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Abstract—The classical approach for acoustic imaging con-
sists of beamforming, and produces the source distribution
of interest convolved with the array point spread function.
This convolution smears the image of interest, significantly
reducing its effective resolution. Deconvolution methods have
been proposed to enhance acoustic images, and have produced
significant improvements. Other proposals involve covariance
fitting techniques, which avoid deconvolution altogether. However,
in their traditional presentation, these enhanced reconstruction
methods have very high computational costs, mostly because
they have no means of efficiently transforming back and forth
between a hypothetical image and the measured data. In this
paper we propose the KAT (Kronecker Array Transform), a fast
separable transform for array imaging applications. Under the
assumption of a separable array, it allows the acceleration of
imaging techniques by several orders of magnitude with respect
to the fastest previously available methods, and enables the use
of state of the art regularized least-squares solvers. Using the
KAT, one can reconstruct images with higher resolutions than
previously possible, and also use more accurate reconstruction
techniques, opening new and exciting possibilities for acoustic
imaging.

Index Terms—array processing, fast transform, acoustic imag-
ing, array imaging, regularized least-squares, sparse reconstruc-
tion.

I. INTRODUCTION

Acoustic imaging refers to the problem of mapping the

locations and intensities of sound sources over a region of

interest using microphone arrays. For example, a microphone

array can be positioned in a wind tunnel to determine the

noise distribution over a model due to high velocity airflow

[1], [2]. Such measurements are routinely used to design

cars, trains and aircraft which are quieter to outside observers

and to passengers. Microphone arrays have been employed to

measure the noise generated by turbofan engines [3] and wind

turbines [4], for similar noise reduction applications. Acoustic

imaging has also been used to visualize the reverberant struc-

ture of concert halls [5]. We note that techniques for imaging

the shapes of objects and structures via acoustic waves are

sometimes called acoustic imaging, but we will not address

such problems.

Array imaging is possible because sensor arrays can be

electronically steered toward arbitrary directions. One can

define a grid over a region of interest, electronically steer the

array over all elements of the grid, and thus create a map of

estimated sound pressure levels. Each point in the grid can be

represented as a pixel. The value of the pixel can be chosen

to represent the estimated sound pressure level, thus creating

an acoustic image.

Array imaging differs from source localization techniques

such as [6]–[10] because these usually produce a pseudospec-

trum of the wavefield, with maxima that indicate the location

of dominant sources but with values that do not map to source

powers. Thus, in this paper we will assume that accurate power

estimates are desirable.

The simplest and most common method for imaging uses

delay and sum beamforming. This technique consists of delay-

ing and summing the signals arriving at each sensor such that

the sources located at a direction of interest are reinforced, and

sources located in other directions are attenuated. Beamform-

ing is simple, but unfortunately produces the lowest quality

images. Indeed, under the assumption that the sources are in

the far-field of the array, beamforming produces the source

distribution of interest convolved with the array point spread

function (PSF). Since a typical acoustic array has a relatively

small aperture with respect to its operating wavelengths, its

PSF can be quite large, such that delay and sum beamform-

ing produces very smeared images. Alternative beamforming

techniques have been developed to improve resolution by

using data-dependent methods and numerical optimization of

the beampattern [11]–[13], but they do not overcome the

fundamental limitation that beamforming produces convolved

images.

To overcome this limitation, several deconvolution tech-

niques have been proposed [14]–[17]. They use as inputs the

image obtained with delay and sum beamforming and the array

PSF, and generally produce a much better approximation of the

original source distribution. Nevertheless, deconvolution is an

ill conditioned inverse problem, and typically requires some

knowledge of the solution to discriminate between different

solutions which would be equally good fits for the measured

data. The acoustic imaging methods proposed so far tend to

use very simple types of regularization, such as low pass

filtering between iterations, or no regularization at all.

Regularized signal reconstruction has been a topic of inter-

est for many decades, and gained significant momentum with

the popularity of compressive sensing [18]–[20]. Indeed, many

image reconstruction problems can be recast as convex opti-

mization problems, which can be solved with computationally

efficient iterative methods. While many of these techniques

were designed for imaging applications, they have remained

limited to fields such as medical image reconstruction. There-

fore, most of these developments have not been applied to

acoustic imaging.

A major reason for this separation between fields has

been the absence of computationally efficient transforms for

aeroacoustic imaging. For example, consider the generic non-

linear signal reconstruction problem given by

ŷ = arg min
y

‖Ψy‖ such thatΦy = x, (1)
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where x is the measured signal, ŷ is the reconstructed signal,

Ψ is a sparsifying transform, and Φ is a transform which

models the measurement process. For an acoustic image, y

would be a vectorized version of the image describing the

true source distribution, and x would be a vectorized version

of the array’s sample covariance matrix.

Since in practice (1) is solved iteratively, one must be able

to quickly evaluate Ψu and Φu (and also ΨHv and ΦHv, as

we will see in Part II [21] of this paper) for arbitrary u, v. This

is a very strong requirement, because the application of these

transforms is the bottleneck of efficient convex optimization

algorithms and completely determines their computational

costs (regardless of the transform being fast or slow). While

one can choose a convenient fast sparsifying transform Ψ,

the transform Φ is determined by the physical measurement

process. For example, for MRI applications we naturally have

Φ = PF , where F is a fast Fourier transform and P is a sub-

sampling operator. Finite differences have been successfully

used as the sparsifying transform Ψ with ‖·‖ = ‖·‖1 [22],

[23].

While sparsity-enforcing approaches have been proposed

for direction of arrival estimation [24] and acoustic imaging

[25], to our knowledge no method of acoustic imaging uses

a fast implementation of Φ. To motivate the need for a fast

transform, consider a naive matrix representation of Φ. Given

an array of N sensors and an image with M pixels, Φ

has N2 rows and M columns. For N2 = M = 2562, Φ

has 4 billion elements and the products Φu and ΦHv are

computationally very expensive, making convex optimization

methods intractable with current desktop computers. Thus, the

naive implementation of Φ is only practical for very small

images and arrays, thus motivating the development of a fast

transform.

In this paper we develop the KAT (Kronecker Array Trans-

form), a fast transform which implements Φ, ΦH and ΦHΦ

for separable arrays. The KAT can be applied to many existing

array imaging algorithms, with significant performance gains.

It also allows the use of state of the art solvers for acoustic

imaging problems, obviating ad-hoc solutions which typically

produce worse results. Indeed, with a fast transform one can

use most of the general purpose, state-of-the-art solvers devel-

oped for other imaging and compressive sensing applications.

By combining the KAT with such methods, we can accelerate

reconstruction times by several orders of magnitude with

respect to the fastest previously available implementations.

In practical terms, an image which would take minutes to

reconstruct can be obtained in a few seconds. Finally, while

this transform was motivated by applications in aeroacoustics,

it also applies for generic wave fields and separable sensor

arrays.

To our knowledge, previous proposals for accelerated acous-

tic imaging are all based on beamforming. Zimmerman and

Studer [26] propose offloading delay-and-sum beamforming

to an FPGA, which performs all the computation and draws

acoustic images over a framebuffer. While this approach

makes beamforming faster, it does not reduce its underlying

computational cost. Huang [27] uses a state observer model

to recursively obtain an approximation of the acoustic image

while acquiring data (in contrast to computing an image

from a sample covariance matrix). While this method has

the advantage of returning incremental results, it has the

same computational cost as beamforming, and a comparable

beampattern. In contrast, the KAT dramatically reduces the

underlying computational costs of acoustic imaging, allowing

more accurate reconstruction methods to be used instead of

beamforming.

Part I is organized as follows: Section II gives several

definitions and further motivates the need for fast transforms.

Section III introduces the KAT, its adjoint and its direct-adjoint

composition, under the assumption of far-field sources. Sec-

tion IV presents connections with the fast Fourier transform,

fast non-equispaced Fourier transform (NFFT) and fast non-

equispaced in time and frequency Fourier transform (NNFFT)

[28]. These connections are also a contribution, because to our

knowledge, the NFFT and NNFFT have never been used for

acoustic imaging. We show how the NFFT and NNFFT can

also be used to accelerate acoustic imaging under a far-field

approximation, despite being an order of magnitude slower

than the KAT. Section V presents benchmarks comparing the

KAT with the NFFT, NNFFT and explicit matrix represen-

tations. Section VI shows how to extend the KAT for near-

field imaging, modeling spherical wavefronts instead of planar

wavefronts. This generalization is unique to our proposal, and

produces a transform which is orders of magnitude faster

than direct matrix multiplication (which becomes the only

alternative, since the FFT, NFFT and NNFFT require a far-

field approximation). Section VII has our conclusions.

Part II [21] presents applications. Section I briefly reviews

the results from Part I. In Section II we use the KAT

to significantly accelerate existing techniques and to enable

the use of general purpose solvers, obtaining more accu-

rate reconstructions than possible with current state-of-the-art

methods. Section III features examples, and compares several

reconstruction methods with respect to computational cost and

accuracy. Section IV compares separable arrays with multi-

arm logarithmic spiral arrays, and shows that by requiring

separable arrays we are not trading reconstruction quality

for speed. Finally, Section V has our conclusions and final

comments.

II. PRELIMINARIES

Consider a sensor array composed of N microphones at

Cartesian coordinates p0, ...,pN−1 ∈ R
3, and an arbitrary

wavefield which we wish to estimate. Suppose that this wave

field can be modeled as generated by the superposition of M
point sources located at coordinates q0, ...,qM−1 ∈ R

3, where

M may be a large number in order to obtain an accurate model.

Let

Q =
[

q0 q1 · · · qM−1

]

. (2)

The time-domain samples of each microphone are segmented

into frames of K samples, and each frame is converted to the

frequency domain using a fast Fourier transform (FFT). In the

presence of additive noise, the N × 1 array output vector for

a single frequency on a single frame can be modeled as

x (ωk) = V (Q, ωk) f (ωk) + η (ωk) , (3)
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Table I
LIST OF SYMBOLS

Symbol Meaning

T matrix or vector transpose
H matrix or vector Hermitian transpose
∗ complex conjugate

mod (a, b) remainder of a/b, for a, b ∈ Z+

⌊x⌋ round-off of x ∈ R towards −∞
vec {·} vectorization operator

⊗ Kronecker product

⊙ Hadamard product

M = MxMy number of image pixels

N = NxNy number of array microphones

ω operating frequency in the Fourier domain

qm source coordinates, for 0 ≤ m < M
um source coordinates in U-space, for 0 ≤ m < M
pn array element coordinates, for 0 ≤ n < N
vum (ω) N × 1 array manifold vector for look direction um

vxn (ω) Nx × 1 separable component of vum (ω)
vyn (ω) Ny × 1 separable component of vum (ω)

vi
xn

(ω) ith element of vxn (ω)
Y (ω) Mx × My image at a frequency ω
S (ω) N × N spectral matrix at a frequency ω
Bi,j (i, j) entry of matrix B

1 matrix of ones

where 0 ≤ k < K/2, V (Q, ωk) =
[

v (q0, ωk) v (q1, ωk) · · · v (qM−1, ωk)
]

is the array man-

ifold matrix, f (ωk) =
[

f0 (ωk) f1 (ωk) · · · fM−1 (ωk)
]T

is the frequency domain signal waveform and η (ωk) is the

frequency domain noise waveform.

The near-field array manifold vector for source m is given

by [29]

v (qm, ωk) =
[

e−j
ωk
c

‖p0−qm‖

‖p0−qm‖ · · · e−j
ωk
c ‖pN−1−qm‖

‖pN−1−qm‖

]T

,

(4)

where c is the speed of sound.

Define um = qm/ ‖qm‖, the look direction for source

m. Under a far-field approximation (modeling a plane wave),

the time differences of arrival are given by −uT
mpn/c, for

0 ≤ n < N . Since the wavefront is not expanding, the

1/ ‖pn − qm‖ attenuation disappears, and the far-field array

manifold vector for source m is given by

v (um, ωk) =
[

ej
ωk
c uT

mp0 · · · ej
ωk
c uT

mpN−1

]T

. (5)

Using spherical coordinates,

um =





sin φ cos θ
sinφ sin θ

cos φ



 , (6)

where θ and φ are the azimuth and elevation angles, respec-

tively. One can reparameterize the unit half-sphere by defining

ux (θ, φ) = sinφ cos θ (7)

uy (θ, φ) = sinφ sin θ, (8)

such that

um =







ux

uy
√

1 − u2
x − u2

y






(9)

for u2
x + u2

y ≤ 1. Uniform sampling in U-space (where U =

[−1, 1]
2
) is convenient in many applications, because under a

far-field approximation it makes point-spread functions shift-

invariant. In this paper it will enable us to decouple the x and

y axes, producing the fast transform.

Since the optimizations presented in the following sections

require Cartesian (not necessarily uniform) parameterizations

in U-space and far-field approximations, we will assume that

manifold vectors have the form (5). On Section VI we extend

our results for near-field sources, which will allow us to

approximate (4) with arbitrary accuracy.

Using the assumption of far-field sources, we rewrite (3) as

x (ωk) = V (ωk) f (ωk) + η (ωk) , (10)

where V (ωk) =
[

v (u0, ωk) v (u1, ωk) · · · v (uM−1, ωk)
]

.

Let

Sx (ωk) = E
{

x (ωk)xH (ωk)
}

(11)

be the array’s narrow-band cross spectral matrix for 0 ≤ k <
K/2. If x0 (ωk), ..., xL−1 (ωk) correspond to L frequency

domain frames (also known as snapshots), the spectral matrix

can be estimated with

Sx (ωk) =
1

L

L−1
∑

l=0

xl (ωk)xH
l (ωk) . (12)

We assume that the statistics of the signal and noise are

stationary over the measured period, such that (12) is an

unbiased estimator.

Processing Sx (ωk) instead of each xl (ωk) is typically more

convenient, because Sx (ωk) carries only the relative phase

shifts between microphones and is the result of averaging, such

that it has less noise content. Indeed, for each 0 ≤ l < L,
xl (ωk) has a phase shift which is equal for every element

but unknown, which disappears when computing Sx (ωk). To
save space, in the following we will assume narrow-band

processing and omit the argument ωk. Also, the x subscript

will be dropped, and Sx (ωk) will be written as S.

Substituting (10) into (11) and assuming that the noise is

spatially white and uncorrelated with the sources of interest,

we have

Sx (ωk) = V (ωk) E
{

f (ωk) fH (ωk)
}

VH (ωk) + σ2I, (13)

where σ2 = E {ηi (ωk) η∗
i (ωk)}, 0 ≤ i < N .

Assume that the wavefield impinging on the array can be

modeled as emitted by the superposition of uncorrelated point

sources located in the array’s far field. One can represent

these sources by a collection of points at coordinates {ui}
M−1
i=0

located in a sufficiently fine grid in U-space. This represen-

tation is effectively a two-dimensional digital image, where

the pixel coordinates correspond to locations in U-space, and

the pixel values correspond to source intensities. Note that

in (13), assuming that the sources are uncorrelated implies

that E
{

f (ωk) fH (ωk)
}

is diagonal. Furthermore, the diagonal

of E
{

f (ωk) fH (ωk)
}

is a vectorized version of the acoustic

image.

Given an acoustic image where each pixel corresponds to a

point source, one can easily obtain the array spectral matrix
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as long as all point sources (pixels) are assumed to be pair-

wise uncorrelated. If there were cross-correlations, one would

drop the assumption that E
{

f (ωk) fH (ωk)
}

is diagonal, and

require the correlation coefficient for each pair of sources,

whose determination would be clearly impractical even for

small images (for example, a 64×64 pixel image would have

642 = 4096 pixels (sources) and 1
24096 · 4097 ≈ 8 million

unique cross-correlations). Therefore, unless stated otherwise,

we shall assume that sources are pairwise uncorrelated.

However, we note that a fast transform can also be obtained

for correlated source distributions as a natural generalization

of the KAT. It has special importance because one cannot

apply Fourier methods to accelerate the reconstruction of

correlated source maps. Nevertheless, since the number of

cross-correlations scales quadratically, estimating every cross

term is only viable for very simple source distributions. Thus,

a proposal for imaging correlated sources should combine a

fast transform and domain-specific regularization, the latter

being an open problem. Due to space limitations, we will not

address these topics in this text.

Recall that to solve (1) efficiently, one requires a fast

method of obtaining S from a hypothetical image. Consider

an Mx × My pixel acoustic image, define M = MxMy and

let u0, ...,uM−1 be an enumeration of all pixel coordinates

in U-space. Let v (um) be the array manifold vector when

steered towards look direction um. For a single source at um

radiating with power |Y (um)|
2
, the measured spectral matrix

is S = |Y (um)|
2
v (um)vH (um). Given the source powers

for u0, ...,uM−1, one can reconstruct S by superposition, so

that

S =

M−1
∑

m=0

|Y (um)|
2
v (um)vH (um) . (14)

Unless the image is very sparse, this expression becomes

computationally intractable. For instance, consider a 256
element array and a 256 × 256 acoustic image. Each

|Y (um)|
2
v (um)vH (um) outer product generates a 256-by-

256 matrix. Neglecting the cost to scale v (um) by |Y (um)|,
the outer product requires 216 complex multiply-accumulate

(MAC) instructions1. This process must be repeated M = 216

times, resulting in 232 complex MACs. Since each outer

product has Hermitian symmetry, it suffices to determine its

upper or lower triangular part (including the main diagonal),

which reduces the total complex MAC count to approximately

231. Nevertheless, this computational cost is still excessive

for a transform intended to be used in an iterative method.

In the following, we describe how to implement an efficient

transform to obtain S from
{

|Y (um)|
2
}

0≤m<M
.

III. THE KRONECKER ARRAY TRANSFORM

Define y =
[

|Y (u0)|
2
· · · |Y (uM−1)|

2
]T

. Let us write

(14) as a linear transform A such that s = Ay, with

s = vec {S}. To save space, we will write v (um) as vum
,

1Modern DSP architectures are able to implement a multiplication followed
by an accumulation in the same clock cycle. This single cycle instruction is
known as a multiply-accumulate, or MAC. Since the computational cost of
performing a sum, product or MAC is the same, for the purposes of estimating
computational complexity it suffices to estimate the total number of MACs.

and will denote its ith element by vi
um

(elements of array

manifold vectors will be indexed using superscripts). Let N
be the number of microphones in the array. Note that

vec
{

vum
vH
um

}

=











vum
v0∗
um

vum
v1∗
um

...

vum
v

(N−1)∗
um











. (15)

Therefore,

s = Ay (16)

=











vu0
v0∗
u0

vu1
v0∗
u1

· · · vuM−1
v0∗
uM−1

vu0
v1∗
u0

vu1
v1∗
u1

· · · vuM−1
v1∗
uM−1

...
...

...

vu0
v

(N−1)∗
u0 vu1

v
(N−1)∗
u1 · · · vuM−1

v
(N−1)∗
uM−1











y

=
[

v∗
u0

⊗ vu0
v∗
u1

⊗ vu1
· · · v∗

uM−1
⊗ vuM−1

]

y, (17)

where ⊗ is the Kronecker product.

Given a two-dimensional array, its array manifold vector

v (u) = v (ux, uy) is said to be separable if there exist a (ux)
and b (ux) such that v (ux, uy) = a (ux)⊗b (uy) for all valid
ux, uy . Note that a (ux) and b (uy) need not be submanifold

vectors. We say that an array is separable if and only if it

has a separable manifold vector. We will show below how

the array geometry relates to its separability under a far-field

assumption.

To simplify the notation that follows, let us specify the

enumeration u0, ...,uM−1 of look directions we are using.

Suppose that Y is a Mx × My digital image representing

the acoustic image. The rows of Y correspond to horizontal

scan lines of arbitrarily sampled pixels, and the columns of

Y correspond to vertical scan lines of arbitrarily sampled

pixels. Let {uxm
}0≤m<Mx

and {uyn
}0≤n<My

be points which

sample U-space along the x and y axes, ordered from left to

right and from top to bottom. We define u0, ...,uM−1 such

that

y = vec {Y} =











|Y (u0)|
2

|Y (u1)|
2

...

|Y (uM−1)|
2











. (18)

Breaking u into components, this implies that

um =











ux⌊m/My⌋

uymod(m,My)
√

1 −
(

ux⌊m/My⌋

)2

−
(

uymod(m,My)

)2











. (19)

Fig. 1 shows an example of how pixels are ordered and

parameterized in U-space.

We now show that under the far-field parameterization given

by (5), an array is separable if and only if it has elements

positioned over a (potentially non-uniform) Cartesian grid.

To see this, consider an array with sensor coordinates pi ∈
R

3, for 0 ≤ i < N , with x and y coordinates drawn from

{pxi
}

Nx−1
i=0 and {pyi

}
Ny−1
i=0 , respectively, such that

pi =
[

px⌊i/Ny⌋
pymod(i,Ny)

0
]T

.
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Figure 1. Example of pixel order and U-space parameterization for an
acoustic image, for Mx = My = 21 and uniform sampling in U-space.

Let N = NxNy be the number of array elements. Define a

horizontal array with sensor coordinates pxi
∈ R

3, for 0 ≤
i < Nx and a vertical array with sensor coordinates pyj

∈ R
3,

for 0 ≤ j < Ny , such that

pxi
=

[

pxi
0 0

]T
pyj

=
[

0 pyj
0

]T
.

Let vx and vy be the Nx × 1 and Ny × 1 manifold vectors

for these 1-dimensional arrays. Then for 0 ≤ i < Nx and

0 ≤ j < Ny ,

[v (ux, uy)]i·Ny+j =

= e
j

ωk
c

»

ux uy

√

1 − u2
x − u2

y

–

pi·Ny+j

= e
j

ωk
c

»

ux uy

√

1 − u2
x − u2

y

–

(pxi
+pyj )

= e
j

ωk
c

h

ux 0
√

1 − u2
x

i

pxi e
j

ωk
c

»

0 uy

√

1 − u2
y

–

pyj

= [vx (ux)]i [vy (uy)]j ,

which by definition is equivalent to

v (ux, uy) = vx (ux) ⊗ vy (uy) . (20)

Thus, arrays with Cartesian geometries are separable under a

U-space parameterization. To prove the converse, note that

[v (ux, uy)]i = e
j

ωk
c

»

ux uy

√

1 − u2
x − u2

y

–

pi

= ej
ωk
c (uxp̄xi

+uy p̄yi)

= ej
ωk
c uxp̄xi ej

ωk
c uy p̄yi (21)

where pi =
[

p̄xi
p̄yi

0
]T

. By hypothesis, there exist a (ux)
and b (ux) such that v (ux, uy) = a (ux) ⊗ b (uy). The term

uxp̄xi
from (21) must belong to a (ux), since it is a function of

ux and p̄xi
is constant. It follows that a (ux) = vx (ux) and

b (uy) = vy (uy), with vx (ux) and vy (uy) defined above,

implying a Cartesian geometry.

A. Fast direct transform

To save space, we will use the shorthand notation

vx (uxm
) = vxm

=
[

v0
xm

v1
xm

· · · vNx−1
xm

]T

vy (uyn
) = vyn

=
[

v0
yn

v1
yn

· · · v
Ny−1
yn

]T

.
(22)

Using the separability of the array in (17), we obtain

A =
[

(v∗
x0

⊗ v∗
y0

) ⊗ (vx0
⊗ vy0

) · · ·

· · · (v∗
xM−1

⊗ v∗
yM−1

) ⊗ (vxM−1
⊗ vyM−1

)
]

. (23)

For 0 ≤ m,n < NxNy , the separability of the array also

allows row m · NxNy + n of A to be written as
[

vi∗
x0

vj
x0

· · · vi∗
xMx−1

vj
xMx−1

]

⊗
[

vk∗
y0

vl
y0

· · · vk∗
yMy−1

vl
yMy−1

]

,

(24)

where i =
⌊

m
Ny

⌋

, j =
⌊

n
Ny

⌋

, k = mod (m,Ny), l =

mod (n,Ny).
For 0 ≤ i, j < Nx and 0 ≤ k, l < Ny , define

cm (i, j) = vi∗
xm

vj
xm

dn (k, l) = vk∗
yn

vl
yn

. (25)

For 0 ≤ m,n < NxNy , an arbitrary element Sn,m of S can

be written as the inner product of line m · NxNy + n of A

and vec {Y}. Define

c (i, j) =
[

c0 (i, j) · · · cMx−1 (i, j)
]T

=
[

vi∗
x0

vj
x0

· · · vi∗
xMx−1

vj
xMx−1

]T

d (k, l) =
[

d0 (k, l) · · · dMy−1 (k, l)
]T

=
[

vk∗
y0

vl
y0

· · · vk∗
yMy−1

vl
yMy−1

]T

.

Using (24), we have

Sn,m =
[

cT (i, j) ⊗ dT (k, l)
]

vec {Y} (26)

= dT (k, l)Yc (i, j) , (27)

where i =
⌊

m
Ny

⌋

, j =
⌊

n
Ny

⌋

, k = mod (m,Ny), l =

mod (n,Ny). Also, (26) and (27) are equivalent because
(

AT ⊗ B
)

vec {C} = vec {BCA} whenever BCA is de-

fined [30].

Note that c (i, j) and d (k, l) completely model the response

of the (n,m) pair of sensors, for all directions of arrival. This
is already a more compact representation than before, since

this model uses the separability of the array. All is left is how

to efficiently compute all the responses for all pairs.

For 0 ≤ i, j < Nx and 0 ≤ k, l < Ny , define

(i, j) ⋄ (k, l) = dT (k, l)Yc (i, j) (28)

and

Tj,i =











(i, j) ⋄ (0, 0) · · · (i, j) ⋄ (Ny − 1, 0)
(i, j) ⋄ (0, 1) · · · (i, j) ⋄ (Ny − 1, 1)

...
...

(i, j) ⋄ (0, Ny − 1) · · · (i, j) ⋄ (Ny − 1, Ny − 1)











(29)
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From the results above, it is easy to show that

S =











T0,0 T0,1 · · · T0,Nx−1

T1,0 T1,1 · · · T1,Nx−1

...
...

...

TNx−1,0 TNx−1,1 · · · TNx−1,Nx−1











. (30)

Even though one could determine (i, j) ⋄ (k, l) for 0 ≤ i, j <
Nx and 0 ≤ k, l < Ny by directly evaluating (28), one should

organize the computations to eliminate redundancy. Also, since

in modern computer architectures the arithmetic units can

process data faster than the main memory can provide via

random accesses, one should maximize locality of reference to

ensure that the arithmetic operands are typically in the cache.

In particular, the algorithm should promote sequential memory

accesses so that the arithmetic units do not stall while waiting

for a memory read. We will present such an implementation

below.

Let

ti,j = vec {Ti,j} (31)

Z =
[

t0,0 t1,0 . . . tNx−1,Nx−1

]

. (32)

Given Z, it is very easy to obtain S, since every block Ti,j

of S can be obtained by unstacking ti,j .

Define

Vx =











c0 (0, 0) · · · cMx−1 (0, 0)
c0 (0, 1) · · · cMx−1 (0, 1)

...
...

c0 (Nx − 1, Nx − 1) · · · cMx−1 (Nx − 1, Nx − 1)











(33)

Vy =











d0 (0, 0) · · · dMy−1 (0, 0)
d0 (0, 1) · · · dMy−1 (0, 1)

...
...

d0 (Ny − 1, Ny − 1) · · · dMy−1 (Ny − 1, Ny − 1)











(34)

By comparison with (28), one can verify that

Z = VyYVT
x . (35)

Define Ξ such that vec {S} = Ξvec {Z} (note that Ξ is a

permutation). Thus, vec {S} = Ξ (Vx ⊗ Vy) vec {Y} and

A = Ξ (Vx ⊗ Vy) . (36)

Since Ξ is a computationally efficient permutation and

(Vx ⊗ Vy) vec {Y} = vec
{

VyYVT
x

}

, (36) can be imple-

mented as a fast transform (see below).

From (30) it can be seen that each Ti,j contains the cross-

covariance between two Ny × 1 columns of sensors. Thus, Z

is a reorganization of S which stacks these cross-covariances

with a regularity that matches the row order of Vx⊗Vy (since

vec {Z} = (Vx ⊗ Vy) vec {Y}).
We now make some remarks regarding computational

cost. The direct product Ay in (16) requires approximately
1
2MxMyN2

xN2
y complex MACs when considering the Her-

mitian symmetry S. Evaluating (VyY)VT
x and Vy

(

YVT
x

)

requires N2
y MxMy + N2

xN2
y Mx and N2

xMxMy + N2
xN2

y My

complex MACs, respectively. Since Y is real-valued, the first

product can be optimized and the costs drop to 1
2N2

y MxMy +
N2

xN2
y Mx and 1

2N2
xMxMy + N2

xN2
y My complex MACs,

respectively. Using the first expression and neglecting the time

to obtain S from Z, the relative speedup in terms of MACs is

given by

1
2MxMyN2

xN2
y

1
2N2

y MxMy + N2
xN2

y Mx

=
MyN2

x

My + 2N2
x

.

If the array geometry is symmetric with respect to the y axis,

then Vx has conjugate symmetry with respect to its middle

row. An analogous statement applies to Vy . If applicable, these

symmetries can be used to further reduce the computational

cost.

Recall that we introduced Y as having scan lines which

realize an arbitrary Cartesian sampling of U-space. If {uxi
}

and {uyi
} uniformly sample U-space, then Vx and Vy can

be interpreted as DFT matrices for non-uniform frequency

sampling (this fact can be verified by explicitly writing Vx

and Vy in terms of complex exponentials). Therefore, for

sufficiently large values of Nx and Ny , a further optimization

consists of using a fast non-equispaced Fourier transform

(NFFT) [28] instead of each matrix product in (35). A rule

of thumb obtained from numerical experiments is to use the

NFFT for Nx > 8 or Ny > 8 and Mx > 28 or My > 28.

Details regarding the performance with and without the NFFT

are presented in Section V.

B. Fast adjoint transform

As we present in Section II of Part II, given a measured

spectral matrix S, many computationally efficient image recon-

struction methods require only fast implementations of A and

AH to estimate a source distribution Ŷ. A computationally

efficient reconstruction algorithm must have fast implemen-

tations of both, otherwise the slow transform becomes the

bottleneck for the solver.

Let S̄ ∈ C
N×N and Ȳ ∈ R

My×Mx such that vec
{

Ȳ
}

=
AHvec

{

S̄
}

. It follows from (36) that

AH =
(

VH
x ⊗ VH

y

)

ΞH . (37)

Since Ξ is a permutation, Ξ−1 = ΞT = ΞH . If vec
{

Z̄
}

=

ΞT vec
{

S̄
}

, then

Ȳ = VH
y Z̄V∗

x, (38)

which is the fast implementation of AH (note that it has the

same computational cost as the direct transform).

If the U-space sampling is symmetric with respect to the

y axis, then Vx has conjugate symmetry with respect to its

center column. An analogous statement applies to Vy. If

applicable, this symmetry can be used to further reduce the

computational cost.

For separable arrays which are uniformly sampled in U-

space, multiplication by Vx and Vy can again be optimized

using NFFTs, under the same considerations presented for the

direct transform.
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Table II
APPLICABILITY OF THE FFT, NFFT, NNFFT AND KAT

Transform Geometry U-space sampling Exact?

FFT Uniform Uniform Yes

NFFT Arbitrary Uniform No

NNFFT Arbitrary Arbitrary No

KAT Separable Separable Yes

C. Fast direct-adjoint transform

Given the direct transform A and its adjoint AH , consider

the transform given by AHA. This composition will be used

in Section II of Part II for image reconstruction, and in this

section we present a method of accelerating it further. Using

that ΞH = Ξ−1, it follows from the previous results that

vec
{

Ȳ
}

= AHAvec {Y} can be implemented as

Ȳ = VH
y VyYVT

xV∗
x. (39)

This implementation is especially interesting when Nx and Ny

are sufficiently large in comparison to Mx and My , because

it can be evaluated as

Ȳ =
(

VH
y Vy

)

Y
(

VT
xV∗

x

)

, (40)

with precomputed versions of VH
y Vy and VT

xV∗
x, which are

real-valued.

Implementing the direct-adjoint transform with (39) can

be much faster than using a composition of the direct and

adjoint KAT, because for large problems one can precompute

VH
y Vy and VT

xV∗
x. Furthermore, (39) can be parallelized

more effectively, since it avoids applying Ξ.

The implementations which use the NFFT for further accel-

eration are at a disadvantage for the direct-adjoint transform,

since one cannot precompute the equivalent of VH
y Vy and

VT
xV∗

x. Therefore, one is forced to use a composition of the

previously presented transforms.

IV. CONNECTIONS

In this section we briefly describe how the KAT relates

to the two-dimensional FFT, NFFT and NNFFT. To our

knowledge, the NFFT and NNFFT have never been applied

to acoustic imaging. With the exception of the NNFFT, each

transform is only suitable for specific array geometries or

U-space sampling patterns. Transforms which make more

restrictive assumptions about the array geometry and U-space

pattern can generally be more computationally efficient, so

the choice of which transform to use depends on a series of

tradeoffs, summarized in Table II.

Assume that the sampled wavefield is a zero-mean ran-

dom process which is stationary in time and homogenous in

space2. Consider a sensor array consisting of N microphones

at coordinates p0, ..., pN−1 ∈ R
3. For a fixed frequency

ω, the cross spectral matrix S (ω) = E
{

x (ω)xH (ω)
}

is

by definition a covariance matrix. For 0 ≤ m,n < N ,

2The random process model follows naturally from the fact that we do not
know a priori what the source waveforms are. We model this process using
its second-order statistics given by the cross-spectral matrix. Stationarity in
time and homogeneity in space let us estimate the power spectral density of
the process as a function of ω and k, which is the acoustic image of interest.

[S (ω)]m,n holds the frequency-domain cross-covariance of the

wavefield between any two points whose coordinates differ by

pm − pn. Let P (ω,k) = |Y (ω,k)|
2
be the power spectral

density when parameterized as a function of the wavenumber

k = −ω
c u ∈ R

3, and S (ω,∆p) be the spectral covariance

between two points whose coordinates differ by ∆p. It can be

shown [29] that

P (ω,k) =

ˆ

R3

S (ω,∆p) e+jkT ∆pd∆p (41)

S (ω,∆p) =
1

(2π)
3

ˆ

R3

P (ω,k) e−jkT ∆pdk, (42)

which is essentially a generalization of the relationship be-

tween cross-covariance and cross-spectral density for wide-

sense stationary spatial-temporal processes, and is expressed

as a Fourier transform.

Therefore, the knowledge of S (ω,∆p), limited to a finite

set of baselines ∆p, allows us to approximate a discrete

space version of P (ω,k), which is the image of interest. The

following connections arise naturally from different ways of

sampling these relations, in order to evaluate them numerically

for discrete space and discrete U-space.

A. NFFT imaging

A d-dimensional NDFT [28] (non-equispaced discrete

Fourier transform) is defined by a set of arbitrary spa-

tial nodes X and a frequency bandwidth vector M ∈
N

d. Each node xj belongs to the sampling set X =
{

xi ∈
[

− 1
2 , 1

2

)d
: 0 ≤ i < N

}

such that |X | = N , where |·|

indicates set cardinality. The index set

IN = Z
d ∩

d−1
∏

t=0

[

−
Mt

2
,
Mt

2

)

, (43)

defines a rectangular grid over which a function of interest is

sampled.

Given as input a set of samples hk ∈ C for k ∈ IN, the

NDFT is defined as

ĥi =
∑

k∈IN

hke−j2πkT xi , (44)

for 0 ≤ i < N .

The NFFT is a fast implementation of the NDFT obtained

by interpolating an oversampled FFT. It is an approximate

method which provides a very good compromise between

accuracy and computational complexity.

Let Y ∈ C
My×Mx be an image obtained by uniform

rectangular sampling of U-space with even Mx and My , and

sampling coordinates drawn from

Ũ =

{

2i

Mx

}Mx/2−1

i=−Mx/2

×

{

2j

My

}My/2−1

j=−My/2

. (45)

We now show that S can be obtained from Y using a 2D

NFFT. Due to the linearity of the NFFT, it suffices to show that

this transform is exact for an image containing one arbitrary

unit impulse at coordinates u0, which must be in the U-space

sampling grid.
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Using (9), for arbitrary −Mx

2 ≤ m0 < Mx

2 and −
My

2 ≤

n0 <
My

2 , define

u0 =









2m0

Mx
2n0

My
√

1 −
(

2m0

Mx

)2

−
(

2n0

My

)2









(46)

and

Yn,m =

{

1 if
(

m,n
)

=
(

m0 + Mx

2 , n0 +
My

2

)

0 otherwise.
(47)

By definition,

Sr,s =
[

v (u0)v
H (u0)

]

r,s
(48)

= ej ω
c uT

0 (pr−ps) (49)

= ej2πuT
0

(pr−ps)
λ (50)

= ej2π
uT
0
2

2(pr−ps)
λ . (51)

To obtain (51) using the NFFT, rectangular U-space sampling

and an arbitrary geometry of N microphones we use

M =
[

Mx My

]T
(52)

IN = Z
2 ∩

[

−
Mx

2
,
Mx

2

)

×

[

−
My

2
,
My

2

)

(53)

X =

{

xi =
2

λ

(

p⌊i/N⌋ − pmod(i,N)

)

⊙

[

M−1
x

M−1
y

]

: 0 ≤ i < N2

}

(54)

where ⊙ represents the pointwise (Hadamard) product and

the baselines pr − ps are represented only by their x and y

coordinates. We now show that this parameterization of the

NFFT produces the direct transform.

Once again,

Sr,s = ej2π
uT
0
2

2(pr−ps)
λ

= e
j2π

“

uT
0 ⊙

h

Mx

2
My

2

i”

„

2
λ (pr−ps)⊙

h

M−1
x M−1

y

iT
«

,
(55)

where u0 is also represented only by its x and y components.

Comparing (55) with (44), the first term in parenthe-

ses clearly belongs to IN. Since for 0 ≤ i < N2,
(

p⌊i/N⌋ − pmod(i,N)

)

spans all possible baselines, the second

term in parentheses belongs to X . The enumeration given

by (⌊i/N⌋ ,mod (i,N)) indexes the elements of S row by

row. Given the Hermitian symmetry of S, this is equivalent to

conjugating (55) and indexing the elements of S column by

column (in the order of vec {·}), making (55) equivalent to

(44).

It is possible to show that for uniform rectangular arrays

with horizontal and vertical inter-element spacings dx = dy =
λ/2 (where λ is the wavelength of the signal of interest),

this NFFT reduces to a 2D FFT. This implementation is not

convenient for aeroacoustic imaging, since: (i) the constraint

dx = dy = λ/2 can only be satisfied for one frequency, and

we are interested in wideband operation; (ii) the 2D FFT is

inefficient, since it ignores that image pixels significantly out-

number array sensors, and determines covariances for sensors

that do not exist; (iii) the 2D FFT requires uniform rectan-

gular geometries, which have their upper operating frequency

constrained by the Nyquist-Shannon sampling theorem.

The NFFT has the advantage of allowing arbitrary array

geometries, but as we will see in Section V, it is one order of

magnitude slower than the KAT. Furthermore, as will be shown

in Section VI, the KAT can be generalized to approximate the

spherical wave fronts due to near-field sources. In contrast, the

FFT, NFFT and NFFT require a far-field assumption.

Finally, the KAT has the advantage of allowing separable

(as opposed to uniform) U-space sampling grids. Acoustic

images are often formed by clusters of distributed sources (for

example, located over a model in a windtunnel) and large

regions with no significant sources. Thus, the KAT allows

one to oversample the regions which are expected to have

sources and undersample quiet regions, while maintaining low

computational requirements.

B. NNFFT imaging

By dropping the uniform sampling constraint (45) one

obtains the far-field array transform in its fullest generality.

This transform can be accelerated with the non-equispaced in

time and frequency fast Fourier transform (NNFFT). While the

NNFFT is significantly slower than the KAT and the NFFT,

it requires much less memory than the matrix representation

of A, which makes it useful for smaller problems that can be

solved offline.

Given as input a set of samples hl ∈ C for 0 ≤ l < L, the
NNDFT is defined as

ĥi =
L−1
∑

l=0

hle
−j2π(vl⊙M)T xi , (56)

for 0 ≤ i < N , and arbitrary vl,xi ∈
[

− 1
2 , 1

2

)d
. The NNFFT

is a fast approximation of the NNDFT.

To obtain (51) using the NNFFT, arbitrary U-space sampling

and an arbitrary geometry of N microphones we use xj ∈ X
and vl ∈ V , with

M =
[

Mx My

]T
(57)

V =

{

vl =
(uxl

2
,
uyl

2

)

∈

[

−
1

2
,
1

2

)2

: 0 ≤ l < M

}

(58)

X =

{

xi =
2

λ

(

p⌊i/N⌋ − pmod(i,N)

)

⊙

[

M−1
x

M−1
y

]

: 0 ≤ i < N2

}

(59)

which has the same form as (52)-(54), but allows arbitrary

U-space sampling.

V. COMPUTATIONAL COST

A. Asymptotic complexity

To simplify the following formulas, we will assume that

Nx = Ny and Mx = My . We will present the asymptotic

complexity for the direct and adjoint transforms.
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Table III
ASYMPTOTIC COMPLEXITY OF THE KAT, FFT, NFFT, NNFFT AND

EXPLICIT MATRIX REPRESENTATION.

Transform Complexity

KAT with matrix multiplication O
`

MN + M1/2N2
´

KAT with 1-D NFFTs O
`

M log M + M1/2N
´

2-D FFT O (M log M)
2-D NFFT O

`

M log M + N2
´

2-D NNFFT O
`

M log M + N2
´

Explicit matrix representation O
`

MN2
´

The product Ay in (16) requires approximately 1
2MN2

complex MACs to compute, and thus has complexity

O
(

MN2
)

. For the KAT, the cost of computing Ξ can be

neglected. Evaluating (VyY)VT
x with matrix multiplication

requires 1
2MN + M1/2N2 complex MACs, and thus has

complexity O
(

MN + M1/2N2
)

.

One can also evaluate (VyY)VT
x by interpreting each

matrix product as a 1-D NFFT. Evaluating VyY requires

Mx 1-D NFFTs, each with cost O
(

My log My + N2
y

)

[28].

The second product requires N2
y 1-D NFFTs, each with

cost O
(

Mx log Mx + N2
x

)

. Assuming that M1/2 > N , the

total complexity becomes O
(

M log M + M1/2N
)

. The direct

NFFT and NNFFT implementations both have complexity

O
(

M log M + N2
)

[28].

Table III summarizes these results. Note that since the

asymptotic complexity is similar for most of the fast trans-

forms, it simply guarantees that these methods will scale about

as well as an FFT. Nevertheless, the constants hidden in the

O (·) notation are significant. As we show next, the direct

NNFFT implementation is much slower than an KAT with 1-D

NFFTs, despite having a similar asymptotic complexity. Also,

since the A matrix is very large, memory bandwidth becomes

the limiting factor for the explicit matrix representation. Thus,

the constant hiding in the O (·) notation for the explicit

matrix representation is greater than the MAC count suggests.

Furthermore, for practical problem sizes one does not have

enough memory to store a full matrix representation and is

forced to recompute the rows of A every time a matrix-

vector product is required. This can dramatically increase the

computational cost of the explicit matrix representation.

B. Numerical benchmarks

This section presents experiments to assess the execution

times for the KAT, the NFFT and the NNFFT. Even though the

relative performance of algorithms based on matrix multiplica-

tion can be easily estimated in terms of MACs, actual runtimes

can deviate significantly from these estimates for certain

problem sizes. Indeed, for modern architectures, performance

is strongly dependent on the interaction of parallel arithmetic

units, memory bandwidth, cache size and branch prediction,

such that the number of floating point operations only serves

as an approximate measure of computational complexity.

The runtimes presented in Figs. 2 and 3 are averages

collected over 10 seconds for each algorithm and problem size.

All simulations were run on an Intel Core 2 Duo T9400 pro-

cessor in 64-bit mode, using only one core. The permutation

Ξ which obtains S from Z was written in ANSI C, the NFFT
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Figure 2. Runtimes for the direct transform. ▽: KAT implemented with
matrix multiplication, ×: KAT implemented with 1-D NFFTs replacing matrix
multiplication, +: direct NFFT implementation with (52)-(54), ∗: direct
NNFFT implementation with (57)-(59), △: explicit matrix representation.
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Figure 3. Runtimes for the adjoint transform. ▽: KAT implemented with
matrix multiplication, ×: KAT implemented with 1-D NFFTs replacing matrix
multiplication, +: direct NFFT implementation with (52)-(54), ∗: direct
NNFFT implementation with (57)-(59), △: explicit matrix representation.

library was compiled with default optimizations as used by

its authors, and all other functions were written in M-code

for MATLAB R2008b. Since the code does not feature time

consuming loops and MATLAB uses the Intel Math Kernel Li-

brary for matrix and vector arithmetic, the proposed transforms

run very much like machine-specific tuned code. MATLAB

and the NFFT use FFTW [31] for computing FFTs, such that

they also run like machine-specific code. Thus, having the code

written in MATLAB actually incurs negligible computational

overhead when compared to an optimized implementation in

C and machine-specific assembly code.

The computational cost of efficient convex optimization

methods (and in particular, of the regularized least-squares

methods presented in Part II) is completely dependent on the

cost of applying A, AH , Ψ and ΨH . Since Ψ depends on the

regularization method and can be chosen to be very fast, the

bottleneck is on applying A, AH and possibly AHA. Thus,

from the runtimes of A, AH and AHA presented in this

section, one can assume with good approximation that an K-

fold decrease in computational time translates to an algorithm

which reconstructs an image K times faster.

It is clear that the KAT with the NFFT optimization is the

fastest transform for arrays with more than 64 elements (Nx >
8 and Ny > 8). This is the case because as Vx and Vy grow,

the NFFT scales better than matrix multiplication. The direct

implementation with the NFFT is useful if one must have an
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Figure 4. Runtimes for the direct-adjoint composition. ▽: KAT implemented
with (39), ×: KAT implemented with the composition A and AH , with the
1-D NFFT optimization, +: 2D FFT-accelerated convolution, ∗: composition
of the explicit matrix representation.

arbitrary array geometry, but it has the drawback of being

around an order of magnitude slower and requiring a far-field

approximation (as we show in Section VI, the KAT can be

extended for near-field imaging). The direct implementation

with the NNFFT is by far the slowest. For all implementations,

the direct and adjoint transforms perform similarly.

Fig. 4 presents runtimes for the direct-adjoint composi-

tion. The implementation using (39) analyzes the problem

size and automatically selects the optimal order for matrix

multiplication. For large values of Nx and Ny , it also uses

precomputed versions of VH
y Vy and VT

xV∗
x, which makes

the computational complexity depend only on Mx and My .

The NFFT implementation uses a composition of the direct

and adjoint transforms, without any additional optimizations.

As is shown in Part II, under a far-field assumption and uni-

form U-space sampling, the direct-adjoint composition reduces

to a 2D convolution of the input image with the array point-

spread function. Thus, it can be accelerated with a 2D FFT

(with zero padding to prevent edge effects). Fig. 4 shows that

the direct-adjoint composition implemented with the KAT also

outperforms 2D FFT accelerated convolutions. As we show in

the following section, the KAT can be generalized to near-

field scenarios, allowing us to drop the far-field assumption.

Note that for near-field cases, the direct-adjoint composition

no longer reduces to a convolution, and KAT becomes the only

fast transform suitable for imaging.

Finally, the KAT has the additional advantage of being

easy to implement and parallelize, since it only requires

relatively small matrix multiplications and computationally

efficient permutations.

VI. NEAR-FIELD IMAGING

Up to this point, we have assumed that the sources were

located in the far-field. Thus, we used a plane wave model. In

this section, we show how to generalize the KAT and address

near-field scenarios, where one has spherical wavefronts.

Note that the KAT does not impose any structure onto the

array manifold vector other than its separability. The specific

far-field representation was only chosen for convenience, since

for any Cartesian geometry, the far-field array manifold vector

is separable. Nothing prevents us from choosing a different

separable representation that is more suitable for the near-field

case. In this section, we show that the problem of finding

the best separable representation can be recast as a rank-1

approximation of a rearranged version of Ξ−1A = ΞT A.

By using a rank-K approximation (for K > 1), one is able to

obtain an arbitrarily accurate model for near-field propagation,

while maintaining low computational requirements.

To simplify the language in this section, we will use the

following notation. Given suitably sized matrices A, B, C,

we use C = A (B) to denote vec {C} = Avec {B}.

We approximate A by Ă = Ξ
(

∑K
k=1 Ck ⊗ Dk

)

, for

small values of K. Note that S = Ă (Y) can be efficiently

implemented as S = Ξ
(

∑K
k=1 DkYCT

k

)

. Comparing with

(36), we are approximating the near-field transform A with a

series of K separable transforms, to which we can apply the

KAT.

Let us consider the problem of approximating a generic

B ∈ C
m×n with m = m1m2 and n = n1n2 with a sum of

Kronecker products, such that

min
{Ck},{Dk}

∥

∥

∥

∥

∥

B −

K
∑

k=1

Ck ⊗ Dk

∥

∥

∥

∥

∥

F

,

where Ck ∈ C
m1×n1 and Dk ∈ C

m2×n2 for 1 ≤ k ≤ K.

This problem is addressed in [32], where it is shown to be

equivalent to

min
{Ck},{Dk}

∥

∥

∥

∥

∥

R (B) −

K
∑

k=1

vec {Ck} ⊗ vec {Dk}

∥

∥

∥

∥

∥

F

, (60)

where R (·) is a matrix rearrangement operator such that

R (B) ∈ C
m1n1×m2n2 . This is a low-rank approximation

problem which can be solved with the SVD of R (B).
For our purposes, we approximate B = Ξ−1A. We note

that Ξ is the key to a successful low-rank decomposition. As

we show later in this section, using B = A is not useful, since

R (A) has too many significant singular values.

Computing the dominant singular values and vectors of

R (B) is not trivial, since in practice R (B) is too large to be

stored explicitly in memory. Nevertheless, one can use Lanc-

zos methods [32], [33] which only require the implementation

of the matrix-vector products R (B) α and R (B)
H

β for

arbitrary α, β. One can also use approximate SVD methods

which are designed to require a small number of passes over

R (B) (e.g. [34], [35]).

Using the definition of R (·) from [32], it can be shown that

R (B)
T

=







Z0,0 · · · ZMx−1,0

...
...

Z0,My−1 · · · ZMx−1,My−1






(61)

Zm,n = Ξ
(

v (uxm
, uyn

)vH (uxm
, uyn

)
)

. (62)

Since v (uxm
, uyn

) can be precomputed for 0 < m < Mx and

0 < n < My and Ξ is a very fast permutation, R (B)α and

R (B)
H

β can be evaluated with relative efficiency. Indeed,

using the Lanczos method from [33], N = 64 and Mx =
My = 256, we can solve (60) for K = 8 in 8 minutes on
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of 16384, normalized to 1.

an Intel Core 2 Duo 2.4 GHz processor, using only one core.

Note that this procedure only has to be performed once.

The decomposition obtained with (60) is especially useful

for K > 1. Indeed, even in the presence of strong near

field effects, R (B) can be well approximated by a low-rank

decomposition. Even though the transform cost grows linearly

with K, due to the Kronecker representation, the cost of

applying each Ck ⊗ Dk is very small, so a transform with

K = 8 is still very fast.

Since we discretize the focal surface with Cartesian sam-

pling grids, some images may have invalid regions. For exam-

ple, one can parameterize a spherical half-shell with radius r0

using ux = r0 sinφ cos θ and uy = r0 sinφ sin θ for ‖u‖ ≤ r0,

such that source locations for ‖u‖ > r0 are invalid. Note

that this implies that some Zm,n in R (B) are not defined.

Referring to (60), the optimal Ck, Dk are now given by

min
{Ck},{Dk}

∥

∥

∥

∥

∥

W ⊙

(

R (B) −
K

∑

k=1

vec {Ck} ⊗ vec {Dk}

)∥

∥

∥

∥

∥

F

,

where ⊙ is the pointwise (Hadamard) product and W is a

binary mask set to 1 for valid elements and 0 for invalid el-

ements of R (B). This masked-SVD problem was considered

in [36], and can be solved by iterating

E(i) = LRAK

(

W ⊙R (B) + (1− W) ⊙ E(i−1)
)

,

where LRAK (·) is a rank-K approximation as computed by

the SVD, E(i) =
∑K

k=1 vec{C
(i)
k } ⊗ vec{D

(i)
k } and E(0) =

0. In our experiments, 1 or 2 iterations have shown to be

sufficient for a good fit.

Fig. 5 compares the first 100 (out of a total of 16384)

singular values for R (A) and R
(

ΞT A
)

. In this experiment,

A models 256× 256 sources radiating at 9 kHz, located over

a spherical half-shell with a radius of 1.0 m, as measured by

an 8 × 8 separable array with a 30 cm × 30 cm aperture (this

configuration is the same used in the examples from Part II).

The sharp decay of the curve for R
(

ΞT A
)

highlights the

importance of Ξ in enabling an accurate low-rank approxi-

mation. For lower frequencies, the singular values show an

even sharper roll-off. Also, this transform models the complete

hemisphere. By modeling a smaller field of view, near-field

effects are not as severe and the singular values also decay

faster.

Note that by using a rank-K approximation, we obtain a

transform with a computational cost that is K times larger

than the far-field KAT presented in the previous sections.

Nevertheless, as we show in Part II, K will be small enough

that this penalty is not significant. In fact, we will show that

it is possible to compensate for strong near-field effects with

K = 8, which makes the KAT about as fast as the NFFT,

while being able to model arbitrary near-field focal surfaces.

VII. CONCLUSION

This paper presents the Kronecker array transform (KAT),

which was designed to enable computationally efficient and

accurate acoustic imaging. To obtain a fast implementation,

we assumed a separable microphone array, source parameter-

ization in U-space and far-field sources. The KAT transforms

back and forth between a hypothetical source distribution and

the corresponding covariance matrix which would be measured

by the array. Another contribution is the novel application of

the NFFT and NNFFT to acoustic imaging, which we used as

baselines against which our proposal was compared.

The KAT is orders of magnitude faster than equivalent

implementations using explicit matrix representations. Despite

the fact that the NFFT and NNFFT are already fast transforms,

we have shown in Section V that our proposal is at least

one order of magnitude faster than them. In contrast with

FFT- and NFFT-based transforms, the KAT allows arbitrary

Cartesian samplings of the source distributions, which let one

oversample regions with sources and undersample silent areas

without performance degradation. Also in contrast with the

NFFT, the KAT makes no numerical approximations, and

can be more easily implemented and parallelized, since it

only requires relatively small matrix products and simple

permutations.

Even though the KAT was motivated with the far-field

assumption, it does not impose any structure onto the array

manifold vector other than its separability. We have used

this fact to extend it for near-field imaging, providing a

computationally efficient approximation of the exact near-field

transform.

Future work involves developing fast transforms for other

array geometries. In contrast with the KAT, which is exact for

far-field sources, transforms for other geometries will most

likely require approximations to obtain good performance.

Furthermore, the KAT can be generalized for correlated dis-

tributions, which we also intend to address in future work.
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