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Abstract—In Part I [“Fast Transforms for Acoustic Imag-
ing—Part I: Theory,” IEEE TRANSACTIONS ON IMAGE PROCESS-
ING, vol. XX, no. YY, Month 201x], we introduced the KAT
(Kronecker Array Transform), a fast transform for imaging with
separable arrays. Given a source distribution, the KAT produces
the spectral matrix which would be measured by a separable
sensor array. In this Part II, we establish connections between
the KAT, beamforming and 2D convolutions, and show how these
results can be used to accelerate classical and state of the art
array imaging algorithms. We also propose using the KAT to ac-
celerate general purpose regularized least-squares solvers. Using
this approach, we avoid ill-conditioned deconvolution steps and
obtain more accurate reconstructions than previously possible,
while maintaining low computational costs. We also show how
the KAT performs when imaging near-field source distributions,
and illustrate the trade-off between accuracy and computational
complexity. Finally, we show that separable designs can deliver
accuracy competitive with multi-arm logarithmic spiral geome-
tries, while having the computational advantages of the KAT.

Index Terms—array processing, fast transform, acoustic imag-
ing, array imaging, regularized least-squares, sparse reconstruc-
tion.

I. INTRODUCTION

As described in Part I [1], array imaging requires solving the

inverse problem of finding the best estimate for a source dis-

tribution, given wavefield statistics sampled by a sensor array.

This is not a trivial problem, since in general one must rely

on arrays with less than one hundred elements to reconstruct

source distributions modeled with tens of thousands of point

sources. To obtain accurate reconstructions, regularization is

required to narrow the space of possible wavefields which

result in essentially the same data at the sensors.

Let S ∈ C
N×N be a narrowband sample covariance matrix

acquired using a planar sensor array with a separable geometry.

Let Y ∈ R
My×Mx be a discretization of the source distribution

at the same frequency. Assume for the sake of this argument

that the true source distribution is represented exactly by

Y, and that the sources are uncorrelated. If s = vec {S},
y = vec {Y} and A is the KAT presented in Part I, in the

absence of noise we have that Ay = s. The generic image

reconstruction problem then becomes

ŷ = arg min
y

‖Ψy‖ such that Ay = s, (1)

where Ψ is a sparsifying transform for y. For example, if Y

is known to be sparse in its canonical representation, then one

could consider minimizing ‖Ψy‖ = ‖y‖1, which turns (1)

into an instance of basis pursuit [2].

In the presence of noise, the constraint Ay = s no longer

applies, motivating the formulation

ŷ = arg min
x

‖Ψy‖ + µ ‖Ay − s‖
2
2 , (2)

which is a regularized least-squares problem.

The problem of seeking sparse approximations to under-

determined systems has received significant attention in the

recent years with the advent of compressive sensing [3]–[5].

Recently, many exact and approximate methods have been

proposed for solving variations of (1) for specific instances

of Ψ and ‖·‖, such as [6]–[11].

The computational bottleneck for solving (1) or (2) with ef-

ficient convex optimization methods lies exclusively in the im-

plementations of A, AH , Ψ or ΨH . For imaging applications,

Ψ can be a fast wavelet transform, fast Fourier transform or a

finite difference operator, which can all be evaluated quickly.

Therefore, the potential bottleneck lies in the implementations

of A and AH . However, the KAT makes A and AH orders of

magnitude faster than competing transforms (and in particular,

much faster than explicit matrix representations), allowing the

use of regularized least-squares methods for acoustic imaging.

This Part II describes applications of the KAT for image

reconstruction. In Section II we present several methods for

acoustic imaging using a common language based on the

transform. Using the KAT, we accelerate these techniques

without compromising quality. We also propose applying the

fast transforms to state-of-the-art, general purpose regularized

least-squares solvers, and obtain more accurate reconstructions

than what was possible with previous methods. Section III

features examples, comparing the performance of the different

approaches. Section IV compares the reconstruction accuracy

using a separable array and a logarithmic spiral array. We show

that by using regularized reconstruction methods, separable

arrays can match logarithmic spiral arrays in terms of recon-

struction accuracy, while allowing the computational benefits

provided by the KAT. Finally, Section V has our conclusions

and final comments.

II. IMAGE RECONSTRUCTION APPLICATIONS

A. Delay and sum imaging

Given a spectral matrix S, its corresponding image is

traditionally approximated using delay-and-sum beamforming

with

|Y (uxm
, uyn

)|
2
≈

vH (uxm
, uyn

)Sv (uxm
, uyn

)

[vH (uxm
, uyn

)v (uxm
, uyn

)]
2 , (3)

where the approximation is due to convolution effects.
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We can rewrite

vH (uxm
, uyn

)Sv (uxm
, uyn

) =

=
[

vT (uxm
, uyn

) ⊗ vH (uxm
, uyn

)
]

S (4)

= [v∗ (uxm
, uyn

) ⊗ v (uxm
, uyn

)]
H

vec {S} , (5)

=
[

AHvec {S}
]

m·My+n
(6)

where (4) is true because
(

AT ⊗ B
)

vec {C} = vec {BCA}
whenever BCA is defined, and (6) follows by comparing

(5) with (17) of Part I. Thus, delay-and-sum imaging can be

implemented with the KAT adjoint.

It follows that the direct-adjoint composition AHA is a

transform that obtains the delay-and-sum image from a clean

(ideal) image. If we assume that the sources are in the far-

field and that U-space is sampled uniformly, this delay-and-

sum image is simply the clean image convolved with the

beamformer’s point spread function (PSF). Since it represents

a convolution, under these assumptions AHA can also be

accelerated with a 2D FFT. But as presented in Section V of

Part I, the KAT can always be used to implement AHA more

efficiently than an equivalent FFT-accelerated convolution.

B. MVDR imaging

Imaging using MVDR (minimum variance distortionless

response) beamforming [12] is often preferable to delay-and-

sum imaging, given that the MVDR beamformer can get

very fine resolution for point sources (as long as the noise

is not excessive, and the regularization parameter is chosen

correctly). Recall that the MVDR processor steered towards

vT = v (uxT
, uyT

) is given by

wH
MVDR (uxT

, uyT
) =

vH
T S−1

n

vH
T S−1

n vT

, (7)

where Sn is the noise spectral matrix.

To obtain Sn for acoustic imaging, one should perform a

separate measurement (for example, with the model removed

from the wind tunnel) [13]. If this is not possible, one can

obtain the MPDR (minimum power distortionless response)

processor [14] by using S + λI instead of Sn, where λ is a

suitably chosen regularization parameter, such that

wH
MPDR (uxT

, uyT
) =

vH
T [S + λI]

−1

vH
T [S + λI]

−1
vT

, (8)

where S is the spectral matrix of the whole signal, including

the sources of interest and noise.

Let x be the frequency domain signal at the array output,

such that S = E
{

xxH
}

. The acoustic image can be approxi-

mated by the power at the output of the MVDR beamformer,

such that for w = wMVDR,

|Y (uxT
, uyT

)|
2
≈ E

{

∣

∣wH (uxT
, uyT

)x
∣

∣

2
}

= wH (uxT
, uyT

) E
{

xxH
}

w (uxT
, uyT

)

=
vH

T Sn
−1SSn

−1vT
[

vH
T Sn

−1vT

]2 .

From the results of the previous section, one can obtain

vH
T Sn

−1SSn
−1vT simultaneously for all look directions by

evaluating AHvec
{

Sn
−1SSn

−1
}

. Likewise, one can compute
[

vH
T Sn

−1vT

]2
for all directions with the pointwise square of

AHvec
{

Sn
−1

}

. By dividing one by the other, one can effi-

ciently perform imaging with an MVDR beamformer. MPDR

imaging follows similarly.

C. DAMAS2

DAMAS2 [15] is a state of the art deconvolution method

for aeroacoustic imaging. By using a far-field approximation,

it assumes that the convolved image produced by delay-and-

sum beamforming is equal to the clean image convolved with

the beamformer’s PSF. These convolutions are the bottleneck

of the algorithm, but if uniform U-space sampling is used,

they can be significantly accelerated with 2D FFTs.

Let Y̆ be the image obtained with delay-and-sum beam-

forming, P the array PSF for delay-and-sum imaging, Y the

clean image and Ŷ(k) the reconstructed image at iteration k.
By definition, Y̆ = P∗Y, where ∗ represents 2D convolution.

DAMAS2 solves for Y by iterating

Ŷ(k+1) = max

{

Ŷ(k) +
1

a

[

Y̆ −
(

P ∗ Ŷ(k)
)]

,0

}

, (9)

where max {·, ·} returns the pointwise maximum, a =
∑

i,j |P|i,j , Ŷ(0) = 0 and the convolution is implemented

with a 2D FFT and zero-padding.

Given the fast transform, it is possible to implement a faster

version of the already FFT-accelerated DAMAS2. Indeed,

from Section II-A we have that y̆ = vec
{

Y̆
}

= vec
{

P ∗

Y
}

= AHAvec
{

Y
}

= AHAy. Similarly, vec
{

P∗ Ŷ(k)
}

=
AHAŷ(k), where AHA can be implemented with the fast

direct-adjoint KAT, described in Section III-C of Part I.

Thus, (9) becomes

ŷ(k+1) = max

{

ŷ(k) +
1

a

[

y̆ − AHAŷ(k)
]

,0

}

, (10)

where a has the same definition as before and ŷ(k) =
vec

{

Ŷ(k)
}

.

Since convolutions are the bottleneck of DAMAS2, the

performance improvement of (10) with the fast transform with

respect to (9) as conventionally implemented is given by the

runtime of AHA when compared to that of an FFT accelerated

convolution. By referring to Figure 4 of Part I, one can see

that significant improvements can be obtained for all problem

sizes. In particular, for the examples shown in Section III, the

KAT is 8 times faster than an FFT accelerated convolution.

Even though DAMAS2 is considered to be a state-of-the-

art method for computationally efficient acoustic imaging, it

does not use any regularization other than forcing pointwise

non-negativity. Thus, it does not incorporate a prior model

of the source distribution. Furthermore, DAMAS2 is a de-

convolution approach that relies on restoring detail from very

smeared delay and sum images. We have shown that delay-

and-sum imaging is equivalent to the application of AHA

or to convolution by the array PSF, which is a low pass filter.

The low-pass characteristic implies that AHA has many small

singular values. Applying AHA significantly attenuates input

basis vector components corresponding to these small singular
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values, such that solving y̆ = AHAy for y (as proposed

by DAMAS) is not trivial. On the other hand, the singular

values of A are the square roots of the singular values of

AHA. Thus, the application of A only attenuates input basis

vector components by the square root of the previous factors,

making it preferable to solve s = Ay for y (as proposed by

least-squares formulations). For these two reasons, we favor

regularized least-squares methods.

D. ℓ1-regularized least-squares

To avoid deconvolution, [16] proposes a covariance fit-

ting technique. Since in the absence of noise, vec {S} =
Avec {Y}, the authors propose solving

min
Ŷ,σ2

∥

∥

∥
vec

{

S
}

− Avec
{

Ŷ
}

− σ2vec
{

I
}

∥

∥

∥

2

2
, (11)

subject to Ŷi,j ≥ 0, σ2 ≥ 0 and

∥

∥

∥
vec

{

Ŷ
}

∥

∥

∥

1
≤ λ, where σ2

is the white noise power and

∥

∥

∥
vec

{

Ŷ
}

∥

∥

∥

1
≤ λ is a sparsity

constraint. This method assumes that the source distribution is

sparse and that only a small number of U-space points have

radiating sources. (11) is a convex optimization problem, and

can be solved with reasonably efficient numerical methods.

The ℓ1 constraint serves to regularize the problem, and to

permit the inversion of an otherwise ill-conditioned system.

Thanks to the ℓ1 regularization, the authors of [16] show using

numerical examples that by solving (11) one can indeed recon-

struct sparse images with very high accuracy. Their proposal

outperforms DAMAS regarding reconstruction accuracy due

to the use of regularization and because no deconvolution was

involved.

However, as we have detailed, A can be a very large matrix,

such that solving (11) with a matrix representation of A (as

implemented previously) is very computationally intensive. Of

course, the KAT replaces the multiplications by A and AH ,

which is all that most convex optimization algorithms require.

In order to obtain a fast formulation that is amenable to

existing solvers, we propose recasting (11) as a basis pursuit

with denoising problem (BPDN), which has the form

min
Ŷ

∥

∥

∥
Ŷ

∥

∥

∥

1
subject to

∥

∥

∥
vec {S} − Avec

{

Ŷ
}

∥

∥

∥

2
≤ σ, (12)

and has been studied in detail in the compressive sensing

literature. In the examples, we solve (12) with SPGL1 [10],

which is a state-of-the-art solver designed for large scale

problems. The use of the fast transform not only makes

this problem tractable, but makes it competitive with our

already very efficient variation of DAMAS2, despite using

a more robust method for reconstruction. Note that the FFT

acceleration is not applicable to (12).

E. Total variation regularized least-squares

To address scenarios where the acoustic images are not

sparse in their canonical representations, we propose recon-

structing acoustic images with total variation (TV) regulariza-

tion.
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Figure 1. Simulated array geometry.

Given Y ∈ C
My×Mx , define its isotropic total variation as

‖Y‖BV =
∑

i,j

√

[∇xY]
2
i,j + [∇yY]

2
i,j

, (13)

where ∇x and ∇y are the first difference operators along the

x and y dimensions with periodic boundaries, for 0 ≤ i < My

and 0 ≤ j < Mx. ‖·‖BV is called the bounded variation (BV)

semi-norm.

We propose solving

min
Ŷ

∥

∥

∥
Ŷ

∥

∥

∥

BV
+ µ

∥

∥

∥
vec

{

S
}

− Avec
{

Ŷ
}

∥

∥

∥

2

2
, (14)

subject to Ŷi,j ≥ 0. The first term measures how much an

image oscillates. Therefore, it is smallest for images with

plateaus and monotonic transitions, and tends to privilege

simple solutions with small amounts of noise. The second term

ensures a good fit between the reconstructed image and the

measured data. This formulation was first proposed for image

denoising by Rudin, Osher and Fatemi [17], for A = I. It

was later generalized and applied successfully to many image

reconstruction problems.

To solve (14) we have chosen TVAL3 [11], which uses the

augmented Lagrangian method and variable splitting to de-

couple the TV-minimization and covariance fitting problems.

TVAL3 compares very favorably to other solvers in terms of

processing time and reconstruction quality, and with the fast

transform it becomes practically as efficient as our accelerated

version of DAMAS2, while providing more accurate and stable

reconstructions with guaranteed convergence.

III. RECONSTRUCTION EXAMPLES

In the following we show image reconstruction examples

illustrating the use of delay and sum beamforming, DAMAS2,

ℓ1 regularization and TV regularization, all implemented with

the KAT. We simulate a 64-element separable array, with

Nx = Ny = 8, and with horizontal and vertical apertures of

30 cm. Each Nx×1 and Ny×1 linear subarray is chosen to be

a nonredundant array with minimum missing lags [18], with

interelement spacing .1.3.5.6.7.10.2. (where the dots represent
elements, and the numbers represent interelement distances).

This geometry is plotted in Fig. 1.

In this section we present results comparing delay and sum

beamforming, DAMAS2, ℓ1-regularized reconstruction with

SPGL1 [10] solving (12), and TV-regularized reconstruction

with TVAL3 [11] solving (14). All methods were accelerated

with exact versions of the KAT (not using the NFFT), and



4

the images were reconstructed with Mx = My = 256.
DAMAS2, SPGL1 and TVAL3 used 1000, 200 and 100 itera-

tions, respectively, which provide a good compromise between

computational cost and image quality. Thanks to the KAT,

the reconstruction times for delay-and-sum, DAMAS2, ℓ1
regularized reconstruction and TV regularized reconstruction

were approximately 5 ms, 1.5 s, 8 s and 4 s per image,

respectively. DAMAS2 requires no parameters. SPGL1 used

σ = 0.01 ‖S‖F in (12). TVAL3 used µ = 103 in (14). The

signal model is given by S = V E
{

ffH
}

VH + σ2I, with σ2

set to obtain 20 dB SNR. Since the intent of these simulations

is not to analyze the noise sensitivity of each method, only

one SNR is used.

A. Checkerboard patterns

Fig. 2 shows reconstructed checkerboard patterns. This

reconstruction clearly shows the deficiencies of delay-and-

sum imaging. The images are quite smeared, and all images

present artifacts due to sidelobes. DAMAS2 produces very

good results, reproducing the checkerboard patterns correctly,

with small artifacts outside the checkerboards. ℓ1-regularized
reconstruction shows better defined edges, but some artifacts,

since the patterns are not sparse. Note that some checkerboard

squares have dots where the sound pressure level has been

underestimated. Artifacts of this kind are common when using

ℓ1 regularization to reconstruct signals with plateaus, because

they present a compromise between sparsity and fitness to

the measured data. TV regularization produces reconstructions

similar to DAMAS2, but with some smearing around the edges

of the visible region.

B. Sparse patterns

Fig. 3 presents reconstruction results for a test image with

17 unit impulses at U-space coordinates (±n/6,±n/6), for
0 ≤ n ≤ 4. This test is designed to evaluate the equivalent PSF
for the reconstruction methods, as well as detect the presence

of aliasing artifacts. As expected, delay and sum has the lowest

spatial resolution and shows significant sidelobes. DAMAS2

shows some artifacts, which result from its lack of regular-

ization. ℓ1-regularized reconstruction presents the best results,

with very small sources and no artifacts. This is a reasonable

result, since the image of interest is indeed very sparse. TV-

regularization also presents good results, with no discernible

artifacts but with larger sources than ℓ1 regularization.

C. Non-sparse test pattern

Fig. 4 shows reconstruction results for a non-sparse test

pattern designed for this experiment. Once again, delay-

and-sum has low resolution and rectangular smearing due

to the separable geometry’s sidelobes. DAMAS2 produces

much better results, but still shows some artifacts, especially

for high frequency images. The artifacts are gone with ℓ1-
regularized reconstruction, which also has better resolution

than DAMAS2. Nevertheless, it does not represent smooth

transitions well, since they are not sparse. Finally, TV-

regularized reconstruction produces the most accurate repre-

sentations, with correct shapes and low noise.
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Figure 2. Reconstruction of the checkerboard patterns, for Mx = My =

256. First row: ideal distribution, second row: delay-and-sum; third row:
DAMAS2; fourth row: ℓ1-regularized least-squares; fifth row: TV-regularized
least-squares.

D. Near-field imaging

In this section, we show how the far-field assumption can

break down, and how the near-field extension of the KAT can

be used to model near-field effects. We simulate the checker-

board source distribution positioned over a hemispherical shell

with a radius of 1.0 m. Both the array and the shell are centered

at (0, 0, 0).

The top row of Fig. 5 presents the checkerboard images

reconstructed with the exact (slow) near-field transform. Re-

construction results are very similar to the far-field ones, indi-

cating that the transform did not degenerate. The second row

shows the reconstruction using a far-field approximation. The

estimated distributions are very smeared and show significant

artifacts. The other rows show reconstruction results for K =
1, 4 and 8, as prescribed in Section VI of Part I. The artifacts

are essentially gone, and the smearing has been significantly

reduced. Note that the computational cost for implementing a

rank-K KAT is K times larger than implementing a far-field

KAT. Nevertheless, even for K = 8 this approach is about as

fast as a direct NFFT implementation (which cannot be used in

this case), while accurately modeling strong near-field effects.

Indeed, the reconstruction times for Fig. 5 (using TVAL) were

4.0, 4.9, 6.4 and 10.0 s for K = 1, 2, 4 and 8. In contrast,

explicit matrix multiplication requires approximately 2000 s.
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Figure 3. Reconstruction of the impulsive patterns, for Mx = My = 256.
First row: ideal distribution, second row: delay-and-sum; third row: DAMAS2;
fourth row: ℓ1-regularized least-squares; fifth row: TV-regularized least-
squares.

IV. HOW GOOD ARE CARTESIAN ARRAYS?

Multi-arm logarithmic spiral arrays [19] have been shown to

have low sidelobes over a wide range of frequencies. Since the

low sidelobe characteristic is crucial when performing imaging

with beamforming, these geometries have found widespread

use. Nevertheless, sidelobes have little relevance if one can ef-

ficiently use deconvolution or regularized least-squares meth-

ods. In this case, ideal geometries become the ones with zero

redundancy and minimum missing lags (which give highest

bandwidth and some reconstruction artifacts) or minimum

redundancy and zero missing lags (which theoretically allow

ideal reconstruction up to a given frequency, under a far-field

assumption and in the absence of noise). In general, these

geometries do not produce low sidelobes, but the sidelobes

are low enough to allow nonambiguous reconstruction.

In this section, we compare the Cartesian geometry pre-

sented in Fig. 1 and the 63-element logarithmic spiral ge-

ometry presented in Fig. 6. This spiral array has an aperture

of 50 × 50 cm, which was chosen to produce images with

resolution similar to those of our separable array (which has

a 30 × 30 cm aperture). Furthermore, its parameters were

carefully chosen to produce optimal reconstruction for the

frequencies of interest. Fig. 7 shows reconstruction results for

this logarithmic spiral geometry, under the same conditions as
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Figure 4. Reconstruction of the non-sparse test pattern, for Mx = My =

256. First row: ideal distribution, second row: delay-and-sum; third row:
DAMAS2; fourth row: ℓ1-regularized least-squares; fifth row: TV-regularized
least-squares.

Fig. 4.

While the logarithmic spiral geometry produces better re-

sults for delay-and-sum, the other techniques produce results

of comparable quality. In particular, TV-regularized least-

squares produces very similar results for both geometries. This

is not surprising, since the Cartesian geometry was chosen

to have optimal characteristics. While this example is by no

means exhaustive, it is meant to convince the reader that

given appropriate image reconstruction techniques, Cartesian

geometries can be nearly as powerful as more traditional

logarithmic spiral geometries. Of course, with Cartesian arrays

one can apply the KAT and obtain extremely fast and accurate

near-field reconstruction for arbitrary focal surfaces. With

logarithmic spiral geometries, one has no such option.

V. CONCLUSION

Using the assumption of a separable array geometry, in

Part I we presented the Kronecker array transform (KAT),

which can efficiently transform back and forth between a

hypothetical source distribution and its corresponding spec-

tral matrix, under the assumption of a separable array. This

transform is orders of magnitude faster than explicit matrix

multiplication, and one order of magnitude faster than NFFT-

based approaches. Furthermore, the KAT can be generalized
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Figure 5. TV-regularized reconstruction of the checkerboard patterns. The
real source distribution is located over a hemispherical shell with a radius of
1 m. From top to bottom: reconstruction using the exact (slow) transform;
reconstruction using a far-field approximation; reconstructions using the best
Kronecker approximation for varying values of K.
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Figure 6. Logarithmic spiral array geometry with 63 elements, inner radius
r0 = 1.5 cm, outer radius rmax = 25 cm, 9 concentric circles, 7 arms and
having each arm perform 2 full rotations.

for near-field imaging, while the NFFT must use a far-field

approximation.

In this Part II, we have recast delay-and-sum beamforming,

MVDR beamforming and the DAMAS2 deconvolution algo-

rithm [15] as applications of our transform. Thus, we have

shown how the computational benefits from Part I can be

realized in practice. Furthermore, the KAT allows the efficient

use of general purpose regularized least-squares solvers. To

demonstrate this application, we used it to recast acoustic

imaging as least-squares problems with ℓ1 and total variation

regularization. With the KAT, regularized reconstruction be-
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Figure 7. Reconstruction of the non-sparse test pattern with a logarithmic
spiral array, for Mx = My = 256. First row: ideal distribution, second row:
delay-and-sum; third row: DAMAS2; fourth row: ℓ1-regularized least-squares;
fifth row: TV-regularized least-squares.

comes straightforward, elegant and computationally efficient.

With this approach, image reconstruction can be delegated to

third party solvers, saving the time and effort of developing

ad hoc methods.

Finally, we have shown that by using carefully chosen

separable arrays one does not have to compromise on recon-

struction quality. Thus, the KAT does not require a trade-off

between accuracy and reconstruction time.
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