs of£In(1 — pr2)? (continuous line) anth E(1 — x r2)? (broken line), fort'? distribution with 100 degrees of freedom.

These relations express tMSD and theMSE in terms of ex- that is, we choose&r,; = £1/+/M. In this situation, the norm
ponential terms that depend on the factdrs 2uo2p; +pospr),  of the weight error vector becomes
which are equal to

n

M
1 2
. eall? = — S TT [1 - wr@?sfe®]”  @2)
(1 — 2poap; + posp) = E [1 - W’(i)QS?ea)} . M ;E
where the distribution of each of the terms in the sum is exactly
€he same. This means thiak,,||? is, in fact, an average a¥/

(notindependent) scalar learning curves, each described by a

Therefore, theMS convergence of all the modes will requir
that . be such that

o 1 (]2 term of the form
InE [1 — pr(i)*stel )} <0 (30) n )
; dnt = H [1 - N7’(i)25;e(l)} dol, qog=1.
or, equivalentlyln E[1 — 2pypos +pip?oy] < Oforall1 <1< i}
M. - , . That is
2) A.S. Analysis:Consider now one of the products in (27),
ie.,

1 M
~ 2 -~
Whl|l” = — -
o 2 150 = 37 3
PET] [1 - /M’(i)QsZTe(l)} W2, _
ol ’ Therefore, we should expect the variance ||o¥,,||> to be

) _ ) smaller than that of each term in the sum [as we saw in (14)
Since this product has the same form as (5) in the scalar caggy in Section I11-E].

we can use our results of Section IlI-B to analyze its behavior. o the other hand, if (for exampleyo, = 1 andwo o, =

Evaluating the logarithm of;,, we can verify that -- = wo s = 0, then
InFj as 2T A (D 2 ) ” 2
- = Eln[l —pur(i)’s; e } %12 = H [1 - ur(i)Qs?e(l)} . (33)
=pmE W[l — pr(d)?] =t

Since there is no averaging effect in the computation of the norm
We thus conclude thata.s. convergence requires [in contrast vifymore, we should see exactly the same kind of behavior as for
(30)] the scalat-MS algorithm. For other values of the initial condi-
5 tion wo, we have an averaging effect between the extremes of
Eln [1 - m(i)%%”] <0 (31) (32) and (33).
In Fig. 7, we plot the curve& In(1 — x72)? andln E(1 —
or, equivalently,EIn(1 — ;i #(:)%)2 < 0. The distinction be- 1+?)” for a variabler? that is distributed as 4" variable with
tween conditions (30) and (31) highlights again the same pHe0 degrees of freedom (this is exactly the distributiofjyif*
nomenon that occurred in the scalar case, viz., for largge  if the entries of the random vectgr € IR'° are Gaussian in-
rates of convergence of the true learning curve andeiheC  dependent variables with unit variance). For a variabieith
will be distinct with the latter decaying faster. this distribution, we have, = Er? = M andoy = Er* =
3) Sensitivity to the Initial Condition:A new feature of the M? + 2M. Assuming thap, = p» = --- = py = 1/M, we
vector case is that the behavior|p¥,,||? is now dependent on conclude from (30) that
the direction of the initial conditiosv,. Indeed, assume for ex- 209 2
ample that all the probabilities are equal, i.ep;, = 1/M, and I E(L = o)™ = Inl = 2+ (M + 2)p). (34)
that all the entries of the vectev, are also equal. To further Summarizing, the above discussion shows thdtMs filter
simplify the discussion, we normaliag, so that||wp|| = 1, with lengthM > 1 and with input satisfying (26) will behave
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L L L ' ' L ' L . ! 1 " 1 ' L 2 n "
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

n n

Fig. 8. E(n)2 computed withL = 1000, M = 100 andu = 0.0042. The input sequence satisfies (26), afids a.X'2. (a) All entries of the initial condition
w are equal. (b) Only the first entry of the initial conditigf, is nonzero. The upper smooth curves &k&n)? computed theoretically, and the lower curves
are the rate of convergence predicted by a.s. convergence analysis.

in a manner similar to that of a scalaMs filter for which x,,  the previous section, we were able to determine the properties
has the same probability distribution:g®.) but with three main of each individual eigenvalue @ ®,,. In order to extend the

differences. analysis to more general input distributions, we study in this
1) The rate of convergence will now be smaller (dependirfgction the evolution of the determinan(éf. @,,), i.e., we now
on the values of the probabilitigs). study the product of the eigenvaluesiof ®,, and compare this

2) A single realization of the errdfw,.||2 will tend to be product with de# (¢} ®,,) since
close to its meark||w,||? for a longer time because of
the averaging performed when computing the norm (32).

3) The behavior of akALC is sensitive to the initial condi- 1) Mean-Square Determinant Analysi§he computation of
tion. det(E®1®,,) can be performed in the case of iid input regres-

Fig. 8 illustrates the above results for a filter with 100 tapsors{x,, } by using our recursion for vé€,,) in (23). Indeed
and such that? is ax’? with 100 degrees of freedom and mean

100. In Fig. 8(a), all entries of the initial conditiai, are equal, det(E®L ®,) = detk [(1 — px,x7 )
whereas only the first entryig ; in the initial condition for (I _ anXf) (I _ anXf)
Fig. 8(b) was nonzero. Both plots sh@&®LC’s computed with T
L = 1000. Note how the first simulation stays closefa(n)? (I = wxaxi)] -
for a longer time, as we predicted above. Note, however, thatd}, the other hand, from (20), we obtain
both simulations, th&ALC’s eventually tend to decrease with
the (fastest) rate predicted by a.s. analysis (which, in this case, C, = Ew, W = E [(I — px,x.,)
is equal to 0.9646, whereas the (slowest) rate predictdd Dy (I _ uxlell“) Co (I _ uxlell“)
analysis is 0.9905). p

(I — pxnxl)]. (35)

o ] ) ] The covarianc€’,, can be evaluated using Kronecker products,
. The analysis in the previous section assumed a special regtesy e showed in (23). We can use the same method to compute
sion sequencex, } [see (26)l. det E®,,®7) as follows. LetF), be obtained from (35) but with
Although restrictive, the resulting simplified model showeglg0 replaced by the identity matrix. Sinée, ! is stationary and

that the effects we observed in the scalar case still occur in the the order of the matrices in the product is irrelevant, and
vector case. We now provide an analysis that applies to genegal _ pg &7 Therefore. we have
n — nEn- ’

regression vectors,,.
Thus, using (18), we obtain det( E®, 9} ) = detF, (36)

W, = lﬁ (I — pxix])

i=1

E||W,|]> = Wi E (91 ®,,) wo.

C. A.S. Convergence: A Solution for General Models

Wo A &, o where ve€F,,) satisfies (with initial conditiorFy = T)

ved F,) = A, ved F,,_1)

where we defined the state-transition matbix. In the simpli-

fied model prior to (27), the matrise,, was assumed diagonal,with A,, defined according to the equation following (23).

which led to (27). Now, we getw,,||> = wi' @1 ®, wo. We will shortly present an example where the computation
The rate of convergence §#,,||*> will be dependent on the of det(E®,,®1") simplifies, and a simple formula for its rate of

modes (eigenvalues) @b ®,,. For the simple model (26) of convergence can be obtained.
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2) A.S. Determinant AnalysisThe determinant ob,, satis- larger step sizes (i.e., noninfinitesimal) to obtain faster conver-

fies gence. Our simulations and analyses show that in some cases,
n n it may be necessary to average a significantly large number of
det®,, = [ ] [det(r — pxix])] = [J(1 — llx:l1) simulations to obtain a good approximation to the mean-square
i=1 i=1 behavior of an adaptive filter. In particular, we must be careful

when analyzing ensemble-average learning curves.

Moreover, it follows from Section 111-G that the performance
of an a.s. convergent adaptive filter may be poor if the filter
is not alsoMS stable. Looking at these results from another

erspective, we might conclude that with larger step sizes, we
det(<1>n<1>,Tl) = H(l = ullxil1*)? ghouFI)d take into accgount both average and a.g. pointg of view for

=1 design purposes in order to get a clearer perspective.
which has the same form as a scadldS algorithm with input ~ We have proven our claims analytically and studied the be-

where we used the fact that the matfix- uxix;f hasM —1
eigenvalues at 1 and one eigenvalud at 1||x;||2. We then
obtain

n

sequencd||x, ||} so that havior of the scalakMS algorithm in detail. We also extended
1 the conclusions to the vector case and showed that additional
~Indet(®, L) *¥ Eln(l — ul|xi]|*)>. effects arise here.
n

Although our analysis was performed only for thklS al-
Therefore, all of our previous results can be directly applied tforithm, a similar behavior can be expected by some other sto-
this case. In particular, the rate of convergence gor divergeneghstic gradient algorithms.
of det®,, &< for largen is a.s. given by m(—xlx:1")* which
in general will be different than the rate obtained from (36). APPENDIX A
To explicitly find the a.s. rate of convergence, it is necessary
to know the distribution of|x,, ||?, which depends on the distri-

bution ofx,, itself. We consider a few special cases below. . . . /
o P Rre differentiable with respect toat;, = 0 and that both deriva-

For example, lefx,, } be iid and such that the entries of eac X o
vector are mutually independent and Gaussian with unit val'\\—’eS are equal at that point. Now, the derivative of the second

ance. We saw in the previous section that in this cisg}|? is unction evaluates to
distributed as a&’2 with M degrees of freedom. In this case, the d

2 -7
computation of de£®? ¢,, simplifies considerably, as follows: 4, In(1 — pos + poy) o L pont 2oy,

In this Appendix, we prove the statement of Theorem 2. We
do so by showing that botl In(1 — zx2)? andln E(1 — px2)?

E(I— pxixt)” = (1— 20+ (M +2)3)1. = 202
The evaluation of the other derivative is more involved and
will be obtained in several steps in the lemmas below. The first
det(E®L®,) = (1 —2u+ (M +2)p>)V". lemma proves thak In(1 — pz?)? is well defined for all: > 0.
Lemma 5: Under the conditions of Theorem 2, the expected
This is similar to the expression that we obtained for the simpljz|ye

fied model of Section 1V-B2 [see (34) and Fig. 7], except that oo

the factor(1 — 2+ (M +2)12) is now raised to the powe! . Eln(1—pa?)? = / In (1 — px?)?p(z) dx

This means that fol/ = 100, the plots of Fig. 7 (with the ver- —o0

tical scale multiplied by 100) also apply to this example. Notgyists and is finite for ali. > 0.

that this example and that of Section IV-B2 are in fact very dif-  pygof: Let§ be a posiﬁve constant such that, /7 + & >
ferent—in this sectiong,, may takeanydirection inlR* , unlike B, and split the above integral as

what happened in the previous example. It only happens that the

Since this is a multiple of the identity, d&t(®ZX®,,) reduces to

determinants have the same properties in both situations. 2v2 Vi 2v2

As another example for the computationffl — 1.|x. ||2)2, Eln(l = pa’)” = /_Oo (1 = pa”)"ple) de
assume that the entriesxf have the same (non-Gaussian) dis- Ly
tribution and are independent. In this situation, we can use the + v In(1— u$2)2p($) dr
central limit theorem [29, p. 112] to conclude that for large -
the distribution of|x,,||? will be approximately Gaussian with o 9vo
meanM o, and variancé (o, , — o2 ,)+ M202 ,, whereo,, , + /1 In (1 — pa”)"p(x) d

. : x, : : L 45

ando, 4 are, respectively, the variance and the fourth moment Vi
of each entry ok, This is true as long as both, » ando, 4 2 I+ 1+ Is.

are finite. _ _
Using the assumptions of Theorem 2, all three tefias/-, I3}

can be bounded. Indeed, using the assumptiorstiigip(z) <

. ) ) ] o0, we first have that
In this paper, we have shown that there are situations in which

; ‘s ciqnifi i =16
the actual behavior of theMS errors is significantly different L <2 <Supp(x)> /f In (1 — pa?)?| d.
x 0

V. CONCLUDING REMARKS

than that of their averages. These situations arise when one uses
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Now, by noting thafn (1 — pz?)? is nonpositive ifo < = <  Performing the change of variablgs= . /uiz, we further obtain
v/2/1 and positive otherwise and by evaluating the integral

- In(1 — )2
/ In (1 — pz?)? de pr/at v
o1 [ (%% |In0.75|
. ] < 2 2 3 d
we can conclude thdk is bounded. Consider next the tefm pl/aty Y
Using the fact thafl//in + § > B and the assumptions of > |In(1 — y?)? J
Theorem 2, we have + 05 P Yl -

I < /°° In (1 — pa?)? i By evaluating the above integrals, we can easily verify that
3 = - 3 .
L 45 X!
vE | In(1 — y?)?
/ A=) gy = 01, < 0

Sinceln (1 — px?)? <  for all positivez and3 > 6, the above 0.5 v
integral is finite. The first ternf; can be bounded in a similar 5,4
manner. O

With a small modification, the same arguments can be used 05 In0.75 _ _
g / | | dy = Crop~(/H0G=D 4 0
Iz

to prove that vaiE In (1 — pa?)?) is finite. RYPTSRYE
Having proved thak In (1 — p2?)? exists, we now show that
this function is differentiable at = 0. Unfortunately, we cannot for some finite constant§C1;, C12, C13}. Inequality (37) fol-

simply apply the formula lows from these results. o
Lemma 7: The inequality below is satisfied under the condi-
d o> . .
= In(1 — pa?)2p(x) da tions of the previous lemma.
#J oo
—1/4+7
(&S} 22 oo H
= / Mp(x) dx ‘—2/ @2p(x) de + / 222p(x) de
6o au —o0 —p— /A
_ _ _ _ < CopM/A=1(3=3)
becausén(1 — px2)? is not a bounded function, and its deriva-
tive is not integrable, except at = 0 [31, pp. 236—239]. We whereC, is a finite constant.
need to compute the derivative Bfin(1 — px2)? directly from Proof: Sinced > 6, we have
the definition, that is, we will show that
o LA
o2 In(1 - pa?)?p(a) da 2|— / 2p(z) dz + / ?p(x) de
lim oo Py
pn—0 2
<, Y R B Sy e
— (—22%)p(z)dx = 0. - Cp- 3" )

The computation of the above limit is carried out in the three
lemmas below. The first two results show that we can avoid the
;mgular points ak = +(1/,/n) by restricting the.|ntegrat|on °° [n(1 — pa?)? )
limits to —p /4t and /4, wherey < 1/4 is a small / [— + 2z } p(z) dx
positive parameter. e

Lemma 6: Assume that the conditions of Theorem 2 hold
and that is small enough such that 1/t > B. Then, there
exists a finite constan®; such that

Up to now, we have shown that for sufficiently small

p L/

o 2y2
/ [M + 23;2} p(z) dz
—p /At

+ O pl A=D1 4 0y (/4=1)(3=3) ()

<

‘ /Oo In(1 — pa?)?p(z) dx for some finite constanty”;, C» }, and0 < v < 1/8 (note that
—o0 the exponents gf in the above inequality can be made positive
if 3 > 6 by choosing a sufficiently smatl).
In order to bound the remaining integral above, we need
to find out the dependence om of the convergence of

—1/4+7

- /M In(1 — px?)?p(x) dx

—p— /At

< Cppt/A=nE-1, (37) (In(1— pa®)?/p) + 24% to zero ag, — 0. This is done in the
next lemma. o
Proof: Let A denote the expression on the left-hand side Lemma 8: The following inequality holds for alk: and
of the above inequality. Then, we can bound it by px? < 1/5:
A< 2/00 111(1 - N-TQ)Q dor. 0> M 42425 — 12.7}2 . (39)
= ) e z” L -1
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Proof: First, note that

In(1 — px?)? (40)

_ rp2\2/e
+orr =L
e~

We find a bound for this function by studying the convergence

of (1 —a/n)"toe™* asn — oo.
We begin our analysis by noting that the sequefice+
(1/n))" 1

2o IS strictly increasing and upper bounded by

142714272 4...4 2= Thisimplies that the inequality

below holds form > n

1\™ " 1 1
o<(1+=) —(14= =
<<+m) <+n) <

Taking this inequality to the limit as: — oo and dividing the
result bye, we have

(1+3)"

n

1> -,
e on—lg

(41)

Next, we translate this inequality to the cade— 1/n)™ by
considering the change of variables= —m — 1. Thus, note
that we can write

1+i rn_ 1_# —t—l_ 1+1 t 1+1
m) t+1 N t t
so that applying (41) to this relation, we obtain, far< —1

Lo 0+a)"

>
m+1 e
2771,—1—2
(-5
c
where the last inequality is true f¢m| > 5. Performing the

change of variables: = —n/a (for somea > 0), we further
obtain

1—2)7 =
1=

> 1.
-1 e

1+

Finally, raising these inequalities to the powes and taking
the logarithm, we find that
—aln[ 1 }
n_q

1—2)"
0>m|E=n) |
C a
Now, since for a small positive numberit holds that

2 &8

In(1 —e_
n(l+e =e¢ 2+3 < €

we get forn large enough

0>1In

Applying this inequality to (40) witlw = 222 andn = 2/, we
obtain the desired result (39). O
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With the above lemma, we can bound the remaining integral
in (38), as below. Assume that/?+2Y < 1/5. It then follows
from Lemma 8 that

—1/44+ 1 (1 )
‘/ n(l = + 23:2) p(z)dx
—1/4+7
*1/44’/
2 2
< <supp(a:)>/ T da.
x —p /Aty g — 1
Now note that
2z 2uat
ui‘z -1 11— pa?

so that in the intervals| < x~'/4t7, and for small enougp,
the above expression is smaller than

QNN—I-I—M B 2u4”/
1 — pp—1/2+2y T 1— pl/2+2y
Integrating, we get
M—1/4+-, 9 2
<supp(a:)> / T dx
x —p /Aty g — 1
2N—1/4+5w < )
< — 7550 | su x) ).
T e S e)

Substituting this result into (38), we conclude that all inequal-
ities are satisfied with positive powers ofif 5 > 6 (and
v > 1/20) so that

% /_Oo In(1 — px?)’p(z) do
= —2/ p(x) dr =

—202

which is our desired result.

APPENDIX B

Here, we prove the statement of Lemma 4. From (19), we
have

W Wi @ W, Wi

[(I J15:3% )W,, Wl (I X, X )]®2. (42)
This expression can be simplified using another property of
Kronecker products. For any matricds B, C, and D, it holds
that [30, p. 244]
(A BY(C® D)= (AC)®

(BD). (43)

(I = pxpxY)
I to obtain

Now, apply this property to (42) withh = B =
andC = D = w,,_ 1wl (I — ux,x
(VVHWTQ;)@Q _ T)®2

(1~ )]

(I — UX,X

X [Wn 1W
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) Commun., Contr., Compuytllerton, IL, Sept. 1998, pp. 242—-251.
®2 [23] J. Shynk, “Frequency-domain and multirate adaptive filterir@gnal
: Process. Mag.vol. 1, pp. 15-37, 1992.
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= (I — px, xD)? (W1 Wl

n

X (I — uxnxg)
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