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RESUMO

Neste texto são propostos algoritmos de filtragem adaptativa de baixo custo computa-
cional para o processamento de sinais lineares no sentido amplo e para beamforming.

Novas técnicas de filtragem adaptativa com baixo custo computacional são desen-
volvidas para o processamento de sinais lineares no sentido amplo, representados por
números complexos ou por quaternions. Os algoritmos propostos evitam a redundância
de estat́ısticas de segunda ordem na matriz de autocorrelação, o que é obtido por meio
da substituição do vetor de dados original por um vetor de dados real contendo as mes-
mas informações. Dessa forma, evitam-se muitas operações entre números complexos (ou
entre quaternions), que são substitúıdas por operações entre reais e números complexos
(ou entre reais e quaternions), de menor custo computacional. Análises na média e na
variância para qualquer algoritmo de quaternions baseados na técnica least-mean squares
(LMS) são desenvolvidas. Também é obtido o algoritmo de quaternions baseado no LMS
e com vetor de entrada real de mais rápida convergência.

Uma nova versão estável e de baixo custo computacional do algoritmo recursive least
squares (RLS) amplamente linear também é desenvolvida neste texto. A técnica é mo-
dificada para usar o método do dichotomous coordinate descent (DCD), resultando em
uma abordagem de custo computacional linear em relação ao comprimento N do vetor de
entrada (enquanto o algoritmo original possui custo computacional quadrático em N).

Para aplicações em beamforming, são desenvolvidas novas técnicas baseadas no algo-
ritmo adaptive re-weighting homotopy. As novas técnicas são aplicadas para arrays em
que o número de fontes é menor do que o número de sensores, tal que a matriz de auto-
correlação se torna mal-condicionada. O algoritmo DCD é usado para obter uma redução
adicional do custo computacional.

Palavras-Chave – Filtros adaptativos de baixo custo computacional, processamento de
sinais lineares no sentido amplo, dichotomous coordinate descent, adaptive re-weighting
homotopy, beamforming



ABSTRACT

In this text, low-cost adaptive filtering techniques are proposed for widely-linear pro-
cessing and beamforming applications.

New reduced-complexity versions of widely-linear adaptive filters are proposed for
complex and quaternion processing. The low-cost techniques avoid redundant second-
order statistics in the autocorrelation matrix, which is obtained replacing the original
widely-linear data vector by a real vector with the same information. Using this ap-
proach, many complex-complex (or quaternion-quaternion) operations are substituted by
less costly real-complex (or real-quaternion) computations in the algorithms. An analysis
in the mean and in the variance is performed for quaternion-based techniques, suitable for
any quaternion least-mean squares (LMS) algorithm. The fastest-converging widely-linear
quaternion LMS algorithm with real-valued input is obtained.

For complex-valued processing, a low-cost and stable version of the widely-linear re-
cursive least-squares (RLS) algorithm is also developed. The widely-linear RLS technique
is modified to apply the dichotomous coordinate descent (DCD) method, which leads
to an algorithm with computational complexity linear on the data vector length N (in
opposition to the original WL technique, for which the complexity is quadratic in N).

New complex-valued techniques based on the adaptive re-weighting homotopy algo-
rithm are developed for beamforming. The algorithms are applied to sensor arrays in
which the number of interferer sources is less than the number of sensors, so that the
autocorrelation matrix is ill-conditioned. DCD iterations are applied to further reduce
the computational complexity.

Keywords – Low-cost adaptive filtering, widely-linear processing, dichotomous coordi-
nate descent, adaptive re-weighting homotopy, beamforming.
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1 INTRODUCTION

Signal processing techniques deal with restrictions, imposed by hardware and software

limitations. These restrictions are strongly related to energy consumption and processing

speed, which, in general, are antagonist variables. Since for many applications low energy

consumption and fast processing are required, modern engineering is always seeking for

ingenious alternatives to obtain a reasonable trade off, trying to satisfy them both. For this

purpose, one can improve hardware and/or the algorithms applied to signal processing.

In this dissertation, we focus on the improvement of algorithms, and we propose new

alternatives to reduce the computational cost of adaptive filters.

In the first part of this text, we focus on the development of low-cost widely-linear

(WL) adaptive filters [1,2], which are applied to signals represented by complex numbers

and quaternions [3]. WL algorithms were first proposed in the context of complex-valued

estimation, to improve the mean-square error (MSE). They are applied in cases where the

standard techniques are not able to extract full second-order information from the input

data [1,2,4]. The standard methods – also known as strictly-linear (SL) – aim to estimate

a complex-valued scalar d using a set of data x, through the linear relation

ySL = wH
SL
x, (1.1)

where wSL is a vector with the estimation parameters and (·)H stands for the Hermitian

transpose. This approach assumes that the autocorrelation matrix C = E{xxH} [5] is

enough to describe all second-order statistics of x, and the input is defined as proper [2].

However, there are cases – which are detailed in Chapter 2 – in which an additional matrix

P = E{xxT} is needed ((·)T stands for transposition). P is the pseudo-correlation matrix

[1], and when it is also used, the estimate is given by

yWL = wH
WL,1

x+wH
WL,2

x∗. (1.2)

yWL is called a “widely linear” estimate of d, since it depends linearly not only on x, but

also on x∗.
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SL techniques are the standard methods in complex adaptive filtering problems. In

references [6] and [7], which assume x proper, SL adaptive filters are applied to channel

estimation, acoustic echo cancellation, active noise control, adaptive beamforming, among

many other applications. WL adaptive techniques, on the other hand, can be applied to

enhance the estimation of the direction of arrival (DOA) in sensor arrays, if the signal

of interest or the interferers are improper [8]. Some modulation schemes applied in com-

munications also produce improper baseband signals, such as binary phase shift keying

(BPSK) and pulse amplitude modulation (PAM) [8, 9], requiring a WL approach for the

best performance to recover the transmitted data. Additionally, signals obtained in func-

tional magnetic resonance imaging (fMRI) [10], and applied to predict the direction of

ocean currents and wind fields [11] are improper and also benefit from WL estimation.

Many other examples of complex WL adaptive filtering applications can also be found in

[10, 11], in which this approach is carefully addressed.

Quaternion adaptive filters employ quaternion numbers to concisely represent mul-

tivariable data, which may not be possible with a complex-valued representation. They

naturally exploit the relation between the quaternion entries to improve their estima-

tion, which motivated the development of different SL and WL techniques (for instance,

[12–19].) SL quaternion adaptive filters are applied to predict wind direction [14,19], de-

noising coloured images [17] and for data fusion [14]. Quaternion Kalman filters are also

applied to navigation problems [20,21], since a quaternion approach leads to a orientation

representation free of singularities (which does not occur when Euler angles are applied,

for instance). Quaternion WL adaptive filters are applied to improve wind modelling [14],

for channel prediction [22], and also to predict 3D noncircular and nonstationary body

motion signals [19].

Despite the improved MSE performance that can be obtained with WL algorithms,

the computational cost to compute yWL is higher, since the vectors and matrices have their

dimensions multiplied by two (in the case of complex-valued representation) or by four

(when quaternions are applied). There is also redundant information in the WL input

vector, that can be avoided with no information loss. In this text, we develop techniques

that are able to exclude redundance, helping to reduce the computational cost. For this

purpose, we apply a real input vector with the same information of the WL input, ob-

tained stacking up the real and the imaginary parts of the original WL data vector. Using

this approach, we eliminate the redundant data and also replace many complex-complex

(quaternion-quaternion) computations by less costly real-complex (real-quaternion) oper-

ations in the estimation. In Chapters 2 and 3, we show that reduced-complexity (RC)
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techniques, obtained with the real input vector, have exactly the same performance as

their original WL counterparts. For the quaternion algorithms, we develop a general ap-

proach to describe quaternion gradients, and we use it to obtain mean and mean-square

analyses for any technique based on the quaternion least-mean squares (QLMS) algo-

rithm. The analyses are particularized for WL-QLMS algorithms with real-valued input,

and we obtain the fastest-converging technique for this case.

In the second part of this text (Chapters 4 and 5), we employ dichotomous coordinate

descent iterations (DCD) [23,24] to develop reduced-complexity techniques. The DCD is

an iterative algorithm for solving linear systems of equations such as

Rw = p, (1.3)

where R = RH is a positive-definite matrix and w and p are vectors. The algorithm

computes an approximate solution ŵ, that is obtained with low computational cost, since

it avoids multiplications and divisions, costly to implement in hardware. In adaptive

filtering, among many applications (for instance [25–31]), it is applied to obtain a low-

cost solution for the least-squares (LS) problem [25, 28], the DCD-RLS algorithm. The

technique applies the solution of instant n − 1 as the initial condition to instant n, so

that DCD only requires a low number of iterations to compute the update of the solution.

Using this approach, DCD-RLS is implemented with computational cost linear in the

number of elements N of the input, while traditional RLS is quadratic in N . The solution

is numerically stable, since the technique does not propagate the inverse autocorrelation

matrix (as it occurs in the standard RLS [32]).

In this dissertation, motivated by the results of DCD-RLS, we use DCD in two appli-

cations. In the first, we modify the reduced-complexity WL-RLS algorithm, presented in

Chapter 2, to employ DCD iterations. Since RC-WL-RLS is an RLS-based technique, its

computational complexity is quadratic with the number of elements of the input vector,

and it also suffers from numeric instability. Modifying the technique to apply the DCD,

we obtain the DCD-WL-RLS algorithm. To further reduce the computational cost, we

apply the new technique for cases in which the entries of the real and the imaginary parts

of the input are tap delay-lines, so that a cheap update of the estimated autocorrelation

matrix can be employed. Using this approach, a low-cost (linear in N) and stable version

of WL-RLS is obtained.

In the second application using DCD, we develop algorithms for beamforming [7]. In

sensor-arrays, when the number of sources is less than the number of sensors, the auto-
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correlation matrix can become ill-conditioned. Since this matrix is required to compute

the beamformer, regularization must be added to reduce the condition number. There

are some techniques in the literature (for instance, [33–35]) that regularize the autocor-

relation matrix, allowing the computation of beamformers such as the MVDR (minimum

variance distortionless response) [7]. However, these methods are in general costly and

depend on the number of sensors, such that for a large number of sensors, the complexity

to compute the beamformer can become prohibitively high. Techniques such as the robust

Capon beamformer [33], for instance, have complexity cubic in the number of sensors, and

can be very difficult to implement for large arrays.

To develop low-cost techniques to regularize the autocorrelation matrix, we use an ℓ1-

norm regularized approach, based on complex-homotopy techniques [36, 37]. In general,

ℓ1-norm regularized techniques are applied to exploit sparsity on systems of equations.

For our approach, we show that it allows us to add the minimum amount of regularization

to the matrix, leading to a low-cost solution and also improving the signal-to-interference-

plus-noise ratio (SINR). Based on the complex homotopy (CH) [36] and on the adaptive

re-weighted homotopy (ARH) [37] algorithms, we propose the complex ARH (C-ARH),

and we use it to develop low-cost iterative techniques to regularize the autocorrelation

matrix. It is shown that the techniques must solve a set of low-dimension system of

equations at each snapshot, which can be computed at reduced cost using DCD. We

show that the DCD-based techniques have quadratic complexity in the number of sensors

N , if the number of interferers does not increase with N . If the number of interferers

grows linearly with N , the complexity increases, but it is shown that our approach is still

advantageous for a range of values of N .

The publications that resulted from the research presented in this PhD dissertation

are the following:

1. The low-cost WL techniques developed in Chapter 2 were presented in the conference

paper [38].

2. The advances regarding reduced complexity quaternion WL adaptive filters were

presented in two conference papers ([18] and [39]), and a journal paper is being

prepared.

3. The DCD-WL-RLS algorithm of Chapter 4 was presented in the conference paper

[29].

4. Preliminary results with the beamforming algorithms appeared in the conference



21

paper [40]. A journal paper [41] was accepted for publication in the IEEE Trans-

actions on Aerospace and Electronic Systems, and is expected to be published in

July.

1.1 Contributions of this work

The main contributions of this text are the following:

1. New reduced-complexity adaptive algorithms are proposed for complex-valued and

quaternion WL estimation. The complexity reduction is achieved by eliminating

the redundant second-order statistics from the autocorrelation matrix. The compu-

tational complexity of the new algorithms is shown to be equal to that of their SL

counterparts.

2. We obtain a general equation for the quaternion gradient, which allows us to study

the convergence and steady-state performance of any algorithm based on the quater-

nion least-mean squares technique (QLMS). The general gradient is applied to show

that gradients similar to the i-gradient [42] lead to a fastest-converging algorithm

when the regressor vector is real or when there is correlation between at most two

quaternion elements (for instance, the real entries and the elements in the i axis).

3. The general quaternion gradient is used to obtain a new WL quaternion LMS al-

gorithm. The proposed technique has about one-fourth of the computational com-

plexity of the standard widely-linear quaternion LMS filter, and is proved to be the

fastest-converging algorithm in its class.

4. A second-order analysis is proposed for the new quaternion algorithm. We obtain

simple equations to compute the steady-state excess mean-square error (EMSE) and

the mean-square deviation (MSD) [32], and also a second-order model to study the

convergence rate of the technique.

5. We show that our new quaternion algorithm and WL-iQLMS have the same conver-

gence performance. We also prove that the proposed technique corresponds to the

four-channel least-mean squares algorithm (4-CH-LMS) written in the quaternion

domain.

6. We obtain a low-cost and numerically stable DCD version of the RC-WL-RLS al-

gorithm, which is suitable for tap delay-line input. The technique has a cost pro-

portional to N , where N is the length of the SL input.



22

7. We obtain new low-cost homotopy-based techniques for beamforming. The tech-

niques are proposed to regularize ill-conditioned systems of equations which appear

in the computation of the beamformer. Using this ℓ1-norm regularized approach, we

obtain low-cost techniques, which achieve further complexity reduction when they

also apply DCD iterations.

1.2 Organization of the text

The dissertation is divided in two parts: in the first part, we propose low-cost tech-

niques which eliminate the redundant second-order information from the autocorrelation

matrix in complex and quaternion widely-linear adaptive filters. In the second part, we

propose WL adaptive filters and beamforming techniques which exploit DCD-iterations

to obtain low-cost algorithms, suitable for hardware implementation.

In Chapter 2, we study complex-valued widely-linear estimation, introducing some

basic concepts that will be used throughout the text. We compare SL and WL estimation,

and we show the conditions under which WL techniques are advantageous. We develop

two new techniques for complex-valued widely-linear estimation: the RC-WL-LMS and

the RC-WL-RLS algorithms.

In Chapter 3, we propose a universal description to quaternion gradients, which allows

us to develop a new reduced-complexity WL algorithm.

Chapter 4 starts presenting the DCD algorithm and its two versions. The DCD is

extended to solve the normal equations of the RC-WL-RLS, resulting in the new low-cost

DCD-WL-RLS algorithm.

In Chapter 5, we develop low-cost beamforming techniques based on the ℓ1-norm

regularized adaptive re-weighting homotopy technique. DCD iterations are used to further

reduce computational complexity.

In Chapter 6, we list and discuss briefly some possibilities to continue the research.

In Chapter 7, we conclude the work.

1.3 Notation

We use lower case to describe scalar quantities (e.g.: a) and bold lower case to describe

column vectors (e.g.: b). Bold capital letters represent matrices (e.g.: A). al stands for
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the l-th column of A, while al,m denotes the entry of A in the l-th row and in the m-th

column. We use A(l:m,p) to obtain the elements from the position l to m, in the p-th

column of A. For a vector b, we denote bl as its l-th element. The conjugation of a

complex or quaternion number is denoted by (·)∗. (·)T stands for transposition, while

(·)H indicates the transposition and conjugation of a complex or quaternion matrix or

vector. We define the operator diag(·) for two situations: when the argument is a matrix

A, diag(A) denotes a column vector with the diagonal elements ofA. When the argument

is a vector b, diag(b) denotes a diagonal matrix where the non-zero elements are given

by b. We use j to identify the imaginary unity (j =
√
−1) in the complex field, and

we employ i, j and k as the imaginary units in the quaternions case. The operations

Im{·} and Re{·} take only the imaginary and the real parts of a complex number or a

quaternion, respectively, and we use the subscripts R, I, J and K to identify the real and

the imaginary parts of a quaternion. E{·} is the expectation operator and IN is the N×N
identity matrix. We use col(·) to define a column vector, and || · ||p is the ℓp-norm. 0M×N

correspond to an M ×N matrix of zeros. The symbol ⊗ denotes the Kronecker product.
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LOW-COMPLEXITY WIDELY LINEAR

ALGORITHMS
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2 LOW-COMPLEXITY WIDELY-LINEAR

ADAPTIVE ALGORITHMS FOR

COMPLEX-VALUED SIGNALS

Widely-linear algorithms are employed to extract full second-order statistics, when

their strictly-linear counterparts are unable to access this information.

Strictly linear adaptive filters are the standard approach to adaptive filtering problems

in the complex domain. In the first applications of complex estimation, the SL approach

was sufficient ([8] states that only after the 1990s WL estimation started to attract more

attention). Therefore, important reference books such as [7] and [32] present adaptive

techniques in the complex domain following only the SL approach, under the assumption

that the autocorrelation matrix is sufficient for capturing all the relevant second-order

information. In this case, all the applications and examples presented in these books

use SL techniques. An example of application in which an SL approach can capture full

second-order statistics can be obtained from [32]: an adaptive channel equalization scheme

applied to recover aM-QAM (M = 4k) sequence of symbols (quadrature-amplitude mod-

ulation) corrupted by Gaussian noise. In this case, the autocorrelation matrix can fully

extract second-order information from the M-QAM sequence [9], so that an SL adap-

tive filter is the best approach for this problem. Another modulation scheme for which

SL filters are the best choice is 8-PSK (phase-shift keying) [9]. In the context of array

processing, SL algorithms also are adequate to estimate the direction of arrival (DOA)

when the signal (or signals) of interest are obtained from one of these modulations [8] –

or other inputs for which the pseudo-correlation matrix vanishes. However, other modu-

lation schemes applied in communications, such as binary phase shift keying (BPSK) and

pulse amplitude modulation (PAM) [8,9], cannot be properly processed by SL approaches.

The prediction of the direction of wind fields and of ocean streams [11] also achieve lower

MSE when performed by a WL adaptive filter. There are also other applications and

techniques developed for WL processing, such as [43] and [44], applied for beamforming,

and [29, 38], used for system identification, among many others. For all these cases, an

SL adaptive filter would lead to poor performance.
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The WL approach has a drawback when compared to traditional SL algorithms: the

complex WL regressor vector is twice as long as the traditional SL vector, since the WL

regressor consists of a concatenation of the SL regressor and its conjugate. This results

in an increase of the computational complexity, an increase in the excess mean-square

error, and possibly also (most importantly for LMS-based algorithms) a reduction in

convergence speed [2]. All these problems may overshadow the possible estimation gains

for some applications.

In this chapter, we present reduced complexity versions of the widely-linear LMS and

RLS algorithms. For this purpose, we introduce a real regressor vector obtained with the

concatenation of the real and the imaginary parts of the complex data. With this simple

modification, we exclude redundant second-order information from the autocorrelation

matrix, and the computational complexity of the WL filters is reduced back to almost

the complexity of strictly linear filters. We prove that the modified filters are equivalent

to their standard WL counterparts, only with a reduced complexity, and we give a few

examples for the modified WL-LMS and WL-RLS algorithms.

The specific contribution of this chapter is the following:

• We use a linear transformation to show that the redundant terms of the correla-

tion matrix can be avoided, without loosing second-order information. Using this

approach, we obtain new versions of the WL-LMS and WL-RLS algorithms, which

keep the same performance as the standard WL filters, but reduce the computational

cost by a factor of one half or less.

The chapter is organized as follows. We start with a brief review on adaptive filtering

algorithms in Section 2.1.1. In Section 2.1.2, we present basic results on SL and WL com-

plex estimation, and in Section 2.2, we propose new reduced-complexity WL techniques

based on real-valued regressor vector. In Section 2.3, we provide simulation examples,

and in Section 2.4 we present the conclusions of the chapter.

2.1 Preliminaries

In this section, we present some preliminary concepts required to develop our reduced-

complexity widely-linear techniques. We start with a brief description of adaptive filtering

techniques, and then we present some results about widely-linear estimation.
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2.1.1 Adaptive filtering

Adaptive filters [24,32,45] are applied when the specifications are unknown or cannot

be satisfied by time-invariant filters. The parameters of an adaptive filter continually

change to meet a performance requirement, using data extracted from the environment.

Some applications of adaptive filtering are noise canceling, echo cancellation, system iden-

tification, equalization, adaptive beamforming and control [7, 24, 32, 45], among many

others .

In general, it is assumed in adaptive filtering that at the time instant n a scalar d(n)

and a vector x(n) are available. The expression that models the relation between d(n)

and x(n) is given by1

d(n) = wH
opt
x(n) + v(n), (2.1)

where wopt is the set of optimum parameters, assumed constant here for simplicity, and

v(n) is noise. The goal of the adaptive filter is to compute an approximation

y(n) = wH(n)x(n), (2.2)

where w(n) estimates wopt. Using d(n) and y(n), an approximation error is defined, i.e.,

e(n) = d(n)− y(n), (2.3)

which is applied by the filter to adjust w(n), based on some optimization criterion that

minimizes a function of e(n) (for instance, f(e) = e2(n)) with respect to w(n) (see

Figure 1).

e(n)

x(n) Adaptive

Filter

y(n)

d(n)

Figure 1: General description of an adaptive filter

There are different ways to update w(n), which gives rise to many techniques. When

f(e) = e2(n), the technique obtained is the least mean-squares (LMS) algorithm [45],

which is presented in Table 1. Using the LMS algorithm, an iterative update of w(n)

is computed at each instant n, where the update is weighted by a small constant µ,

1It is assumed that we deal with complex quantities.
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Table 1: LMS algorithm

Initialization
w(0) = 0

for n = 0, 1, 2, 3...
y(n) = wH(n)x(n)
e(n) = d(n)− y(n)
w(n + 1) = w(n) + µe∗(n)x(n)

end

the step size of the technique. When the function to be minimized is given by f(e) =
∑n

i=0 ν
n−ie2(i), the recursive least-squares (RLS) algorithm [45] is obtained. The tech-

nique is summarized in Table 2, where Φ(n) is the estimate of the inverse autocorrelation

matrix, while k(n) is the Kalman gain and γ(n) is the conversion factor. ν is the forgetting

factor and ǫ is a small constant for initializing Φ(n).

Table 2: RLS algorithm

Initialization
w(0) = 0
Φ(0) = ǫI

for n = 0, 1, 2, 3...
γ(n) = (ν + xH(n)Φ(n)x(n))−1

k(n) = Φ(n)x(n)γ(n)
e(n) = d(n)−wH(n)x(n)
w(n+ 1) = w(n) + k(n)e∗(n)

Φ(n+ 1) =
1

ν
(Φ(n)− k(n)kH(n)γ(n))

end

Note that the techniques presented in this section assume that d(n) is modeled by

(2.1), such that (2.2) is a good approximation to d(n). These techniques are SL algorithms,

since the estimate is linear in x(n). On the other hand, WL approaches assume that d(n)

is better modeled by

d(n) = wH
opt,1

x(n) +wH
opt,2

x∗(n) + v(n), (2.4)

so that two times more coefficients are estimated, increasing the computational complexity

of the algorithms. In this text, we concentrate on WL techniques, but we propose alter-

native versions to reduce the number of computations. In the next section, we present

WL estimation in detail, which is the basis to develop the reduced-complexity techniques

proposed in this work.
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2.1.2 Complex-valued widely linear estimation

In this section, SL and WL estimation are presented based on the results of [1] and [2].

We start with SL estimation, and present some literature results which allow us to compute

the optimum mean-square error. We proceed similarly to present WL estimation, and then

we compare both approaches to show cases in which WL estimation is advantageous. A

time coefficient n is used in the variables to indicate that they are time-variant.

Assume that, at each time instant, we have access to a data vector x(n), which is

related with d(n) by the expression in (2.1). Using a SL estimator, d(n) is estimated with

ySL(n) = wH
SL
(n)x(n), (2.5)

where wSL(n) are the SL estimation coefficients. The optimum set of coefficients (in the

mean-square sense) is obtained through the minimization of the cost function [1]

JSL(wSL(n)) = E{|eSL(n)|2}, (2.6)

where

eSL(n) = d(n)− ySL(n). (2.7)

The minimization of (2.6) is equivalent to solving the system of equations

CwSL,opt = p, (2.8)

where

C = E{x(n)xH(n)} = (RRR +RII) + j(−RRI +RIR), (2.9)

RRR = E{xR(n)x
T
R(n)}, RII = E{xI(n)x

T
I (n)}, RRI = RT

IR = E{xR(n)x
T
I (n)},

(2.10)

is the autocorrelation matrix and p = E{d∗(n)x(n)} is the cross-correlation vector [1].

wSL,opt is the optimum SL solution to (2.8)2. A key property of wSL,opt is that the optimum

error is orthogonal to x, since

E{e∗
SL
(n)x(n)} = E{x(n)(d∗(n)− xH(n)wSL,opt)}

= E{x(n)d∗(n)} − E{x(n)xH(n)}wSL,opt

= p−CwSL,opt = 0.

Using wSL,opt and the orthogonality principle, we can compute the minimum value of

2The optimum solution to a quadratic problem such as (2.6) is also known as the Wiener solution [45].
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the cost function, i.e.,

JSL(wSL,opt) = E{|eSL(n)|2}
= E{(d(n)− ySL(n))

∗eSL(n)}
= E{d∗(n)eSL(n)} −E{y∗SL(n)eSL(n)}
= E{d∗(n)eSL(n)} −E{xH(n)eSL(n)}

︸ ︷︷ ︸

E{e∗SL(n)x(n)}
H=0

wSL,opt

= E{d∗(n)(d(n)− ySL(n)}
= E{|d(n)|2} − E{d∗(n)wH

SL,opt
x(n)}

= E{|d(n)|2} − wH
SL,opt

︸ ︷︷ ︸

(C−1p)H

E{d∗(n)x(n)}
︸ ︷︷ ︸

p

= E{|d(n)|2} − pHC−1p,

(2.11)

which is a lower bound to the mean-square error performance of any technique that

employs the SL approach.

Note that to compute wSL,opt, we just required C and p, obtained assuming that the

approximation ySL(n) linearly depends only on x(n). For a WL estimator, on the other

hand, yWL(n) depends on the extended vector

xWL(n) =
[

xT (n) xH(n)
]T

, (2.12)

and is given by

yWL(n) =

[

wWL,1(n)

wWL,2(n)

]H

︸ ︷︷ ︸

wH
WL(n)

xWL(n) = wH
WL,1

(n)x(n) +wH
WL,2

(n)x∗(n). (2.13)

In this case, the cost function used to obtain the optimum solution is given by

JWL(wWL(n)) = E{|eWL(n)|2}, (2.14)

where

eWL(n) = d(n)− yWL(n), (2.15)

which is equivalent to compute the solution to the system of equations

CwWL,opt,1 + PwWL,opt,2 = p

P ∗wWL,opt,1 +C∗wWL,opt,2 = q∗,
(2.16)

where

P = (RRR −RII) + j(RRI +RIR) (2.17)
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and q = E{d(n)x(n)}. P is known as the pseudo-correlation matrix [1]. Equation (2.16)

can also be written as

CWLwWL,opt = pWL, (2.18)

where we define

CWL =

[

C P

P ∗ C∗

]

(2.19)

and

pWL =

[

p

q∗

]

, (2.20)

to shorten the notation.

In order to solve (2.18), assume that C and P are invertible matrices. To compute

wWL,opt,1, left-multiply the first equation of (2.16) by −P−1 and left-multiply the second

equation of (2.16) by C−1∗. Adding up the equations, one gets

(C−1∗P ∗ − P−1C)wWL,opt,1 = (−P −1p+C−1∗q∗), (2.21)

and left-multiplying (2.21) by −P , yields

(C −PC−1∗P ∗)wWL,opt,1 = (p− PC−1∗q∗). (2.22)

Finally, to isolate wWL,opt,1, multiply (2.22) by (C −PC−1∗P ∗)−1 from the left to obtain

wWL,opt,1 =
[
C − PC−1∗P ∗

]−1 [
p−PC−1∗q∗

]
. (2.23)

A similar approach can be applied to compute wWL,opt,2, leading to the equation

wWL,opt,2 =
[
C∗ − P ∗C−1P

]−1 [
q∗ − P ∗C−1p

]
. (2.24)

Using the solution of the extended system of equations, we can compute JWL(wWL,opt) to

compare the minimum mean-square error achieved by SL and WL estimators. First, we

need to extend the orthogonality condition to the WL case and show that the optimum

error is orthogonal to x(n) and x∗(n), that is

E{e∗(n)x(n)} = E{(d∗(n)− y∗
WL

(n))x(n)}
= E{d∗(n)x(n)} − E{x(n)(xH(n)wWL,opt.1 + xT (n)wWL,opt.2)}
= p− (CwWL,opt,1 + PwWL,opt,2) = 0,

(2.25)
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where we used the first equation of (2.16) to obtain the last equality, and

E{e∗(n)x∗(n)} = E{(d∗(n)− y∗
WL

(n))x∗(n)}
= E{d∗(n)x∗(n)} −E{x∗(n)(xH(n)wWL,opt,1 + xT (n)wWL,opt.2)}
= q∗ − (P ∗wWL,opt,1 +C∗wWL,opt,2) = 0,

(2.26)

where the last equality is obtained by applying the second equation of (2.16).

Equation (2.14) can be expressed as

JWL(wWL,opt) = E{|eWL(n)|2}
= E{(d(n)− yWL(n))

∗eWL(n)}
= E{d∗(n)eWL(n)} − E{y∗WL

(n)eWL(n)},
(2.27)

so that we must apply the orthogonality conditions to compute E{y∗WL(n)eWL(n)}, i.e.,

E{y∗
WL

(n)eWL(n)} = E{eWL(n)y
∗
WL

(n)}
= E{eWL(n)(x

H(n)wWL,opt,1 + xT (n)wWL,opt,2)}
= E{eWL(n)x

H(n)}
︸ ︷︷ ︸

=E{e∗WL(n)x(n)}
H=0

wWL,opt,1 + E{eWL(n)x
T (n)}

︸ ︷︷ ︸

=E{e∗WL(n)x
∗(n)}H=0

wWL,opt,2 = 0.

(2.28)

Using this result, equation (2.27) reduces to

JWL(wWL,opt) = E{d∗(n)eWL(n)}
= E{d∗(n)(d(n)− yWL(n))}
= E{|d(n)|2} − E{d∗(n)wH

WL,opt,1
x(n)} − E{d∗(n)wH

WL,opt,2
x∗(n)}

= E{|d(n)|2} −wH
WL,opt,1

E{d∗(n)x(n)}
︸ ︷︷ ︸

p

−wH
WL,opt,2

E{d∗(n)x∗(n)}
︸ ︷︷ ︸

q∗

,

(2.29)

which expresses the MSE lower bound for WL estimators.

We can express the difference between the optimum mean-square error obtained with

SL and WL estimators using (2.11) and (2.29),

∆J = JSL(wSL,opt)− JWL(wWL,opt)

= −pHC−1p+wH
WL,opt,1

p+wH
WL,opt,2

q∗.
(2.30)

From the first equation of (2.16), we can write wWL,opt,1 = C−1p −C−1PwWL,opt,2. Sub-

stituting this relation in (2.30), after some algebra one gets

∆J = wH
WL,opt,2

(q∗ − PHC−1p)

=
[
q∗ − P ∗C−1p

]H
(
[
C∗ −P ∗C−1P

]−1
)H
[
q∗ −PHC−1p

]
.

(2.31)
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Note that (2.31) can be simplified. Using the fact that C is hermitian and invertible,

such that C−1 is also hermitian, and showing that

PH = E{x(n)xT (n)}H = E{x∗(n)xH(n)} = E{x(n)xT (n)}∗ = P ∗, (2.32)

we can simplify

(
[
C∗ −P ∗C−1P

]−1
)H = (

[
C∗ − P ∗C−1P

]H
)−1

=
[
(C∗)H −PH(C−1)H(P ∗)H

]−1

=
[
C∗ − P ∗C−1P

]−1
,

(2.33)

and

∆J =
[
q∗ −P ∗C−1p

]H [
C∗ − P ∗C−1P

]−1 [
q∗ −P ∗C−1p

]
. (2.34)

Noting that
[
C∗ −P ∗C−1P

]
is a positive-definite matrix (since it corresponds to the

Schur complement [46] of C in CWL), ∆J ≥ 0 always. Therefore, the minimum mean-

square-error obtained with the WL estimator is never worse than that obtained with a

SL one.

To identify cases in which the WL approach outperforms SL estimation, or when they

achieve the same MSE performance, one must study the statistics of x(n) and d(n), and

verify how expression (2.34) is affected by them. For this purpose, we present some results

on the statistics of x(n) and d to define circularity – the condition for which SL and WL

estimator have the same MSE. Then, we present some examples of WL estimators and

how they are affected by different conditions on the statistics of x(n) and d(n).

2.1.2.1 Circularity and second-order circularity

A complex random variable x = xR + jxI, where xR and xI are real entries, is circular

in the strict-sense [2] (or only circular) if its joint probability density function (pdf)

fx(x) = fxR,xI
(xR, xI) (2.35)

is invariant to rotations, i.e., if x and xejθ have the same pdf. Circularity is a strong

property and requires the pdf of x or all the moments [5] of fx(x) and fx(xe
jθ) to be

verified. Since these quantities are not available in general, a less restrictive criterion

can be used to verify if the variable is at least second-order circular or proper [2]. This

condition takes into account only second-order moments of the pdf, which may be easier

to access or to estimate.

To present the conditions for which second-order circularity holds, consider the N ×1
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complex random vector x. Without loss of generality, assume that their entries are zero-

mean. The second-order statistics of x can be completely defined by two matrices, C

(see eq. (2.9) ) and P (see (2.17) )[1, 2]. We define x as second-order circular [2] when

P = 0, which is equivalent to the conditions

RRR = RII and RRI = −RIR (2.36)

simultaneously (see (2.10)). When x is second-order circular, all the second-order statis-

tics can be obtained from C. However, when P 6= 0, both matrices are required to fully

exploit these statistics of x. Additionally, x and d are jointly second-order circular when

the vector

[xT d]T (2.37)

is proper, which implies P = 0 and the additional condition

q = E{d(n)x(n)} = 0. (2.38)

As shown in Section 2.1.2, SL estimators are unable to access P and q, while their WL

counterparts exploit all the second-order information, which can be used to reduce the

mean-square error [2]. In the next sections, we present some examples to show how WL

estimators perform for different conditions on P and q.

2.1.2.2 Jointly second-order circular case

This case occurs when P = 0 and q = 0, which implies ∆J = 0 (see eq. (2.34)). In

this situation, SL and WL approaches have the same optimum mean-square error, since

P and q do not contribute to the estimation. However, since wWL(n) has two times the

number of entries of wSL(n), the WL estimator is more costly to compute. Due to the

higher number of entries to estimate, one must also expect slower convergence rate in WL

estimators and higher excess mean-square error [2].

2.1.2.3 Second-order circular regressor

Assume that P = 0, but q 6= 0. Equations (2.23) and (2.24) simplify to

wWL,opt,1 = C−1p

wWL,opt,2 = (C∗)−1q∗.
(2.39)

In this case, the vector wWL,opt,1 is equal to the coefficients estimated by the SL estimator,

but there is an additional vector wWL,opt,2, obtained by the WL estimator. Using eq. (2.39)
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in (2.34), ∆J can be evaluated as given by

∆J = qT (C∗)−1q∗ = qHC−1q > 0, (2.40)

which shows that the WL approach leads to smaller MSE than the SL estimation in this

situation.

2.1.2.4 Real-valued desired signal (real d(n))

When d(n) is real3, but x(n) is still a complex vector, one can manipulate eq. (2.16)

to show that p = q. Using this result in (2.23) and (2.24), one gets wWL,opt,2 = w∗
WL,opt,1

,

which can be used in eq. (2.13) to obtain

yWL(n) = wH
WL,opt,1

x(n) + (wH
WL,opt,1

)∗x∗(n) = 2Re{wH
WL,opt,1

x(n)}. (2.41)

Substituting (2.41) in the cost function (2.14), JWL(wWL,opt) is given by

JWL(wWL,opt) = σ2
d −wH

WL,opt,1p−wH
WL,opt,2

︸ ︷︷ ︸

wT
WL,opt,1

p∗

= σ2
d −wH

WL,opt,1
p− (wH

WL,opt,1
p)∗

= σ2
d − 2Re{wH

WL,opt,1
p}.

(2.42)

We can make a direct comparison of SL and WL estimation if we also assume that process

{x(n)} is second-order circular, which implies P = 0 4.

Assuming that P = 0, the first equation of (2.23) reduces to CwWL,opt,1 = p, such

that wSL,opt = wWL,opt,1. Applying this result in eq. (2.42), one gets

JWL(wWL,opt) = σ2
d −wH

WL,opt,1
p− (wH

WL,opt,1
p)∗

= σ2
d −wH

WL,opt,1
CwWL,opt,1 − (wH

WL,opt,1
CwWL,opt,1)

∗.
(2.43)

Recalling that wH
WL,opt,1

CwWL,opt,1 results in a real number, (2.43) reduces to

JWL(wWL,opt) = σ2
d − 2wH

WL,opt,1
CwWL,opt,1

= σ2
d − 2wH

WL,opt,1p,
(2.44)

such that the difference

∆J = JSL(wSL,opt)− JWL(wWL,opt) = wH
WL,opt,1p = wH

WL,opt,1CwWL,opt,1 > 0 (2.45)

3This case is presented since it appears as an WL example in [2], and is also applied in a simulation
presented in this chapter.

4Note that even if P 6= 0, eq. (2.34) can also be used to compare WL and SL approaches.
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is always positive. Equation (2.45) proves that the WL estimator is also advantageous

when d(n) is real and P = 0, improving the MSE performance.

In this section, we presented WL estimation and gave some examples in which this

approach outperforms SL techniques. Based on these results, in the next section we

propose low-cost versions of WL adaptive techniques, and show that they achieve the

same MSE obtained with the original methods.

2.2 Reduced-complexity widely-linear adaptive filters

WL adaptive filters are direct extensions of their SL counterparts, only with twice as

large regressors and weight vectors. The WL versions of the LMS and the RLS algorithms,

for instance, are presented in Tables 3 and 4.

Table 3: WL-LMS algorithm

Initialization
wWL(0) = 02N×1

for n = 0, 1, 2, 3...
yWL(n) = wH

WL
(n)xWL(n)

eWL(n) = d(n)− yWL(n)
wWL(n + 1) = wWL(n) + µWLe

∗
WL

(n)xWL(n)
end

Table 4: WL-RLS algorithm

Initialization
wWL(0) = 02N×1

ΦWL(0) = ǫI2N×2N

for n = 0, 1, 2, 3...
γ(n) = (ν + xH

WL
(n)ΦWL(n)xWL(n))

−1

kWL(n) = ΦWL(n)xWL(n)γ(n)
eWL(n) = d(n)−wH

WL
(n)xWL(n)

wWL(n+ 1) = wWL(n) + kWL(n)e
∗
WL(n)

ΦWL(n + 1) =
1

ν
(ΦWL(n)− kWL(n)k

H

WL
(n)γ(n))

end

Using the WL approach, we can recover full second-order information from CWL, since

both C and P are available, as shown in Section 2.1.2. However, matrices RRR, RII and

RRI appear redundantly in the block-matrices which constitute CWL, since each block

(C, C∗, P and P ∗) contains all these terms (see equations (2.9), (2.10) and (2.17)).



37

The redundance can be avoided using a 2N -real regressor vector which contains the same

information of the 2N -complex WL regressor vector. Below, we show that using this

approach one can obtain low-cost techniques for WL processing, and we propose reduced-

complexity versions of the WL-LMS and WL-RLS algorithms.

2.2.1 Avoiding redundant information in the autocorrelation
matrix

Considering (2.9) and (2.17), we can observe that the information contained in ma-

trices RRR, RII and RRI is repeated in C and in P and, consequently, in CWL. This

argument intuitively leads to the idea of obtaining an equivalent real matrix for CWL,

avoiding redundance. It is possible to redefine the regressor vector in terms of its real and

imaginary parts, i.e.,

xRC(n) =

[

xR(n)

xI(n)

]

. (2.46)

In this case, the autocorrelation matrix is given by

CRC =

[

RRR RRI

RIR RII

]

.

Since xRC(n) and CRC contain the same information as in xWL(n), algorithms based

on xRC(n) will access the same statistics accessed by standard WL filters. However,

the computational cost will be significantly lower: since the regressor is now real, an

algorithm based on xRC(n) will replace several multiplications of two complex numbers

by multiplications of a complex with real numbers, which require each 2 multiplications

and 2 sums less.

Considering the advantages that may be obtained with the real-input vector, our goal

is to propose algorithms which apply xRC(n) instead of xWL(n). However, we first show the

relation between the optimum weight vectors obtained with both inputs, in order to prove

that they lead to the same estimation results. For this purpose, define the transformation

matrix

U =

[

IN jIN

IN −jIN

]

, (2.47)

where IN is the identity and UUH = 2I. Note that

xRC(n) = UHxWL(n) (2.48)



38

so that one can write

CRC = UHCWLU. (2.49)

The cross-correlation vector obtained with xRC(n) corresponds to

pRC = E{d(n)xRC} = E{d(n)UHxWL} = UHpWL. (2.50)

The Wiener solution is given by

wRC,opt = C−1
RCpRC =

(
UHCWLU

)−1
UHpWL =

1

2
UHwWL,opt,

so that the optimum coefficients obtained with xRC(n) are just a transformed version of

wWL,opt, which is applied in standard WL adaptive filtering.

Using a similar approach, we show the relation between the weight vectors and the

estimates obtained with both approaches. Applying U to (2.13), we obtain

yWL(n) =
1

2
wH

WL(n)UUHxWL(n).

Defining

wRC(n) =
1

2
UHwWL(n), (2.51)

we note that the estimates computed using the transformed regressor and weight vector

are equivalent to those obtained with the original vectors, since

yWL(n) = yRC(n) = wH
RC
(n)xRC(n).

From these results, one can see that using the transformed regressor, we compute

the same estimate as obtained with xWL(n), and that both approaches achieve the same

optimum MSE. Next, we derive transformed versions of the widely-linear LMS and RLS

algorithms, obtained with matrix U in order to use real regressor vectors.

2.2.2 Reduced-complexity widely linear LMS (RC-WL-LMS)

Applying the transformation U to the WL-LMS equations (Table 3) and using the

real regressor vector xRC(n), we obtain

yRC(n) = wH

RC(n)xRC(n),

eRC(n) = d(n)− yRC(n)
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and

wRC(n+ 1) = wRC(n) + µRCe
∗
RC(n)xRC(n),

with the initial condition

wRC(0) = 02N×1.

Note that the relation between the step sizes, µRC = 2µWL, comes from the transformation

U.

Indeed, yRC(n) and eRC(n) are exactly the same as in the standard WL version, since

the transformation U does not affect them. Furthermore, the analysis of the WL-LMS

algorithm in [2] can be easily extended to the reduced complexity version. Since the

relation between wRC(n) and wWL(n) is through a multiple of a unitary matrix (2.47), the

mean-square behavior of both algorithms is similar.

2.2.3 Reduced-complexity widely linear RLS (RC-WL-RLS)

We can also obtain a reduced-complexity version of the WL-RLS algorithm applying

the transformation U. For this purpose, recall the equations of WL-RLS, presented

in Table 4. We start showing that the estimate of the inverse correlation matrix is a

transformed version of its WL counterpart. To prove this, first note that using (2.49), the

inverse of the correlation matrix CRC can be written as given by

C−1
RC

= U−1C−1
WL

(UH)−1 . (2.52)

Using properties of the similarity transformation, i.e., U−1 = UH/2 and (UH)−1 = U/2,

(2.52) can be rewritten as

C−1
RC =

UH

2
C−1

WL

U

2
. (2.53)

Denoting by ΦRC(n) the estimate of C−1
RC
, the following relation holds

ΦRC(n) =
UH

2
ΦWL(n)

U

2
. (2.54)

Therefore, since matrix ΦWL(n) is initialized as ΦWL(0) = ǫI in the WL-RLS algorithm,

to ensure the equivalence to the reduced-complexity version proposed here, the matrix

ΦRC(n) must be initialized as ΦRC(0) = (ǫ/2)I.

Analogously, applying the transformation U to the conversion factor and the Kalman

gain, we arrive at

γ(n) =

[

ν + xH

WL(n)
UUH

2
ΦWL(n)

UUH

2
xWL(n)

]−1

(2.55)



40

and

kRC(n) =
UH

2
kWL(n). (2.56)

Now, using xRC(n) and wRC(n) as defined in (2.46) and (2.51), we obtain the RC-WL-

RLC, i.e.,

γ(n) = (ν + xH

RC
(n)ΦRC(n)xRC(n))

−1,

kRC(n) = ΦRC(n)xRC(n)γ(n),

eRC(n) = d(n)−wH
RC(n)xRC(n),

wRC(n+ 1) = wRC(n) + kRC(n)e
∗
RC
(n),

and

ΦRC(n+ 1) =
1

ν
(ΦRC(n)− kRC(n)k

H

RC
(n)γ(n)).

Again, the transformation reduces the presence of complex numbers in the calculations,

which results in an algorithm with smaller cost.

Tables 5 and 6 show the computational cost of the SL, standard WL and RC-WL

algorithms based on LMS and RLS approaches, in terms of the number of real sums (+),

real multiplications (×) and real divisions (÷). We assume that the SL regressor vector

has N entries.

Table 5: Computational complexity for SL-LMS, WL-LMS and RC-WL-LMS in terms of
real operations per iteration

Algorithm + × ÷
SL-LMS 8N 8N + 2 -

WL-LMS 16N 16N + 2 -

RC-WL-LMS 8N 8N + 2 -

Table 6: Computational complexity for SL-RLS, WL-RLS and RC-WL-RLS in terms of
real operations per iteration

Algorithm + × ÷
SL-RLS 6N2 + 14N − 1 7N2 + 21N + 1 1

WL-RLS 24N2 + 28N − 1 28N2 + 42N + 1 1

RC-WL-RLS 6N2 + 11N 8N2 + 14N + 1 1

From Table 5, we notice that the RC-WL-LMS and SL-LMS algorithms have the

same complexity, which is almost two times smaller than that of the WL-LMS algorithm.
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Similarly, Table 6 presents the complexity results for RLS. In this comparison, we have

taken advantage of the symmetry of ΦRC(n) to compute only the elements in the main

diagonal and above it. We have used the approach of [32], p.201. Surprisingly, the

number of sums needed by the RC-WL-RLS algorithm is smaller than that of the other

two algorithms. The number of real multiplications is only a little higher than that of

SL-RLS.

2.3 Simulations

In order to compare the SL, WL and RC-WL algorithms, we show some simulations

considering the identification system model used in [2]. We defined a complex-valued

random process x(n) =
√
1− α2xR(n) + jαxI(n), where xR(n) and xI(n) are two uncor-

related real-valued Gaussian processes with zero mean. The factor α is chosen between 0

and 1. The process is circular if α = 1/
√
2. The system coefficients were defined as

wopt,k = β(1 + cos(2π(k − 3)/5)− j(1 + cos(2π(k − 3)/10))), (2.57)

with k = 1, 2, ..., 5 and β = 0.432. The desired signal included a Gaussian noise with 20dB

signal to noise ratio (SNR). The WL-LMS algorithm used a step-size µWL = 0.04. The

RLS forgetting factor was chosen as ν = 0.999 and the initial condition ΦWL(0) = 0.01I.

The regressor was generated using both α = 0.1 and α = 1/
√
2. Note that we define

d(n) = Re{wH
opt
x(n)}, so the widely-linear solution achieves an MSE that is better than

that of the SL solution, even when the regressor is proper (since the regressor and desired

sequences will not be jointly second-order circular).

To ensure the same convergence characteristics, the step size of the RC-WL-LMS was

chosen as µRC = 2µWL = 0.08 and the RC-WL-RLS initial condition used for ΦRC(0) was

0.005I. In Figures 2 and 3, we observe different versions of the LMS and RLS algorithms,

considering the SL, WL and RC-WL estimation. These figures show that the WL and

RC-WL estimators are clearly better than the SL approach in this situation. It is also

important to notice that the WL and RC-WL algorithms also achieve the same MSE

levels, reaffirming the equivalence between those approaches.
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Figure 2: MSE for WL and RC-WL algorithms with circular input (α = 1/
√
2). On

the top: SL-LMS, WL-LMS and RC-WL-LMS (µRC = 2µWL = 0.08). On the bottom:
SL-RLS, WL-RLS and RC-WL-RLS (ΦRC(0) = ΦWL(0)/2 = 0.005I)
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Figure 3: MSE for WL and RC-WL algorithms with non-circular input (α = 0.1). On
the top: SL-LMS, WL-LMS and RC-WL-LMS (µRC = 2µWL = 0.08). On the bottom:
SL-RLS, WL-RLS and RC-WL-RLS (ΦRC(0) = ΦWL(0)/2 = 0.005I)
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2.4 Conclusions

In this chapter, we showed that, when using a real regressor vector constituted by

the real and the imaginary parts of the complex data, it is possible to reduce the number

of operations in WL algorithms. The RC-WL-LMS achieved the same complexity as the

SL-LMS algorithm, which is almost a 50% reduction compared to the standard WL-LMS.

Since the complexity of the standard RLS grows quadratically with the filter length, the

reduction obtained by RC-WL-RLS is even larger, almost a factor of four. The simulations

confirm the theoretical equivalence between the reduced-complexity algorithms and the

WL ones when the input is proper or improper.
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3 REDUCED-COMPLEXITY QUATERNION

ADAPTIVE FILTERS

Quaternion numbers [3] were invented by Hamilton in the 19th century, as a general-

ization of complex numbers to a higher-dimensional domain. They consist of one real part

and three imaginary elements, usually identified by i, j and k, where i2 = j2 = k2 = −1
and ijk = −1. Quaternions appear in many fields, and their applications have been

spreading recently, since they can be used to concisely describe multi-variable data.

Quaternion algebra is traditionally employed to represent rotations in control applica-

tions and in image processing. In the first case, quaternion algebra provides mathematical

robustness to represent rotations. Its avoidance of the gimbal lock problem [47] (that ap-

pears when using Euler angle representations) is exploited by attitude control systems

[48, 49]. On the other hand, in image processing, many techniques employ a quaternion-

based model to describe images, allowing a concise representation of the color attributes

in a single entity [50, 51], and leading to development of many quaternion-based tools,

such as [52–54]. In recent applications, quaternions have been applied to help studying

DNA structures [55], and to estimate quantities in neural networks [13], beamforming

[56] and adaptive filtering [12, 14, 15, 18, 57, 58], among many others. The last field has

experimented a large development lately, and a variety of algorithms has been proposed

for multi-variable estimation.

In recent years, different definitions of quaternion differentiation were proposed ([59],

[42] and [60]), giving rise to different quaternion adaptive algorithms. The first to be

proposed was QLMS [14], whose update equation contains an extra term (when compared

to the complex LMS update law [32]) to take into account the non-commutative nature

of quaternion multiplication. Later, after a new definition of the derivative to account for

quaternion involutions [59], a lower-cost and faster-converging technique emerged, iQLMS

[42]. However, both QLMS and iQLMS are designed for Q-proper data [61], for which

the autocorrelation matrix is sufficient to assess full second-order statistics [61]. When

the inputs are non Q-proper, these strictly linear algorithms are not able to account for
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full second-order statistics. In this case, widely-linear algorithms [15] can be applied to

improve performance.

In the quaternion case, the definition of WL processes has led to the augmented QLMS

[14] (which uses the original SL regressor vector and its conjugate as the WL input data)

and to WL-QLMS [58], where the SL data vector and three quaternion involutions are the

inputs. Later, WL-iQLMS [62] was also proposed as an improved WL-QLMS algorithm.

However, for all these WL methods, the input vector is four times the length of the original

SL data vector, and thus the computational cost is significantly higher.

Similar to the complex-valued WL algorithms presented in Chapter 2, quaternion WL

techniques have redundance of second-order statistics in the autocorrelation matrix. In

this chapter, we propose new WL quaternion algorithms which avoid redundant data and

thus reduce the computational complexity. To obtain the new algorithms, we develop an

unified description for the diverse quaternion gradients proposed in the literature, and we

use it to study the convergence of WL-QLMS-based algorithms. We prove that a class of

gradients which includes the i-gradient of [59] leads to the fastest-converging WL-QLMS

algorithm, under some conditions on the correlation of the input data.

We also use the general quaternion gradient to develop a further reduced-complexity

WL adaptive algorithm for real regressors – the RC-WL-iQLMS algorithm. For this pur-

pose, we replace the original WL input vector by a real vector, obtained with a concate-

nation of the real and the three imaginary parts of the SL input. We show that using this

approach, the redundant statistics are avoided, and many quaternion-quaternion compu-

tations are substituted by real-quaternion operations, leading to a low-cost technique. We

also prove that the fastest-converging WL-QLMS-based algorithm with real-regressor vec-

tor corresponds to the four-channel LMS algorithm (4-Ch-LMS) written in the quaternion

domain.

The contributions of this chapter can be summarized as follows:

1. We propose a general approach to describe the different quaternion gradients pro-

posed in the literature, and show that different definitions for the quaternion deriva-

tive may lead to the same quaternion gradient.

2. We obtain a general update law, which describes all the QLMS algorithms proposed

in the literature. We use it to study the convergence in the mean and in the variance

of WL algorithms. We show that gradients similar to the i-gradient of [59] and to

the gradient proposed in [60] lead to the fastest-converging WL-QLMS algorithms in
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two situations: i) when at most two of the quaternion elements in the input vector

are correlated; and ii) when the regressor vector is real.

3. Based on the general gradient, we propose a new technique which applies real re-

gressor vector: the RC-WL-iQLMS algorithm, with one fourth the complexity of

WL-iQLMS.

4. We show that the fastest-converging WL-QLMS algorithm with real regressor vector

is our new algorithm, RC-WL-iQLMS. We also show that RC-WL-iQLMS corre-

sponds to the 4-Ch-LMS algorithm written in the quaternion domain.

5. We develop a second-order model valid for any WL-QLMS algorithm with a real-

regressor vector. The analysis is suitable for correlated and uncorrelated inputs.

Concise equations to compute the EMSE (excess mean-square-error) and the MSD

(mean square deviation) [45] are also derived.

The chapter is organized as follows. We present a brief review on quaternion algebra

and Kronecker products (which are applied in our analysis) in Section 3.1. In Section

3.2, we present basic concepts of quaternion estimation and Q-properness, while Section

3.3 introduces our general approach to write quaternion gradients. We present the new

reduced-complexity algorithm in Section 3.3.2, and develop the analysis of QLMS-based

algorithms in Sections 3.4.1 and 3.4.2. Simulations are presented in Section 3.5, and in

Section 3.6 we conclude the chapter.

3.1 Preliminaries

In this section, we briefly summarize some properties of quaternion algebra and Kro-

necker products. These concepts simplify the analysis and the equations derived in this

chapter.

3.1.1 Review on quaternion algebra

A quaternion q is defined as

q = qR + iqI + jqJ + kqK,

where qR, qI, qJ and qK are real numbers and i, j and k are the imaginary parts, which

satisfy i2 = j2 = k2 = ijk = −1. The main difference between a quaternion and a
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complex number is that the multiplication in the quaternion field Q is not commutative,

since [3]

ij = −ji = k, jk = −kj = i, ki = −ik = j,

such that for two quaternions q1 and q2, in general, q1q2 6=q2q1.

Similar to complex algebra, the conjugate and the absolute value of a quaternion q

are given by

q∗ = qR − iqI − jqJ − kqK

and |q| = √qq∗, respectively. We can also define the following involutions of q1

qi , −iqi = qR + iqI − jqJ − kqK

qj , −jqj = qR − iqI + jqJ − kqK

qk , −kqk = qR − iqI − jqJ + kqK.

The involutions are used in the definition of WL algorithms (e.g. [18], [58], [15]).

These are the main definitions of quaternion algebra used in this chapter. See reference

[3] for more details.

3.1.2 Properties of Kronecker products

The Kronecker product [63] is an efficient manner to compactly represent some large

matrices which have a block-structure. Given two matrices A and B, the Kronecker

product – which is represented by the operator ⊗ – is given by

A⊗B ,







a11B . . . a1NB
...

. . .
...

aM1B . . . aMNB






, (3.1)

For the purpose of the analyses performed in this chapter, the most relevant properties

of Kronecker products are

1. A⊗ (B+C) = A⊗B+A⊗C.

2. α (A⊗B) = (αA)⊗B = A⊗ (αB).

3. (A⊗B) (C⊗D) = AC⊗BD, where the number of rows of C (B) and the number

of columns of A (D) are equal.

4. (A⊗B)−1 = A−1 ⊗B−1.

1Note that the conjugate of a quaternion q is also an involution of q
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5. (A⊗B)T = AT ⊗BT .

6. Tr(A⊗B) = Tr(A)Tr(B).

7. The eigenvalues of (A⊗B), where A is N × N and B is M × M , are given by

λAl
λBm

, for l = 1, 2, . . . , N and m = 1, 2, . . . ,M , where λAl
and λBm

are the

eigenvalues of A and B, respectively.

These properties appear implicitly or explicitly in the analyses that follow. They

make the equations easier to manipulate and simplify the interpretation of the resulting

expressions.

3.2 Strictly-linear and widely-linear quaternion

estimation

In the context of complex WL estimation, the concept of second-order circularity or

properness is required to define when WL algorithms outperform SL ones (see Section

2.1.2.1). For quaternion quantities, this concept can be extended to Q-properness. In this

section, we present Q-properness and compare SL and WL quaternion estimation, based

on some results of [58] and [61].

Define the N × 1 quaternion data vector

q(n) = qR(n) + iqI(n) + jqJ(n) + kqK(n), (3.2)

where qR(n), qI(n), qJ(n) and qK(n) are real vectors. Given a desired quaternion sequence

d(n), the problem solved by a strictly linear estimator is the computation of wSL(n) in

ySL(n) = wH
SL
(n)q(n) (3.3)

which minimizes the mean-square error E{|eSL(n)|2}, where

eSL(n) = d(n)− ySL(n). (3.4)

From the orthogonality principle [32], it must be true that

E{q(n)e∗
SL
(n)} = 0, (3.5)

and substituting eq. (3.4) in (3.5), we get

E{q(n)d∗(n)} = E{q(n)y∗
SL
(n)}. (3.6)
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Using eq. (3.3) in (3.6), wSL(n) must satisfy

CqwSL(n) = pq, (3.7)

where Cq = E{q(n)qH(n)} is the autocorrelation matrix and pq = E{q(n)d∗(n)} is the
cross-correlation vector [1].

For a quaternion WL estimator, the data vector is modified to account for the invo-

lutions [12], and it is given by2

qWL(n) = col( q(n), qi(n), qj(n) qk(n) ), (3.8)

which is four times the length of the original vector q(n). For this approach, one must

find the vector wWL(n) which minimizes the MSE condition E{|eWL(n)|2}, where

eWL(n) = d(n)− yWL(n), (3.9)

yWL(n) = wH
WL(n)qWL(n). (3.10)

Again, the orthogonality condition implies that eWL(n) must be orthogonal to all involu-

tions, i.e.,

E{qWL(n)e
∗
WL(n)} = 0. (3.11)

Using eqs. (3.9), (3.10) and (3.11), we obtain

CWLwWL(n) = pWL, (3.12)

and

CWL = E{qWL(n)q
H
WL

(n)} =










Cq Cqqi Cqqj Cqqk

CH
qqi Cqi Cqiqj Cqiqk

CH
qqj CH

qiqj Cqj Cqjqk

CH
qqk CH

qiqk CH
qjqk Cqk










, (3.13)

where

Cα = E{ααH}, for α ∈ {q(n), qi(n), qj(n), qk(n)} (3.14)

and

Cαβ = E{αβH}, for α,β ∈ {q(n), qi(n), qj(n), qk(n)} and α 6= β. (3.15)

The matrices Cαβ are the cross-correlation terms between q(n) and their involutions.

2Note that other sets of four different involutions of q(n) can be chosen, since they provide similar
estimation performance [42].
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pWL is given by

pWL = col( pq, pqi , pqj , pqk ) (3.16)

and pα = E{αd∗(n)}, α ∈ {q(n), qi(n), qj(n), qk(n)}.

CWL and pWL have four times the dimension of their SL counterparts. Using (3.12),

we are able to exploit full second-order statistics of the input data, which may not be fully

available in (3.7). Equation (3.7) takes advantage of full second-order information only if

the data pair {q(n), d(n)} captures all relevant second-order statistics. In this case, q(n)

and d(n) are said to be jointly Q-proper. This happens under the conditions described

below.

3.2.0.1 Q-properness

Vector q(n) is Q-proper if all the cross-correlation matrices vanish [61], i.e.,

Cqqi = Cqqj = Cqqk = Cqiqj = Cqiqk = Cqjqk = 0. (3.17)

When (3.17) holds, eq. (3.13) can be expressed as

CWL =










Cq 0 0 0

0 Cqi 0 0

0 0 Cqj 0

0 0 0 Cqk










. (3.18)

Recalling that

Cqα = E{qαqαH} = E{−αqα(−α)qHα} = −αE{qqH}α = −αCqα, (3.19)

for α ∈ {i, j,k}, eq. (3.18) reduces to

CWL = T (I4 ⊗Cq)T
H , (3.20)

where T = diag( 1, −i, −j, −k )⊗ IN .

Notice that for a Q-proper input, only the SL autocorrelation matrix Cq is required

to access the second-order statistics of q(n), similarly to the complex-proper case reported

in Chapter 2.1. However, only this does not guarantee that full second-order information

of the pair {q(n), d(n)} is available for the SL estimator: d(n) and q(n) must be jointly

Q-proper for this to hold.
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3.2.0.2 Joint Q-properness

Q-properness is related only to the input signal q(n). However, d(n) and q(n) can

also be jointly Q-proper [61], which implies the additional restrictions

E{qα(n)d∗(n)} = 0, ∀α ∈ {i, j, k}. (3.21)

Using eq. (3.21) in (3.16), we obtain

pWL = col(1, 0, 0, 0)⊗ pq,

and the system of equations that must be solved by the WL estimator simplifies to










Cq 0 0 0

0 Cqi 0 0

0 0 Cqj 0

0 0 0 Cqk










wWL(n) =










pq

0

0

0










. (3.22)

Since CWL is a block-diagonal matrix, we can define

wWL = col(wWL,1(n), wWL,2(n) wWL,3(n) wWL,4(n) ),

and compute the solution to (3.22) using four lower-dimension systems of equations, i.e.,

CqwWL,1(n) = p, CqiwWL,2(n) = 0, CqjwWL,3(n) = 0, and CqkwWL,4(n) = 0.

(3.23)

In the usual case, where Cq is full-rank, wWL,2(n) = wWL,3(n) = wWL,4(n) = 0, so that

wWL must satisfy (3.7). This result shows that the SL and WL approaches are equivalent

in terms of MSE performance when the input and the desired signal are jointly Q-proper.

However, from the point of view of implementation of algorithms, a WL approach is not

attractive in this case, since its computational complexity is much higher than that of a SL

technique. The EMSE is also expected to increase in this case. The EMSE is computed

as Tr(wWL(n)w
H
WL(n)). Since the algorithm will try to estimate each entry of wWL(n),

nonzero values can be obtained for weights that should be zero, so that errors can be

added to EMSE expression, increasing its value (when compared to the SL approach).

Finally, the convergence rate is also expected to be slower, since it estimates four times

the number of parameters computed by an SL approach.

In summary, when q(n) and d(n) are jointly Q-proper, SL and WL approaches achieve

the same MSE performance, but SL techniques are preferred since they are easier to
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implement and converge faster. On the other hand, when joint Q-properness does not

hold, a WL-based technique can extract full second-order statistics of the input data to

solve (3.12), improving the MSE performance.

3.2.0.3 Widely-linear estimation using real regressor vector

In this chapter, we propose low-cost WL techniques using a real regressor vector

instead of the original WL vector qWL(n) of eq. (3.8). In this section, we explain the

advantage of this approach to avoid redundant second-order statistics in the correlation

matrix.

To show the data redundance in CWL, consider its first block-element Cq. This matrix

is a sum of the correlations among the quaternion parts of q(n), and can be expressed as3

Cq =E{qqH} = E{qRq
T
R + qIq

T
I + qJq

T
J + qKq

T
K}+ iE{−qRq

T
I + qIq

T
R − qJq

T
K + qKq

T
J }

+ jE{−qRq
T
J
+ qIq

T
K
+ qJq

T
R
− qKq

T
K
}+ kE{−qRq

T
K
− qIq

T
J
+ qJq

T
I
+ qKq

T
R
}.

All the correlation and cross-correlation terms obtained with qR, qI, qJ and qK appear in

Cq, but cannot be recovered individually from Cq and (3.15). On the other hand, using

the real regressor vector

qRC(n) = col
(

qR(n), qI(n), qJ(n), qK(n)
)

, (3.24)

obtained stacking up the real and imaginary elements of q(n), the corresponding correla-

tion matrix is given by

CRC= E{qRC(n)qRC(n)} =










CRCR
CRCRI

CRCRJ
CRCRK

CT
RCRI

CRCI
CRCIJ

CRCRK

CT
RCRJ

CT
RCIJ

CRCJ
CRCJK

CT
RCRK

CT
RCIK

CT
RCJK

CRCK










, (3.25)

where

CRCR
= E{qR(n)q

T
R
(n)}, CRCI

= E{qI(n)q
T
I
(n)},

CRCJ
= E{qJ(n)q

T
J (n)}, CRCK

= E{qK(n)q
T
K(n)},

CRCRI
= E{qR(n)q

T
I
(n)}, CRCJK

= E{qJ(n)q
T
K
(n)}, (3.26)

CRCRJ
= E{qR(n)q

T
J (n)}, CRCIK

= E{qI(n)q
T
K(n)},

CRCRK
= E{qR(n)q

T
K
(n)}, CRCIJ

= E{qI(n)q
T
J
(n)}.

3We drop time coefficients to shorten the notation.
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and CRC is real and contains full second-order statistics of q(n).

Using qRC(n) to design quaternion WL algorithms, we do not loose information, and

we also obtain techniques for which the real regressor allows the substitution of many

quaternion-quaternion operations by real-quaternion computations, less costly to com-

pute. We exploit it in Section 3.3.2 to develop low-cost WL algorithms.

3.3 Quaternion gradients

In this section, we propose a general definition for quaternion derivatives, which is used

to study the convergence of QLMS-based algorithms and to obtain the fastest-converging

WL-QLMS algorithm in two situations: 1) when at most two of the quaternion elements

in the regressor are correlated; and 2) when the WL algorithms use the real regressor

vector qRC(n). We also use the general gradient description to develop mean and mean-

square analyses for QLMS-based algorithms. This approach is later particularized to real-

regressor vector WL-QLMS algorithms, leading to accurate tools to design the algorithms

and evaluate their performance.

Throughout this section, we do not add indexes to identify SL and WL quantities,

since the derivation is applicable to both approaches. We use ϕ(n) to define a general

quaternion regressor vector with dimension M , where M = N in the SL approach and

M = 4N in the WL case.

To obtain a general quaternion gradient, start with the definition of the cost function

f(w) = e(n)e∗(n),

where e(n) = d(n)−wH(n)ϕ(n). Regardless of the method to compute the gradient, and

based on the isomorphism between Q and R4, the quaternion gradients proposed in the

literature have the general form [59, 60]

∇wf = a
∂f

∂wR

+ ib
∂f

∂wI

+ jc
∂f

∂wJ

+ kd
∂f

∂wK

, (3.27)

for real {a, b, c, d}, and where

∂f

∂wα

=
∂e(n)

∂wα

e∗(n) + e(n)
∂e∗(n)

∂wα

, (3.28)



54

and α ∈ {R, I, J,K}. Using eq. (3.28) in (3.27), and defining

g = (a+ b+ c+ d)

h = (a− b− c− d)
(3.29)

eq. (3.27) becomes

∇wf = −gϕ(n)e∗
WL

(n)− heWL(n)ϕ
∗(n). (3.30)

From (3.30), one can check that the quaternion gradient of [59] is obtained when g = 1/2

and h = −1/4, and that the i-gradient of [42] appears when g = 3/4 and h = 0. We

also note that the recently proposed quaternion gradient [60] is obtained when g = 2 and

h = 0. Considering eq. (3.29), it is easy to note that the same g and h can be obtained for

different values of a, b, c and d. Moreover, note that gradient-based adaptive algorithms

have a general update law given by [32]

w(n+ 1) = w(n)− µ∇wf, (3.31)

where µ is the step size. In this case, from the point of view of the algorithm, it is not

important if the gradient uses g and h or scaled versions of them – as long as they are

both scaled by the same value – since the scale factor can be absorbed by µ. This fact

emphasizes that different gradients and quaternion derivatives can be applied to define

the same QLMS-based algorithm.

Substituting eq. (3.30) in (3.31), we define the general form of a QLMS-like algorithm,

that is

w(n+ 1) = w(n) + µ [gϕ(n)e∗(n) + he(n)ϕ∗(n)] . (3.32)

Note that using g = 1/2 and h = −1/4, the update equation of the WL-QLMS algorithm

is obtained from (3.32) when ϕ(n) = qWL(n) (see Table 7). When g = 3/4 and h = 0, we

derive from (3.32) the update equation of WL-iQLMS (see Table 8).

Table 7: WL-QLMS algorithm

d̂WL(n) = wH
WL(n)qWL(n)

eWL(n) = d(n)− d̂WL(n)

wWL(n+ 1) = wWL(n) + µWL

[

qWL(n)
e∗
WL

(n)

2
− eWL(n)

4
q∗

WL(n)

]

Recalling that

gϕ(n)e∗(n) + he(n)ϕ∗(n) = (g + h)ϕ(n)e∗(n)− 2hIm{ϕ(n)e∗(n)}, (3.33)
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Table 8: WL-iQLMS algorithm

d̂iQ(n) = wH
iQ
(n)qWL(n)

eiQ(n) = d(n)− d̂iQ(n)

wiQ(n+ 1) = wiQ(n) +
3

4
µiQqWL(n)e

∗
iQ(n)

and using eq. (3.33) in (3.32), one gets

w(n + 1) = w(n) + µ [(g + h)ϕ(n)e∗(n)− 2hIm{ϕ(n)e∗(n)}] . (3.34)

In order to study the mean behavior of (3.34), define the optimum set of coefficients wopt,

and assume that d(n) can be modeled as

d(n) = wH
optϕ(n) + v(n), (3.35)

where the elements of v(n) are i.i.d., independent of ϕ(n), E{v(n)} = 0, and E{|v(n)|2} =
σ2
v . Subtracting (3.34) from wopt, one gets

w̃(n + 1) = w̃(n)− µ[(g + h)ϕ(n)e∗(n)− 2hIm{ϕ(n)e∗(n)}], (3.36)

where

w̃(n) = wopt −w(n). (3.37)

Using (3.35) in (3.36), we obtain

w̃(n+ 1) =w̃(n)− µ(g+h)
[
ϕ(n)ϕH(n)w̃(n)+ϕ(n)v∗(n)

]

+ 2µhIm
{
ϕ(n)ϕH(n)w̃(n)+ϕ(n)v∗(n)

}
.

(3.38)

In terms of w̃(n), this is a nonlinear recursion (due to the Im{·} operator). In order to

obtain a linear recursion, we rewrite the recursion separating the real and the imaginary

parts of ϕ(n), defining a set of extended variables. Define the extended 4M × 1 w̃(n)

w̃ext(n) = col(w̃R(n), w̃I(n), w̃J(n), w̃K(n))

and the extended version of ϕ(n)ϕH(n)w̃(n), which is given by C̃extw̃ext(n), with

C̃ext =










R̃ ĨT J̃ T K̃T

Ĩ R̃ K̃T J̃
J̃ K̃ R̃ ĨT

K̃ J̃ T Ĩ R̃










∈ R4M . (3.39)

Matrix R̃ contains the real elements of ϕ(n)ϕH(n), while Ĩ, J̃ and K̃ are the imaginary
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parts for i, j and k, respectively. R̃ is a symmetric matrix, and Ĩ = −ĨT
, J̃ = −J̃ T

and K̃ = −K̃T
. These matrices are given by

R̃ = ϕRϕ
T
R
+ϕIϕ

T
I
+ϕJϕ

T
J
+ϕKϕ

T
K
,

Ĩ = −ϕRϕ
T
I
+ϕIϕ

T
R
− ϕJϕ

T
K
+ϕKϕ

T
J
,

J̃ = −ϕRϕ
T
J +ϕJϕ

T
R +ϕIϕ

T
K − ϕKϕ

T
I ,

K̃ = −ϕRϕ
T
K
+ϕKϕ

T
R
− ϕIϕ

T
J
+ϕJϕ

T
I
,

Using the extended entities, Im{ϕ(n)ϕH(n)w̃(n)} is replaced by C̃
Im

ext
w̃(n), where,

C̃
Im

ext = [diag(0, 1, 1, 1)⊗ IM ] C̃ext. (3.40)

The extended version of ϕ(n)v∗(n) is given by

η̃ext = η̃ext1
+ η̃ext2

+ η̃ext3
+ η̃ext4

, (3.41)

where

η̃ext1
= col( vR(n), −vI(n), −vJ(n), −vK(n) )⊗ϕR(n)

η̃ext2
= col( vI(n), vR(n), vK(n), −vJ(n) )⊗ϕI(n) (3.42)

η̃ext3
= col( vJ(n), −vK(n), vR(n), vI(n) )⊗ϕJ(n)

η̃ext4
= col( vK(n), vJ(n), vI(n), −vR(n) )⊗ϕK(n),

(3.43)

and the extended vector of Im{ϕv∗(n)} is

η̃Im

ext = [diag(0, 1, 1, 1)⊗ IM ]η̃ext. (3.44)

Using eqs. (3.39)–(3.44), the extended version of (3.38) is given by

w̃ext(n+ 1) = w̃ext(n)− µ(g + h)[C̃extw̃ext(n) + η̃ext] + 2µh[C̃
Im

ext
w̃ext(n) + η̃Im

ext
]. (3.45)

Considering the structure of C̃ext and C̃
Im

ext
(and also of η̃ext and η̃Im

ext) this equation can

be simplified to

w̃ext(n+ 1) = w̃ext(n)− µGext[C̃extw̃ext(n) + η̃ext], (3.46)

where

Gext = G⊗ IM (3.47)
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and

G = diag( (g + h), (g − h), (g − h), (g − h) ).

Define w̄ext(n) = E{w̃ext(n)}. Taking the expectation of (3.46), one gets

w̄ext(n + 1) = w̄ext(n)− µGextE{C̃extw̃ext(n)}, (3.48)

where we used the assumptions for v(n) to compute E{η̃ext} = 0.

To evaluate E{C̃extw̃ext(n)}, we recall the independence approximation usually ap-

plied to study LMS-like algorithms [32],

E{ϕ(n)ϕH(n)w̃(n)} ≈ E{ϕ(n)ϕH(n)}w̄(n).

For the extended version of E{ϕ(n)ϕH(n)w̃(n)}, it leads to

E{C̃extw̃ext(n)} ≈ Cextw̄ext(n), (3.49)

where

Cext = E{C̃ext} =










R IT J T KT

I R KT J
J K R IT

K J T I R










. (3.50)

and R = E{R̃}, I = E{Ĩ}, J = E{J̃ } and K = E{K̃} (see (3.39)). Using (3.49) in

(3.48), one gets

w̄ext(n+ 1) = (IM − µGextCext) w̄ext(n). (3.51)

The productGextCext is the extended quaternion autocorrelation matrix, which is obtained

when the quaternion entries of (3.38) are mapped to the real field. GextCext can be used to

study the convergence of the algorithms, which is assessed through its eigenvalue spread.

Note that Cext is a non-negative definite matrix, as we prove in Appendix A (see page

79 ). We also show in the appendix that the entries of Gext must be non-negative for the

recursion (3.38) to be stable.

In the next section, the convergence of (3.51) is studied in two situations, where we

prove that a gradient with h = 0 provides the fastest-converging algorithms. We start

with the case when at most two quaternion elements are correlated, and then we study

quaternion algorithms using a real regressor vector.
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3.3.1 Case one: signals with correlation between at most two

quaternion elements

Consider the general expression (3.51), and define α = (g+h)/(g−h). Assume that4

J = K = 0, such that GextCext is written as

(g − h)
[

A(α) 0

0 B

]

= (g − h)Cext(α), (3.52)

where

A(α) =

[

αR αIT

I R

]

and B = A(1). In addition, recall that the spreading factor of a non-negative definite

matrix is given by

SF =
λMax

λMin
, (3.53)

where λMax and λMin are the largest and the smallest eigenvalues, respectively. Define the

spreading factor of A(α), B and Cext(α) as SFA, SFB and SFCext. We want to show that

the smallest condition number of (3.52) is obtained when α = 1. For this purpose, we first

consider A(α) to show that it has the minimum condition number when α = 1. Then,

we show that the smallest condition number of Cext(α) is also obtained when α = 1.

First, consider A(α). A(α) corresponds to a row scaling of B, since it can be written

as

A(α) = D(α)B,

whereD(α) is the scaling matrix, given byD(α) = diag(α, 1)⊗IM . In [64], the problem of

determining the row scaling of a matrix which minimizes the Euclidean condition number

is addressed, and it is shown that this problem is convex. With this information, we know

that there is a value of α which minimizes the condition number, which we now find out.

Studying matrix A(α), one can show that the condition number of A(α) is equal to

that of A(1/α). For this purpose, we use an unitary transformation [46] – which does

not change the eigenvalues of a matrix – to show that the spreading factors of A(α) and

A(1/α) have the same value, since

[

0 I2M

−I2M 0

]

A(α)

[

0 −I2M
I2M 0

]

= αA(1/α),

where we also have used the fact that I = −IT . Notice that when α→∞ or when α→ 0,

4The results would be similar if any two terms in (I,J ,K) were zero.
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the condition numbers of A(α) and A(1/α) both go to ∞. Since SFA(α) = SFA(1/α),

and SFA(α) is a convex function, the minimum condition number must be at the point

which defines the axis of symmetry of the problem. This point corresponds to α = 1,

where SFA = SFB. For different values of α, SFA > SFB.

Using the result for A(α), we can evaluate the condition number of matrix Cext(α) in

eq. (3.52). SFCext is given by5

SFCext =
max {λMax(A(α)), λMax(B)}
min {λMin(A(α)), λMin(B)} , (3.54)

where λMax(A(α)) and λMax(B) are the maximum eigenvalues ofA(α) andB, respectively,

and λMin(A(α)) and λMin(B) are the minimum eigenvalues. Using (3.54), it is possible to

list the cases which can appear in the computation of SFCext , i.e.,

1. λMax(A(α)) > λMax(B) and λMin(A(α)) ≤ λMin(B).

In this case, SFCext = λMax(A(α))/λMin(A(α)) > SFB.

2. λMax(A(α)) > λMax(B) and λMin(A(α)) ≥ λMin(B).

In this case, SFCext = λMax(A(α))/λMin(B) > SFB.

3. λMax(A(α)) ≤ λMax(B) and λMin(A(α)) < λMin(B).

In this case, SFCext = λMax(B)/λMin(A(α)) > SFB.

4. λMax(A(α)) = λMax(B) and λMin(A(α)) = λMin(B).

In this case, SFCext = SFB.

Notice that the condition λMax(A(α)) < λMax(B) and λMin(A(α)) > λMin(B) is not

possible, since we have shown that SFA ≥ SFB always.

For the three first conditions, the eigenvalue spread is always increased, while the last

possibility reveals that the minimum value of SFCext occurs when A(α) = B, for α = 1.

Recalling that α = (g + h)/(g − h), we conclude that h must be zero, showing that the

minimum eigenvalue spread is obtained with a gradient similar to that of [42] or [60], for

any QLMS-based algorithm.

5The constant (g − h) does not affect the eigenvalue spread of eq. (3.52), since it multiplies all the
eigenvalues.
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3.3.2 Case two: Widely-linear algorithms using real data vector

Consider a WL quaternion algorithm, implemented with the real-regressor vector

qRC(n). In this case, the general expression applied to the mean analysis in (3.51) can

be particularized to an equation easier to manipulate, since η̃ext (see eq. (3.41)) and C̃ext

(see eq. (3.39)) have simplified expressions. Below, we show how the expressions of ηext

and C̃ext are modified when qRC(n) is employed, and how the study of GextCext benefits

from this approach.

When the regressor vector is qRC(n), η̃ext is simplified to

η̃ext = col( vR, −vI, −vJ −vK )⊗ qRC(n), (3.55)

since η̃ext2
, η̃ext3

and η̃ext4
of eq. (3.42) vanish, and ϕR(n) = qRC(n). It still holds that

E{η̃ext} = 0.

C̃ext is real-valued for this approach, given by C̃ext = I4 ⊗ C̃RC, so that the extended

autocorrelation matrix reduces to

CRCext = I4 ⊗CRC, (3.56)

where CRC is computed as presented in (3.25).

Replacing Cext by (3.56) in equation (3.51), we obtain

w̄ext(n+ 1) = (I4N − µWLGextCRCext) w̄ext(n). (3.57)

so that the convergence in the mean can be studied through matrix

GextCRCext = (G⊗ I4N)(I4 ⊗CRC) = G⊗CRC,

which has a known structure that can be exploited in the analysis.

The product GextCRCext is a block-diagonal matrix, in which one block-matrix is (g+

h)CRC and the other three blocks are (g−h)CRC. N eigenvalues of GextCRCext correspond

to the eigenvalues of CRC, multiplied by (g + h). The other 3N eigenvalues correspond

to the eigenvalues of CRC, multiplied by (g − h) and with multiplicity 3 each one. The

minimum and the maximum eigenvalues of GextCRCext are

λMax(GextCRCext) = max{(g + h), (g − h)}λMax(CRC) (3.58)
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and

λMin(GextCRCext) = min{(g − h), (g + h)}λMin(CRC), (3.59)

where λMax(CRC) and λMin(CRC) are the largest and the smallest eigenvalues of CRC,

respectively. The spreading factor is then computed with

SFGextCRCext
=

max{(g + h), (g − h)}λMax(CRC)

min{(g − h), (g + h)}λMin(CRC)
, (3.60)

that can be simplified to

SFGextCRCext
= max

{
(g + h)

(g − h) ,
(g − h)
(g + h)

}
λMax(CRC)

λMin(CRC)
. (3.61)

The best choice for g and h is again obtained when (g + h)/(g − h) = 1, so that h = 0

and a = b+ c + d.

Based on this result, in the next section we propose the fastest-converging WL-QLMS

algorithm with real-input, which is also a low-cost version of WL-iQLMS: the reduced-

complexity WL-iQLMS algorithm.

3.3.2.1 The RC-WL-iQLMS algorithm

The reduced-complexity WL-iQLMS algorithm, presented in Table 9, is obtained

with6 g = 3/4 and h = 0 in eq. (3.32), therefore guaranteeing the minimum eigen-

value spread in GextCRCext and the fastest-converging performance among the WL-QLMS

algorithms with real input. It has exactly the same performance of WL-iQLMS, which

can be verified by obtaining a transformation to map the entries of qRC(n) in qWL(n), and

then using it to compare the equations of the techniques. For this purpose, recall the

WL-iQLMS (see Table 8, page 54). Define

F =










1 i j k

1 i −j −k
1 −i j −k
1 −i −j k










⊗ IN ,

and note that FFH/4 = FHF /4 = I4N . One can show that

qWL(n) = FqRC(n). (3.62)

6Other values to g could have been used, since the constant that appears in the second term of the
right-hand side of the update equation can be absorbed by the step size. We choose this value to make
easier the comparison with WL-iQLMS of Table 8
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The system of equations which defines the optimum solution wiQ,opt of the WL-iQLMS

algorithm is given by

E{qWL(n)q
H
WL

(n)}wiQ,opt = E{qWL(n)d
∗(n)}.

Left-multiplying both sides by FH/4 and using (3.62), one gets

FH

4
F

︸ ︷︷ ︸

I4N

E{qRC(n)q
T
RC(n)}FHwiQ,opt=

FH

4
F

︸ ︷︷ ︸

I4N

E{qRC(n)d
∗(n)}.

Recognizing E{qRC(n)q
T
RC(n)} and E{qRC(n)d

∗(n)} as the autocorrelation matrix and

cross-correlation vector of the algorithm proposed in Table 9, then

wRCiQ,opt = FHwiQ,opt or wiQ,opt = FwRCiQ,opt/4, (3.63)

where we used subscript RCiQ to identify quantities related to RC-WL-iQLMS.

Based on (3.63), define

wiQ(n) = FwRCiQ
(n)/4

to show that

d̂iQ(n)=wH
iQ
(n)

FHF

4
qWL(n)=wH

RCiQ
(n)qRC(n)=d̂RCiQ

(n),

and notice that eiQ(n) = eRCiQ
(n). Finally, left multiplying the update equation of WL-

iQLMS by FH , we obtain

FHwiQ(n + 1)
︸ ︷︷ ︸

wRCiQ
(n+1)

= FHwiQ(n)
︸ ︷︷ ︸

wRCiQ
(n)

+
3

4
µiQF

H qWL(n)
︸ ︷︷ ︸

FqRC(n)

e∗
iQ
(n)

︸ ︷︷ ︸

e∗RCiQ
(n)

.

Defining µRCiQ
= 4µiQ, we show that the new technique and WL-iQLMS have exactly

the same performance. The new technique is low-cost since it applies the real input,

which replaces many quaternion-quaternion operations by real-quaternion calculations in

the update equation, and also in the computation of the estimate of d(n). Since each

quaternion-quaternion multiplication requires 16 real multiplications and 12 real addi-

tions, while a real-quaternion product uses only 4 real multiplications, the RC approach

can lead to a considerable reduction in the number of computations (see Table 10).

Note that another low-cost technique based on real-input data was proposed in our

initial research on WL-QLMS-based the algorithms. In [18], we developed the RC-WL-

QLMS algorithm, which is obtained choosing g = 1/2 and h = −1/4. The resulting update
equation is similar to that of WL-QLMS. Since h 6= 0, RC-WL-QLMS is outperformed
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by RC-WL-iQLMS in the convergence rate. RC-WL-QLMS is also more costly, since its

update law has an additional term. For these reasons, in this text we concentrate only

on RC-WL-iQLMS, which is a better alternative.

Table 9: RC-WL-iQLMS algorithm

d̂RCiQ
(n) = wH

RCiQ
(n)qRC(n)

eRCiQ
(n) = d(n)− d̂RCiQ

(n)

wRCiQ
(n+ 1) = wRCiQ

(n) +
3

4
µRCiQ

qRC(n)e
∗
RCiQ

(n)

3.3.2.2 Comparing the RC-WL-iQLMS with the 4-Ch-LMS algorithm

To show that the RC-WL-iQLMS algorithm corresponds to the 4-Ch-LMS algorithm

written in the quaternion domain, we must rewrite the equations of Table 9 to separate

the imaginary numbers i, j and k from the real terms.

Define the extended vectors

dext(n) = col (dR(n), dI(n), dJ(n), dK(n)) ,

v′
ext(n) = col (vR(n), vI(n), vJ(n), vK(n))

and note that d(n) = tTdext(n) and v(n) = tTv′
ext(n), where

t = col
(

1, i, j, k

)

. (3.64)

Assume that d(n) is modeled as

d(n) = wH
RCiQ,optqRC(n) + v(n),

which can be expressed as

tTdext(n) = tT
(

W T
RCiQ,optqRC(n) + v′

ext
(n)
)

.

W RCiQ,opt is the 4N × 4 real matrix, given by

W RCiQ,opt =
[
wRCiQ,opt

R
−wRCiQ,opt

I
−wRCiQ,opt

J
−wRCiQ,opt

K

]
.

Define the extended vectors

eRCiQext
(n) = col

(

eRCiQR
(n), eRCiQI

(n), eRCiQJ
(n), eRCiQK

(n)
)

, (3.65)

d̂RCiQext
(n) = col

(

d̂RCiQR
(n), d̂RCiQI

(n), d̂RCiQJ
(n), d̂RCiQK

(n)
)

. (3.66)
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Using (3.64), (3.65) and (3.66) in the equations of Table 9, one gets

W (n+1)t∗=

(

W (n)+
3

4
µRCiQ

qRC(n)e
T
RCiQext

(n)

)

t∗, (3.67)

tTeRCiQext
(n) = tT

(

dext(n)− d̂RCiQext
(n)
)

(3.68)

and

tT d̂RCiQext
(n) = tT

(
W T (n)qRC(n)

)
, (3.69)

where

W (n) =
[

wRCiQR
(n) −wRCiQI

(n) −wRCiQJ
(n) −wRCiQK

(n)
]

.

Removing the multiplication by t in (3.67), (3.68) and (3.69), we obtain the 4-Ch-LMS

algorithm. Thus the proposed algorithm is a rewriting (in the quaternion domain) of the

4-Ch-QLMS algorithm, just as the RC-WL-LMS of [38] is a rewriting of the 2-Ch-LMS

algorithm [24].

In Table 10, we present the computational complexity of some QLMS-based techniques

proposed in the literature and the 4-Ch-LMS algorithm. The WL-QLMS and WL-iQLMS

algorithms are about 4 times more costly than their SL counterparts (QLMS and iQLMS,

respectively). The RC-WL-LMS technique is less costly than WL-QLMS and WL-iQLMS,

and has almost the complexity of iQLMS. The 4-Ch-LMS, iQLMS and the RC-WL-iQLMS

algorithms have the same complexity, and they are the less-costly techniques in the table.

Table 10: Computational complexity in terms of real operations per iteration (N is the
length of the SL data vector)

Algorithm + ×
QLMS 48N 48N + 9

WL-QLMS 192N 192N + 9

RC-WL-QLMS 32N + 4 32N + 8

iQLMS 32N 32N + 4

WL-iQLMS 128N 128N + 4

RC-WL-iQLMS 32N 32N + 4

4-Ch-LMS 32N 32N + 4

3.4 Analysis of QLMS-based algorithms

In this section, we study the convergence of WL quaternion algorithms based on the

QLMS technique. Using our general description of the quaternion gradient, we obtain
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mean and mean-square analyses results for any QLMS-based technique, which we later

particularize for the case of real-input algorithms.

3.4.1 Designing the step size to guarantee the convergence in
the mean of real-regressor vector techniques

Similar to the analysis applied to study the LMS algorithm [32], we can use GextCRCext

(see eq. (3.57)) to define bounds for the step size which guarantee the convergence in the

mean. From (3.57), we can study the eigenvalues of I4N − µWLGextCRCext. To guarantee

the convergence in the mean, the absolute value of each eigenvalue must be less than 1.

Applying this condition, we obtain

0 < µ <
2

λMax(GextCRCext)
=

2

ψ(g, h)λMax(CRC)
,

where ψ(g, h) = max{(g + h), (g − h)}. For RC-WL-iQLMS, the bounds are

0 < µRCiQ
< 8/[3λMax(CRC)],

and the spreading factor is given by

SFRCiQ
= λMax(CRC)/λMin(CRC). (3.70)

3.4.2 Mean-square analysis of QLMS-based algorithms

In order to perform a general second-order analysis, suitable for any QLMS-based

algorithm, we use a general equation, where ϕ(n) is applied to represent any quaternion

regressor vector. We particularize the results for real-input WL-QLMS-based techniques

in the end of the section.

To start the analysis, recall eq. (3.46) (see page 56). Similarly to the traditional

analysis of the LMS algorithm [45], multiply this equation by its transpose and take the
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expectation, to obtain

E{w̃ext(n+ 1)w̃T
ext
(n+ 1)}

︸ ︷︷ ︸

S(n+1)

= E{w̃ext(n)w̃
T
ext
(n)}

︸ ︷︷ ︸

S(n)

− µE{w̃ext(n)w̃
T
ext
(n)C̃extGext}

︸ ︷︷ ︸

A

−µE{GextC̃extw̃ext(n)w̃
T
ext
(n)}

︸ ︷︷ ︸

B

+ µ2E{GextC̃extw̃extw̃
T
ext(n)C̃extGext}

︸ ︷︷ ︸

C

+µ2E{Gextηextη
T
extGext}

︸ ︷︷ ︸

D

− µE{Gextηext(n)w̃
T
ext(n)}

︸ ︷︷ ︸

E

−µE{w̃ext(n)η
T
ext(n)Gext}

︸ ︷︷ ︸

F

+ µ2E{Gextηext(n)w̃ext(n)C̃extGext}
︸ ︷︷ ︸

G

+µ2E{GextC̃extwext(n)η
T
ext
Gext(n)}

︸ ︷︷ ︸

H

,

(3.71)

where we define S(n) = E{w̃ext(n)w̃
T
ext
(n)} to simplify the notation. From eq. (3.71)

the second-order model for small step-sizes is derived. However, some approximations are

required to proceed with the analysis, which are presented in the Assumption I next.

Assumption I: Assume that the sequence {ϕ(n)} is Gaussian, stationary and zero-

mean, and that {ϕ(n)} and {v(n)} are independent from each other. Additionally, assume

that E{vext(n)v
T
ext(n)} = σ2

vI4 and that µ is small enough such that ϕ(n) and w(n) are

approximately independent.

Based on Assumption I, the terms of eq. (3.71) are studied as follows7:

1. Term A – This term can be approximated as

A = E{w̃extw̃
T
ext
C̃ext|ϕ}Gext

≈ E{E{w̃extw̃
T
ext}C̃ext}Gext

= S(n)CextGext,

(3.72)

where we used E{C̃ext} = Cext.

2. Term B – Similarly to A, term B reduces to

B = GextCextS(n).

3. Term C – This term can be rewritten as

C = GextE{C̃extw̃extw̃
T
extC̃ext}Gext

∼= GextE{C̃extS(n)C̃ext}Gext.
(3.73)

7Note that we drop the time coefficient to simplify the notation.
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4. Term D – Recalling equations (3.41) and (3.42) (see p. 56), D is given by

D = GextE{ηext(n)η
T
ext
(n)}Gext

= GextE{
4∑

m=1

4∑

ℓ=1

ηextm
(n)ηT

extℓ
(n)}Gext.

(3.74)

For a general case, D is not structured, such that a simple analytical expression

is difficult to obtain. However, with knowledge on the statistics of the noise and

of the quaternion vector ϕ(n), D can be computed with a computer program.

When the input is qRC(n), a simple expression can be obtained for D. We present

this expression later, when we particularize the analysis for real-input WL-QLMS

algorithms.

5. Terms E , F , G and H – From Assumption I, the elements of vext are zero-mean

random variables and are independent of ϕ(n) and w̃ext. Using this argument, E ,
F , G and H result in 4M × 4M null matrices.

With these approximations, the recursion for S(n) results

S(n+ 1) ≈ S(n) + µ2C − µ [S(n)CextGext +GextCextS(n)] + µ2D. (3.75)

Note that the three first terms on the right-hand side are linear in S(n). Assuming that

the step size is small enough so that µ2C can be neglected, we obtain the simplified model

S(n+ 1) ≈ S(n)− µS(n)CextGext − µGextCextS(n) + µ2D, (3.76)

where the initialization corresponds to S(0) = w̃ext(0)w̃
T
ext
(0).

Using (3.76), two theoretical quantities can be calculated at each time instant: the

excess mean-square error (EMSE) [32],

ζ(n) = E{|e(n)|2} = Tr(S(n)Cext),

and the mean-square deviation (MSD) [32]

χ(n) = E{||w̃ext(n)||22} = Tr(S(n)).

From the small step-size model, we can also deduce the steady-state EMSE for general

case. The steady-state MSD cannot be computed in our general approach, since Tr(S(∞))

cannot be isolated in the general expression. However, it can be computed for real-input

WL-QLMS-based techniques, as we will show in Section 3.4.3.
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To compute the steady-state EMSE, assume that for n → ∞, S(n + 1) ≈ S(n) =

S(∞), such that eq. (3.76) reduces to

S(∞)CextGext+GextCextS(∞) ≈ µD. (3.77)

Multiply eq. (3.77) by G−1
ext

from the right and take the trace. Using the trace property

Tr(AB) = Tr(BA), we obtain

ζ(∞) ≈ µTr(DG−1
ext)/2, (3.78)

which only depends on D (that captures the relation among the noise and the input) and

Gext, that depends on the algorithm that is applied.

Using our general approach to study QLMS-based algorithms, in this section we ob-

tained a small step-size model to iteratively compute the MSD and the EMSE of any

QLMS-algorithm. We also derived an analytical expression for the steady-state EMSE.

In the next section, we particularize these results for real-regressor WL-QLMS-based

techniques.

3.4.3 Mean-square analysis of WL-QLMS algorithms with real
input

When the input of a WL-QLMS-based algorithm is a real vector, the analysis pre-

sented in Section 3.4.2 can be simplified, leading to expressions easier to manipulate and

interpret. In this section, we exploit it to obtain an accurate model and relations to help

the design of the algorithms.

For this purpose, initially consider the expectation of the terms used to compute S(n)

in (3.71). Note that when the input vector is given by qRC(n), the extended autocorrelation

matrix Cext is replaced by CRCext in A, B and C. Additionally, recall that when the

regressor vector is real, ηext simplifies to (3.55) (see p. 60,) and term D is given by

D = GextE{ηext(n)η
T
ext(n)}Gext

= GextE{(vext ⊗ qRC)
(
vT

ext
⊗ qT

RC

)
}Gext.

(3.79)

Using property 3 of Kronecker products and Assumption I, we simplify eq. (3.79) to

D = Gext

(
E{vextv

T
ext
} ⊗E{qRCq

T
RC
}
)
Gext

= σ2
vGext

(
I4 ⊗ E{qRCq

T
RC
}
)
Gext

= σ2
vGextCRCextGext,
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where we have used (3.56) to identify CRCext . The other terms E , F , G and H are equal

to zero matrices.

Note that all the results obtained in the analysis for any QLMS-based technique still

hold when the input is qRC(n). Using (3.4.3), the steady-state EMSE expression, simplifies

to

ζ(∞) ≈ µσ2
vTr(GextCRCextGextG

−1
ext
)/2 = µσ2

vTr(GextCRCext)/2. (3.80)

Using (3.47) and (3.56) to write GextCRCext = G⊗CRC, and applying the trace property

of the Kronecker product, one gets

ζ(∞) ≈ µσ2
vTr(G)Tr(CRC)

2
= (2g − h)µσ2

vTr(CRC).

The steady-state MSD is computed by right-multiplying both sides of eq. (3.77) by

(GextCRCext)
−1 and taking the trace to obtain

χ(∞) ≈ µσ2
vTr(Gext)/2

= 4N(2g − h)µσ2
v .

In this case, the steady-state MSD can be easily obtained, since the structure of CRCext

and Gext helps us to isolate Tr(S(∞)) in equation (3.77). For other matrices, a closed

expression may not be obtained.

Notice that we obtained simple equations to calculate the EMSE and the MSD for

small step size, which depend only on N and on matrix CRC, similarly to the LMS steady-

state equations. In the next section, we improve the second-order model and obtain a

range of values for µ which guarantee the convergence in the variance.

3.4.3.1 Choosing the step-size

Recalling eq. (3.75) and assuming that all variables are Gaussian, we can use proper-

ties of fourth-order Gaussian vectors [32] to obtain an approximation for C (see eq.(3.73))

and improve the accuracy of the proposed model when the input vector is real-valued.

For this purpose, assume that qRC(n) is a correlated Gaussian vector, and recall that the

autocorrelation matrix CRC is symmetric and non-negative definite. This fact implies that

there exists an orthogonal matrix Z, such that

ZZT = ZTZ = I4N ,
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which diagonalizes CRC, as given by

CRC = ZΛZT , (3.81)

where Λ is a diagonal matrix, diag(Λ) = [λ1 λ2 . . . λ4N ]
T , and λi ≥ 0, i = 1, 2, . . . , 4N

are the eigenvalues of CRC. Defining q′
RC
(n) = ZTqRC(n), then

E{q′
RC
(n)q′T

RC
(n)}=E{ZTqRC(n)q

T
RC
(n)Z}=ZTCRCZ=Λ.

Since a linear transformation of a Gaussian vector is also Gaussian, q′
RC
(n) is a Gaussian

vector whose elements are independent from each other. Define the extended matrix

Zext = I4 ⊗Z. Multiplying C by ZT
ext

on the left and by Zext on the right, we obtain

C′ = ZT
extCZext = ZT

extGextE{
(
I4⊗qRCq

T
RC

)
S(n)

(
I4⊗qRCq

T
RC

)
}GextZext (3.82)

Defining S ′(n) = ZTS(n)Z and noting that

ZT
extGextZext = (I4 ⊗ZT )(G⊗ I4N )(I4 ⊗Z) = Gext

and
ZT

ext

(
I4⊗qRCq

T
RC

)
Zext = (I4⊗Z)T (I4⊗qRCq

T
RC
)(I4⊗Z)

= I4⊗ZTqRCq
T
RC
Z

= I4⊗q′
RC
q′T

RC
,

we rewrite (3.82) as

C′=GextE
{(

I4⊗q′
RCq

′T
RC

)
S′(n)

(
I4⊗q′

RCq
′T
RC

)}
Gext. (3.83)

Each element of the matrix in the argument of (3.83) can be expressed as sums of terms

E{q′
RCm1

(n)q′
RCm2

(n)q′
RCm3

(n)q′
RCm4

(n)}s′ij(n), (3.84)

where the q′
RCm

(n) represent the elements of q′
RC
(n). s′ij(n) are the entries of S

′(n). Since

the elements of q′
RC(n) are independent and zero-mean, eq. (3.84) is different from zero

only if m1 = m2 = m3 = m4, or m1 = m2 and m3 = m4, or m1 = m3 and m2 = m4, or

m1 = m4 and m2 = m3. Using this result and eq. (3.81), after some algebra, eq. (3.83)

reduces to

C′ = Gext [ΛextTr (S
′(n)Λext) + 2ΛextS

′(n)Λext]Gext.
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where Λext = I4⊗Λ. Multiplying (3.75) by ZT
ext

on the right and by Zext on the left, one

gets

S ′(n+ 1) ≈S′(n)− µ [S′(n)ΛextGext +GextΛextS
′(n)] + µ2σ2

vGextΛextGext

+ µ2Gext [ΛextTr(S
′(n)Λext) + 2ΛextS

′(n)Λext]Gext,
(3.85)

with initialization S ′(0) = ZT
ext
wext(0)w

T
ext
(0)Zext. Taking only the diagonal s′(n) =

diag(S′(n)) in eq. (3.85), we obtain a simplified recursion

s′(n+ 1) =
[
I16N − 2µΛextGext + µ2G2

extℓextℓ
T
ext + 2µ2G2

extΛ
2
ext

]
s′(n) + µ2σ2

vG
2
extℓext,

(3.86)

where

ℓext = col(1, 1, 1, 1)⊗ diag(Λ)

and s′(0) = diag(S ′(0)).

We can study the system matrix of eq. (3.86), i.e.,

Γ = I16N − 2µΛextGext + µ2G2
extℓextℓ

T
ext + 2µ2G2

extΛ
2
ext

= (I16N − µΛextGext)
2 + µ2G2

ext
ℓextℓ

T
ext

+ µ2G2
ext
Λ2

ext

to define a bound for the step size which guarantees the stability in the variance. Using

the ℓ1-norm [46], we can find an upper bound for the largest eigenvalue λΓl
of Γ, i.e.,

max
1≤l≤16N

|λΓl
| ≤ ||Γ||1 = max

1≤l≤16N

16N∑

m=1

|γlm|,

where γlm are the elements of Γ. A conservative range of values for µ, which guarantees

stability, requires that ||Γ||1 < 1. Observe that the l-th column of Γ has entries

{

µ2g2
extl,l

λextl
λextm, if l 6= m

(1− µgextl,l
λextl

)2 + µ2g2extl,lλ
2
extl

+ µ2g2extl,lλextl

∑16N
m=1 λextm , if l = m,

(3.87)

where gextl,l
are the diagonal elements of Gext. Note that

16N∑

m=1

|γlm| = (1− µgextl,l
λextl

)2 +µ2g2extl,l

(

λ2extl + λextl

16N∑

m=1

λextm

)

= (1− µgextl,l
λextl

)2 + µ2g2
extl,l

(
λ2

extl
+ λextl

Tr(Λext)
)
.

(3.88)

Thus, the recursion in eq. (3.86) is stable if

(1− µgextl,l
λextl

)2 + µ2g2extl,l
(
λ2extl + λextl

Tr(Λext)
)
< 1,
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for 1 ≤ l ≤ 16N . Recalling that

Tr(CRCext) = Tr(Λext) = Tr(I4 ⊗CRC) = 4Tr(CRC)

and after some manipulation, the condition simplifies to

µ < 1/gextl,l
(λextl

+ 2Tr(CRC)), 1 ≤ l ≤ 16N.

The smallest bound occurs for gextl,l = max{(g + h), (g − h)} and λextl
= λextmax :

µ < 1/(max{(g + h), (g − h)}(λextmax + 2Tr(CRC))). (3.89)

Replacing λextmax by Tr(CRC) we obtain a simpler but more conservative condition for

stability,

0 < µ < 1/(3Tr(CRC)max{(g + h), (g − h)}),

which guarantees stability in the variance. For RC-WL-iQLMS, the step-size selection

must respect

0 < µRCiQ
< 4/9Tr(CRC), (3.90)

since max{(g + h), (g − h)} = 3/4.

Note that the analysis proposed in this section is valid for uncorrelated and correlated

input. The results presented here can be extended to other real-regressor quaternion

algorithms.

3.5 Simulations

To compare the algorithms and show the accuracy of the proposed model, we per-

formed some simulations using Q-improper processes. For this purpose, we define the

elements of q(n) as given by

qR(n) = (
√
0.58ρ1(n) + 0.5ρ2(n) + 0.4ρ3(n) + 0.1ρ4(n))/4

qI(n) = (0.2ρ1(n) + 0.9ρ2(n) + 0.3ρ3(n) +
√
0.06ρ4(n))/4

qJ(n) = (0.4ρ1(n) + 0.5ρ2(n) + 0.7ρ3(n) +
√
0.1ρ4(n))/4

qK(n) = (0.3ρ1(n) + 0.1ρ2(n) + 0.2ρ3(n) +
√
0.86ρ4(n))/4,

where each ρl(n) is a 4× 1 vector. The elements of each ρl(n) are zero-mean, Gaussian,

i.i.d. and with unitary variance. ρl(n) and ρm(n) are independent from each other

∀l 6= m. Using these values for the input, the components of each quaternion in q(n) are
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correlated, but different quaternions are uncorrelated. One can check that for this input,

Cqqi = Cqqj = Cqiqj 6= 0, such that q(n) is Q-improper. We also define d(n) so that d(n)

and q(n) are jointly Q-improper processes. d(n) is obtained with (3.35), and to compute

the 16-entry column quaternion vector wWL,opt = col(wopt,1, wopt,2, wopt,3, wopt,4), we

define

f(l, b, c) = 1− cos(2π(l − b)/4c), (3.91)

to obtain

wopt,1l=β1(f(l,3,1)−if(l,3,3)−jf(l,3,5)−kf(l,3,7))

wopt,2l=β2(f(l,5,1)−if(l,5,3)−jf(l,5,5)−kf(l,5,7))

wopt,3l=β3(f(l,7,1)−if(l,7,3)−jf(l,7,5)−kf(l,7,7))

wopt,4l=β4(f(l,11,1)−if(l,11,3)− jf(l,11,5)−kf(l,11,7)),

where wopt,ml
is the l-th (l = 1, . . . , 4) entry of wopt,m. β1 = 1/||wopt,1||2 and βm =

0.1/||wopt,m||2, m = 2, 3, 4. Note that we choose these values for the entries of wWL,opt,

since this results in an example for which the SL filter still has reasonable performance.

The quaternion elements of v(n) are zero-mean, Gaussian and i.i.d, with equal variance

σ2
vα = 10−4/4, α ∈ {R, I, J, K}. We perform 200 simulations to observe the EMSE and the

MSD. We compare QLMS, WL-QLMS, WL-iQLMS, RC-WL-QLMS, RC-WL-iQLMS and

4-Ch-LMS, and we plot our model for RC-WL-iQLMS and RC-WL-QLMS. We perform

two simulations. In the first, we adjust the WL-iQLMS and the QLMS algorithms to have

the same convergence rate, and adjust the other WL-algorithms (and the 4-Ch-LMS) to

achieve the same steady-state EMSE achieved by WL-iQLMS. In the second simulation,

we adjust all the WL techniques (and 4-Ch-LMS) to achieve the same steady-state MSD

performance. Table 11 shows the step sizes used in our simulations.

Table 11: Step-sizes used in the simulations (µ = 10−3)

Algorithm QLMS WL- WL- RC-WL- RC-WL- 4-Ch-
QLMS iQLMS QLMS iQLMS LMS

Step size (1th case) µ 2.4µ 2µ 9.6µ 8µ 6µ
Step size (2nd case) µ 9.6µ 2µ 9.6µ 8µ 6µ

Figures 4 and 5 show the results for the first scenario, while figures 6 and 7 present

the results in the second approach.

Note that in both scenarios the WL algorithms achieve lower EMSE and MSD per-

formances than QLMS, as expected, and that the WL-iQLMS, 4-Ch-LMS and RC-WL-
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Figure 4: EMSE performance comparing QLMS, WL-QLMS, RC-WL-QLMS, RC-WL-
iQLMS, WL-iQLMS, 4-Ch-LMS and the proposed second-order model, when the WL
techniques are adjusted to achieve the same steady-state EMSE. The steady-state EMSE
corresponds to -65 dB for RC-WL-QLMS and RC-WL-iQLMS. – Average of 200 simula-
tions.
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Figure 5: MSD performance comparing QLMS, WL-QLMS, RC-WL-QLMS, RC-WL-
iQLMS, WL-iQLMS, 4-Ch-LMS and the proposed second-order model, when the WL
techniques are adjusted to achieve the same steady-state MSD. The steady-state MS cor-
responds to -47dB for RC-WL-QLMS and RC-WL-iQLMS. – Average of 200 simulations.

iQLMS have the same convergence rate. In the first scenario (see figures 4 and 5), when all

the WL techniques are adjusted to achieve the same EMSE steady-state, RC-WL-iQLMS

is the fastest-converging technique, but in terms of MSD steady-state performance, it

is outperformed by WL-QLMS. In the second scenario, (see figures 6 and 7), the step

sizes of the WL algorithms are adjusted to achieve the same steady-state MSD. The

RC-WL-iQLMS algorithm again is the fastest-converging technique in both figures, but

the WL-QLMS algorithm has a convergence rate much closer to that of RC-WL-iQLMS.

However, the steady-state EMSE performance of WL-QLMS is poor in this case. The

proposed model (presented in the figures as a black dashed line) is accurate to describe

the performance behavior of both the RC-WL-QLMS and the RC-WL-iQLMS algorithms.

We can also verify that the model is accurate to predict the faster convergence rate of the

RC-WL-iQLMS algorithm when compared to RC-WL-QLMS.
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Figure 6: EMSE performance comparing QLMS, WL-QLMS, RC-WL-QLMS, RC-WL-
iQLMS, WL-iQLMS, 4-Ch-LMS and the proposed second-order model, when the WL
techniques are adjusted to achieve the same steady-state MSD. The steady-state EMSE
corresponds to -65 dB for RC-WL-QLMS and RC-WL-iQLMS. – Average of 200 simula-
tions.
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Figure 7: MSD performance comparing QLMS, WL-QLMS, RC-WL-QLMS, RC-WL-
iQLMS, WL-iQLMS, 4-Ch-LMS and the proposed second-order model, when the WL
techniques are adjusted to achieve the same steady-state MSD. The steady-state MS cor-
responds to -47dB for RC-WL-QLMS and RC-WL-iQLMS. – Average of 200 simulations.

3.6 Conclusions

In this chapter, we developed a general representation to quaternion gradients and

we used it to prove that different gradients can be applied to obtain the same QLMS-like

algorithm.

We showed that the class of gradients to which the i-gradient belongs part provides the

fastest-converging WL algorithms when there is correlation only in two axis, or when the

WL regressor vector is real. Using the general gradient, we devised the fastest-converging

WL-QLMS algorithm with a real regressor vector, and we showed that it corresponds to a

RC version of WL-iQLMS and also to the 4-Ch-LMS algorithm written in the quaternion

domain. The RC-WL-iQMS technique has one-fourth of the complexity of WL-iQLMS,

and has the same cost of the 4-Ch-LMS algorithm

We developed a mean and a mean-square analysis for any QLMS-based algorithm,

and we applied it to study WL-QLMS algorithms using real data vector. The proposed

analysis is suitable for correlated and uncorrelated input. We obtained simple equations to

compute the steady-state EMSE and MSD, and a range of step sizes for mean and mean-
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squared convergence. We also proposed a model to study the convergence performance

of any WL-QLMS-based algorithm using real regressor vector, which was particularized

for the RC-WL-iQLMS technique. Simulations comparing the algorithms and the model

showed the accuracy of the analysis.
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Appendix A: Conditions to guarantee the positive

semi-definiteness of GextCext

In this appendix we show that Cext is a positive semi-definite matrix. Then, we use

this to prove that the diagonal entries of Gext must be non-negative to make GextCext

always positive semi-definite .

Initially, notice that for any quaternion vector χ with the proper dimension,

χHE{ϕ(n)ϕH(n)}χ = E{|ϕH(n)χ|2} ≥ 0, ∀χ. (3.92)

Define vector χext = col(χR, χI, χJ, χK
), and consider the product χT

ext
Cextχext, for

χext ∈ R4M . It then holds

χT
extCextχext = χHE{ϕ(n)ϕH(n)}χ ≥ 0.

To define the conditions on GextCext which lead to stable (3.51), we must find values for

which the diagonal entries of Gext make the product of matrices positive semi-definite.

First, note that using the similarity transformation [46]

G−1/2
ext

(GextCext)G
1/2
ext

= G1/2
ext

CextG
1/2
ext
, (3.93)

the eigenvalues of GextCext are preserved in

G1/2
ext

CextG
1/2
ext
. (3.94)

In this case, we just need to define the conditions on which (3.94) is positive semi-definite

to show that the elements of Gext should be non-negative. For this purpose, we use χext

to check on which cases

χH
ext
G1/2

ext
CextG

1/2
ext

χext ≥ 0.

We start showing that if Gext has at least one negative diagonal entry, then it is possible

to find one vector for which χH
ext
G

1/2
ext CextG

1/2
ext χext < 0. For this purpose, assume that only

the m-th entry gextm,m
of Gext is negative, such that

G1/2
ext = diag(√gext1,1 , . . . , j

√
|gextm,m

|, . . . , √gext4M,4M
),

where j =
√
−1. Using χext = ǫm, where ǫm = 1 and the other entries are set to zero, one

can easily show

ǫTmG
1/2
ext CextG

1/2
ext ǫm = gextm,m

cextm,m
< 0

so that (3.94) is not positive semi-definite. When Gext has more negative diagonal entries,
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the proof that (3.94) is non-positive is straightforward. In this case, all gextm,m
must be

non negative, 1 ≤ m ≤ 4M , to guarantee GextCext positive semi-definite always. The

condition for this is (g + h) ≥ 0 and (g − h) ≥ 0.



PART II

LOW-COMPLEXITY TECHNIQUES USING THE

DCD ALGORITHM
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4 LOW-COMPLEXITY WIDELY-LINEAR

ADAPTIVE FILTERS USING THE

DICHOTOMOUS COORDINATE DESCENT

(DCD) ALGORITHM

It is well-known that the RLS algorithm [32] converges faster than the LMS algorithm

[32], and that RLS is also less sensitive to the eigenvalue spread in the autocorrelation

matrix. However, while the LMS has linear computational cost, traditional implementa-

tions of the RLS (for instance [32], p.201) have quadratic computational complexity with

the regressor vector length N (O(N2)). Additionally, the RLS algorithm suffers with

numerical instability [24], requiring a careful implementation to avoid divergence.

There are faster ways to implement RLS, such as the Fast Transversal Filter (FTF)

[6, 65], lattice approaches [65] and techniques using the QR decomposition [65, 66]. How-

ever, even these methods have limitations. The FTF is the less costly technique (its

computational cost is proportional to 7N), but it is numerically unstable. The lattice

approaches (with complexity about 13N) and the QR-based techniques (which can be

implemented at cost O(N) if the input is a tap delay-line) can be implemented in stable

ways, but they require a careful implementation. Additionally, lattice algorithms compute

only the error e(n): they do not explicitly compute the weight vector w(n), such that

they cannot be applied to problems which require w(n).

A low-cost and stable alternative to these techniques was proposed in [25], based on

the dichotomous coordinate descent algorithm (DCD) [23, 28]. The DCD is an iterative

method to solve a system of equations given by

Rw = p, (4.1)

where R is a positive definite matrix, p is vector, and w is unknown. It is designed to

avoid multiplications and divisions, costly to compute. These operations are replaced by

additions, comparisons and bit-shifts, thus DCD is suitable for fixed-point implementation

in hardware, such as in FPGAs [25]. For the RLS problem, it can be directly applied to
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solve the normal equations at each time instant n. However, this approach is costly, since

many DCD iterations are required to approximate the solution, and is avoided. To solve

the RLS problem, the DCD-RLS technique [25] uses the solution obtained in the previous

instant n − 1 as the initial condition at instant n, such that only a low-cost update

to the previous solution can be computed with a reduced number of DCD iterations.

Avoiding costly computations, the DCD-RLS can be implemented with a cost linear in

N . Additionally, it does not propagate the inverse autocorrelation matrix, thus avoiding

the numerical instability of the traditional RLS algorithm.

Prior work also reports the use of DCD iterations to obtain a low-complexity affine

projection (AP) algorithm [27], which incorporates the DCD to update the filter weights,

resulting in a method less costly to implement than NLMS [45]. In [67], the DCD is used

to implement the MVDR beamformer, and in [68], a DCD-homotopy technique based on

the algorithm of [69] is also proposed to recover sparse signals, in system identification

problems. All these results from the literature motivated us to study and propose low-cost

techniques using DCD iterations, as presented in [29, 40].

In this chapter, we use DCD iterations to further reduce the complexity of the RC-

WL-RLS, presented in Chapter 2. In that chapter, we used a linear transformation to

rewrite the complex WL input data vector as a real-valued vector, which helped us to

avoid redundance in the the autocorrelation matrix. Using this approach, we arrived

at algorithms with the same MSE performance as that obtained with the original WL

techniques, but less costly. Despite the complexity reduction achieved by RC-WL-RLS,

it is still costly, since it uses O(N2) computations (see Table 6, in page 40). Additionally,

the numerical instability problem of WL-RLS remained unsolved for RC-WL-RLS. To

improve this technique, we modify it to use DCD iterations, and a lower-complexity

and also numerically stable method for widely-linear processing is obtained. The new

technique is adequate for cases where the real and the imaginary entries of the input

vector are tap-delay lines, so that a low-cost update of the estimated correlation matrix

can be applied. We compare the proposed technique (the DCD-WL-RLS algorithm) with

RC-WL-RLS, and show that the former can be designed to achieve almost the same

performance MSE of RC-WL-RLS, but with complexity proportional to N .

The main contributions in this chapter are summarized as follows:

1. We extend the DCD algorithm so it can be applied to WL-RLS algorithms.

2. We develop a O(N) numerically stable version of the RC-WL-RLS algorithm.
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The chapter is organized as follows. In Section 4.1 we present the DCD algorithm.

Based on the RC-WL-RLS algorithm, in Section 4.2 we obtain the DCD-WL-RLS algo-

rithm, and we also evaluate its computational complexity. Simulations are presented in

Section 4.3, and the results of this chapter are summarized in Section 4.4.

4.1 The DCD algorithm

The DCD method has the goal of minimizing the multi-variable cost function [24]

J(w) =
1

2
wTRw − pTw + c, (4.2)

where R, p and c are assumed constant. R is a positive definite matrix, such that J(w)

is a convex function.

Assume that an initial approximation to the solution ŵ(0) is available, and define

ŵ(0)(0) = ŵ(0). DCD searches for a better nearby approximation, updating one entry of

ŵ at a time. The first step is to evaluate

∆J+ = J(ŵ(0)(0) + ǫ1H)− J(ŵ(0)(0)) (4.3)

and

∆J− = J(ŵ(0)(0)− ǫ1H)− J(ŵ(0)(0)), (4.4)

where H > 0 is a step size and ǫk is an N × 1 vector, where all entries are 0, except for

the element in position k, which is equal to 1. Denote ŵ(1)(0) the improved estimate after

ŵ(0)(0). The update is obtained as follows:

1. If ∆J+ < 0, then the new estimate is ŵ(1)(0) = ŵ(0)(0) + ǫ1H .

2. If ∆J− < 0, then the new estimate is ŵ(1)(0) = ŵ(0)(0)− ǫ1H .

3. When ∆J+ and ∆J− are both positive, then ŵ(1)(0) = ŵ(0)(0) and the algorithm

moves to the next entry of ŵ(1)(0), to verify if it needs to be updated.1

Figure 8 shows the first iteration when w is a scalar and (4.2) reduces to finding the

minimum of a parabola.

Once ŵ(1)(0) is computed, ŵ(2)(0) can be obtained, checking J(ŵ(1)(0) ± ǫ2H) −
J(ŵ(1)(0)). After that, one can use the same steps to calculate ŵ(3)(0) from ŵ(2)(0),

1Note that ∆J+ and ∆J
−

cannot be simultaneously negative, since J(w) is a convex function.
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∆J+ > 0
∆J− < 0

J(ŵ(0)(0))

J(ŵ(0)(0) −H)

J(ŵ(0)(0) +H)

ŵ(0)(0)ŵ(0)(0) −H ŵ(0)(0) +Hwopt

w

J
(w

)

⇒ ŵ(1)(0) = ŵ(0)(0)−H

Figure 8: First DCD iteration whenw has only one element and the minimization problem
reduces to obtaining the minimum of a parabola. The algorithm starts with ŵ(0)(0) and
computes ∆J+ = J(ŵ(0)(0) + H) − J(ŵ(0)(0)) and ∆J− = J(ŵ(0)(0) − H) − J(ŵ(0)(0)).
Since ∆J+ > 0 and ∆J− < 0, ŵ(0)(0)−H is chosen as the improved solution ŵ(1)(0).

and so on. The algorithm continues the computation of ŵ(k)(0) (for k = 1, 2, · · ·N) until

ŵ(N)(0) is obtained. In this case, we let ŵ(0)(1) = ŵ(N)(0), and repeat the procedure. If

at least one update occurred, the step size is kept with the same value. Otherwise, H is

reduced to H/2, and the update continues.

Note that the computation of ∆J+ and ∆J− in each step is costly, since to obtain the

i-th update ŵ(k+1)(i) we must compute2

∆J+ =
1

2

(

ŵ(k)(i) +Hǫk+1

)T

R
(

ŵ(k)(i) +Hǫk+1

)

− pT
(

ŵ(k)(i) +Hǫk+1

)

−
(
1

2
ŵ(k)T (i)Rŵ(k)(i)− pT ŵ(k)(i)

)

= HǫTk+1Rŵ(k)(i) +
1

2
H2ǫTk+1Rǫk+1 −HpT ǫk+1,

(4.5)

and, similarly,

∆J− = −HǫTk+1Rŵ(k)(i) +
1

2
H2ǫTk+1Rǫk+1 +HpTǫk+1. (4.6)

For ∆J+, the term ǫTk+1Rŵ(k)(i) is computed with N multiplications and N−1 additions,

2We assume that R and p are real quantities in the following equations. The extension to the complex
field uses a similar argument.
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since it is equivalent to the product of the k+1-th row ofR by ŵ(k)(i). We use one addition

and one multiplication to obtain H
(

ǫTk+1Rŵ(k)(i)− pTǫk+1

)

, and one more addition and

one multiplication to add (H2/2)ǫTk+1Rǫk+1 = (H2/2)Rk+1,k+1
3 to the result, where we

assume that (H2/2) is pre-computed, and Rk+1,k+1 is the element of R in the (k + 1)-th

column and (k + 1)-th row.

To compute ∆J+ and ∆J− with low cost, we define a residue vector r, that is updated

at each step. The initial residue is given by

r(0)(0) = p−Rŵ(0)(0), (4.7)

and we compute

r(1)(0) = p−Rŵ(1)(0)

=







p−R
(

ŵ(0)(0) +Hǫ1

)

= r(0)(0)−HRǫ1, if ∆J+ < 0

p−R
(

ŵ(0)(0)−Hǫ1

)

= r(0)(0) +HRǫ1, if ∆J− < 0

r(0)(0), otherwise.

(4.8)

Note that to obtain r(1)(0), we still need N multiplications and N additions. However, if

we use a fixed-point implementation and choose H to be a power of two, we can exploit

hardware properties to use only N bit-shifts and N additions. In this case, we reduce

the complexity, since multiplications are more costly than bit-shifts. But there is a better

way to obtain the estimation, which avoids the direct evaluation of (4.5) and (4.6).

Recall equations (4.5) and (4.6). Using the residue definition, one can write

∆J+ = −HǫTk+1r
(k)(i) +

1

2
H2ǫTk+1Rǫk+1 = −Hr(k)k+1(i) +

1

2
H2Rk+1,k+1 (4.9)

and

∆J− = HǫTk+1r
(k)(i) +

1

2
H2ǫTk+1Rǫk+1 = Hr

(k)
k+1(i) +

1

2
H2Rk+1,k+1, (4.10)

where r
(k)
k+1(i) is the (k + 1)-th entry of r(k)(i).

Using (4.9) and recalling that H > 0 and that R is positive-definite, ∆J+ < 0 only if

r
(k)
k+1(i) >

1

2
HRk+1,k+1 ≥ 0. (4.11)

Similarly, ∆J− < 0 only if

−r(k)k+1(i) >
1

2
HRk+1,k+1. (4.12)

3To denote the k+1-th diagonal element of R, we use Rk+1,k+1 instead of rk+1,k+1 to avoid confusion
with the entries of r, which is the residue.
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Note that we can define a unique condition which covers both (4.11) and (4.12), i.e.,

|r(k)k+1(i)| >
1

2
HRk+1,k+1. (4.13)

Using the condition (4.13), we update the estimate and the residue with

ŵ(k+1)(i) = ŵ(k)(i) +Hsign(r
(k)
k+1(i))ǫk+1 (4.14)

and

r(k+1)(i) = r(k)(i)−Hsign(r
(k)
k+1(i))Rǫk+1, (4.15)

where sign(α) is equal to 1 if α ≥ 0 and −1 otherwise.

Using equations (4.13), (4.14) and (4.15), the update requires only one comparison,

N + 1 additions and N + 1 shifts. Choosing H as a power of two, further reduction

of complexity can be achieved, since many multiplications are replaced by shifts and

additions, less costly to compute. Since the algorithm cyclically updates the solution

coefficients, it is namely the real-valued cyclic DCD, and it is presented in Table 124,

where R(1:N,1) denotes the first column of R and ŵk is the k-th element of ŵ.

The DCD performs a bitwise update of the ŵ entries, which we assume that are

represented with Mb bits. The update is performed from the most to the least significant

bits. When the condition (4.13) is not fulfilled, there is no update. In this case, we say

that the iteration was unsuccessful and the steps 4 to 6 (see Table 12) are avoided. When

the algorithm updates ŵ, we have a successful iteration. The technique uses a maximum

number of successful iterations – given by Nu – that determines when the algorithm stops.

The computational complexity of the real-valued cyclic-DCD algorithm is a random

variable, which motivates the computation of the worst case complexity. In the worst

case (which occurs when the for loops are executed until m = Mb and k = N , and the

condition in step 3 is met Nu times), step 1 updates α Mb times, using shifts. Step 2

can be disregarded, since it just attributes a value to a flag. Step 3 uses one comparison

(expressed by the operator >) and one shift to compute (α/2)Rk,k, assuming that both α

and Rk,k are represented as a power of 2. When both for loops are completely executed,

the total cost of step 3 is 2NMb. In the worst scenario, steps 4, 5, 6 and 7 are computed

Nu times (these steps are executed only Nu times, since the algorithm stops when q = Nu

in step 7). Step 4 computes only one addition per iteration, since sign(rk)α is just a sign

change. Step 5 uses N shifts to obtain the term αR(1:N,1) and N additions to update r

4The number of multiplications is omitted since the algorithm only uses additions, comparisons and
shifts.
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Table 12: Real-valued cyclic-DCD algorithm

Step Equation Number of additions,
shifts and comparisons

Initialization: ŵ = 0N×1, r = p

α = H , q = 0

for m = 1, . . . ,Mb

1 α = α/2 1

2 flag = 0 0

for k = 1, . . . , N

3 if |rk| > (α/2)Rk,k then 2

4 ŵk = ŵk + sign(rk)α 1

5 r = r − sign(rk)αR
(1:N,1) 2N

6 q = q + 1, flag = 1 1

7 if q > Nu, the algorithm stops 1

8 if flag = 1, then repeat step 2 1

Total: (worst case) < (2N + 2)Mb +Nu(2N + 3)

at each iteration. Step 6 only requires one addition to update q, while step 7 uses one

comparison to verify if the algorithm stops. Step 8 uses one comparison, and in the worst

case is repeated N times. The total computational cost for the worst case corresponds to

Pm = 0 multiplications and Pa = (2N + 2)Mb +Nu(2M + 3) additions, comparisons and

shifts, which are presented together since all these operations require approximately the

same of the hardware. This complexity is a pessimistic bound, since in general this upper

bound is not reached.

A complex-valued extension of the cyclic-DCD was proposed in [70] (see Table 13).

Different from the real-valued algorithm, the complex-valued cyclic-DCD has two values

to be updated at every iteration, which correspond to the real and the imaginary parts

of the k-th entry of ŵ. The algorithm starts with the real part of an entry ŵk, and

then proceeds to update Im{ŵk}. To verify if Re{ŵk} must be updated, a condition

based on the real part of the k-th entry of r is verified (see step 3 of Table 13). If

it holds, then Re{ŵk} is updated, following the same approach used in the real-valued

cyclic-DCD. If the criterion is not met for the real part of ŵk, then the algorithm proceeds

with the update of the imaginary part. After updating the real and imaginary parts of

ŵk, the technique proceeds to the next entry ŵk+1, and it continues with the update

until some stopping criterion holds. Only a few modifications are required to obtain

the code of the complex-valued technique, as presented in Table 13 (see the first line

of step 3 and step 8). The conditions added to account for the imaginary parts of the

solution increase the computational complexity of the technique. However, only additions,
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comparison and shifts are added to the code, so that the complex-valued algorithm can

also be implemented at low-cost.

Table 13: Complex-valued cyclic-DCD algorithm

Step Equation Number of additions,
shifts and comparisons

Initialization: ŵ = 0N×1, r = p

α = H , q = 0, s = 1

for m = 1, . . . ,Mb

1 α = α/2 1

2 flag = 0 0

for k = 1, . . . , N

3 if s = 1 then rtmp = Re{rk}, else rtmp = Im{rk} 3
if |rtmp| > (α/2)Rk,k then

4 ŵk = ŵk + sign(rtmp)sα 1

5 r = r − sign(rtmp)sαR
(1:N,1) 2N

6 q = q + 1, flag = 1 1

7 if q > Nu, the algorithm stops 1

8 if s = 1, then s = j, go to step 3; else s = 1 2

9 if flag = 1, then repeat step 2 1

Total: (worst case) < Mb(8N + 2)
+Nu(2N + 3)

The cyclic-DCD algorithm updates the entries ŵk cyclically, from k = 1, . . . , N . Since

the number of successful updates is determined by Nu, which is generally chosen low

(Nu ≪ N), the first elements of ŵ are more likely to be updated. However, these terms are

not necessarily the terms which are related to the main features of the residue, such that

these update choices may not be the better ones. This fact motivated the development of

the leading-element DCD algorithm [26], which modifies the criterion to choose the entry

of ŵ which will be updated.

The complex DCD with a leading-element (presented in Table 14) first updates the

entries of ŵ which make the residue higher. For this purpose, the criterion

[k, s] = arg maxp=1,...,N{|Re{rp}|, |Im{rp}|} (4.16)

is applied at each iteration to determine the index p of the real or imaginary element

of r with the highest value (which is stored in variable k). Updating ŵk, we improve

the estimation of ŵ by reducing the error in the direction that contributes the most to

the residue. s is used to determine if the real (s = 1) or the imaginary (s = j, where

j =
√
−1) part of the k-th entry of ŵ will be updated.
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This version of DCD is advantageous when the number of successful iterations Nu is

low, since it concentrates on reducing the main features of the residue. For larger values

of Nu, the solution computed by both techniques is expected to have similar values for

the entries. When Nu → ∞, all entries of ŵ will be updated in both versions of the

algorithms, and the same ŵ will be obtained.

Table 14: Complex-valued leading-element DCD algorithm

Step Equation Number of additions,
shifts and comparisons

Initialization: ŵ = 0N×1, r = p, α = H , q = 0

for m = 1, . . . , Nu

1 [k, s] = arg maxp=1,...,N{|Re{rp}|, |Im{rp}|} 2N
go to step 4

2 q = q + 1, α = α/2 2

3 if q > Mb, the algorithm stops 1

4 if s = 1 then rtmp = Re{rk}, else rtmp = Im{rk} 3
if |rtmp| ≤ (α/2)Rk,k then go to step 2

5 ŵk = ŵk + sign(rtmp)sα 1

6 r = r − sign(rtmp)sαR
(1:N,1) 2N

Total: (worst case) < 6Mb + (4N + 4)Nu

The DCD was used in [25] to obtain a numerically stable and low-cost (O(N)) version

of the RLS algorithm. In the next section, we adapt the technique of [25] to the RC-WL-

RLS algorithm.

4.2 The DCD-WL-RLS algorithm

In this section, we modify the RC-WL-RLS to develop the DCD-WL-RLS algorithm

with complexity linear on N . We start presenting a low-cost update of the estimated

autocorrelation matrix, obtained when the entries of the input vector arise from a tap

delay-line. Then, we adapt RC-WL-RLS to apply DCD.

Recall that the RC-WL-RLS algorithm uses a 2N × 1 real input vector, given by

xRC(n) =

[

xR(n)

xI(n)

]

. (4.17)

In the n-th iteration, RC-WL-RLS computes the solution for the normal equations

R(n)w(n) = p(n), (4.18)
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assuming that the estimated autocorrelation matrix R(n) and the cross-correlation vector

p(n) are updated as given by

R(n) =

n∑

i=0

νn−ixRC(i)x
T
RC(i) = νR(n− 1) + xRC(n)x

T
RC(n), (4.19)

and

p(n) =

n∑

i=0

νn−id(i)xRC(i) = νp(n− 1) + d(n)xRC(n), (4.20)

where ν is the forgetting factor. R(n) is real and symmetric, with dimension 2N × 2N ,

and p(n) is a 2N×1 vector. Note that in the general case, the estimation of R(n) requires

the computation of 2N2 −N entries at each iteration (the elements of the main diagonal

and above it). However, when xR(n) and xI(n) have a known structure, this complexity

can be reduced.

When both xR(n) and xI(n) come from tap-delay lines, i.e.,

xR(n) =
[

xR(n) xR(n− 1) · · · xR(n−N + 1)
]T

(4.21)

and

xI(n) =
[

xI(n) xI(n− 1) · · · xI(n−N + 1)
]T

, (4.22)

a low-cost update of R(n), linear on N , can be applied. To show this, rewrite R(n) to

explicit the contribution of xR(n) and xI(n),

R(n) =

[

RR(n) RRI(n)

RT
RI
(n) RI(n)

]

,

where

RR(n) =

n∑

i=0

νn−ixR(i)x
T
R(i) = νRR(n− 1) + xR(n)x

T
R(n), (4.23)

RI(n) =
n∑

i=0

νn−ixI(i)x
T
I
(i) = νRI(n− 1) + xI(n)x

T
I
(n), (4.24)

and

RRI(n) =
n∑

i=0

νn−ixR(i)x
T
I
(i) = νRRI(n− 1) + xR(n)x

T
I
(n), (4.25)

and note that RR(n) and RI(n) are symmetric matrices, but RRI(n) is not symmetric in

general. RR(n) and RI(n) can be evaluated using a low-cost update, as employed in [25]:

RR(n) =

[

RR(n) ρT
R(n)

ρR(n) R(2:N,2:N)
R

(n)

]

, (4.26)



92

where the notation R(2:N,2:N)
R

(n) stands for a matrix with the elements of RR(n) from row

2 to N and from column 2 to N . RR(n) is a real number and ρR(n) is an (N − 1) × 1

vector. Recalling that x
(1:N−1)
R (n− 1) = x

(2:N)
R (n)5, the elements of (4.26) are given by

RR(n) =
n∑

i=0

νn−ix2
R
(i),

ρR(n) =

n∑

i=0

νn−ixR(i)x
(1:N−1)
R (i− 1), (4.27)

and
R(2:N,2:N)

R (n) =
∑n

i=0 ν
n−ix

(2:N)
R (i)x

(2:N)T

R (i)

=
∑n

i=0 ν
n−ix

(1:N−1)
R (i− 1)x

(1:N−1)T

R (i− 1)

=
∑n−1

i=0 ν
n−i−1x

(1:N−1)
R (i)x

(1:N−1)T

R (i)

= R(1:N−1,1:N−1)
R

(n− 1).

(4.28)

From eq. (4.26), note that only the first column of RR(n) needs to be updated, since

R(1:N−1,1:N−1)
R (n−1) is available from the last iteration and RR(n) is symmetric. In order

to obtain the first row of RR(n) we only need to copy the values of the first column. Thus,

we calculate only the first column of RR(n) – that is R(1:N,1)
R (n) – to update eq. (4.26),

i.e.,

R(1:N,1)
R (n) = νR(1:N,1)

R (n− 1) + xR(n)xR(n).

Similarly, we update the first column of eq. (4.24) using

R(1:N,1)
I

(n) = νR(1:N,1)
I

(n− 1) + xI(n)xI(n).

To update RRI(n), write (4.25) as the matrix

RRI(n) =

[

RRI(n) ρT
RI
(n)

ρIR(n) R(2:N,2:N)
RI (n)

]

, (4.29)

where

RRI(n) =

n∑

i=0

νn−ixR(i)xI(i),

ρRI(n) =
n∑

i=0

νn−ixR(i)xI(i− 1), (4.30)

ρIR(n) =
n∑

i=0

νn−ixI(i)xR(i− 1) (4.31)

5Note that it also holds x
(1:N−1)
I (n− 1) = x

(2:N)
I (n).
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and note that R(2:N,2:N)
RI

(n) can be related to RRI(n− 1) as follows

R(2:N,2:N)
RI

(n) =
∑n

i=0 ν
n−ix

(2:N)
R (i)x

(2:N)T

I (i)

=
∑n

i=0 ν
n−ix

(1:N−1)
R (i− 1)x

(1:N−1)T

I (i− 1)

=
∑n−1

i=0 ν
n−i−1x

(1:N−1)
R (i)x

(1:N−1)T

I (i)

= R(1:N−1,1:N−1)
RI

(n− 1).

(4.32)

Therefore, R(2:N,2:N)
RI

(n) is a block matrix obtained from iteration n − 1, which does not

need to be updated. Equations (4.30) and (4.31) show that, in general ρRI 6= ρIR, which

means that they need to be calculated separately. To obtain the first column of RRI(n),

define the column vector

R(1:N,1)
RI (n) =

[

RRI(n) ρT
IR(n)

]T

=
∑n

i=0 ν
n−ixI(i)xR(i)

=
∑n−1

i=0 ν
n−ixI(i)xR(i) + xI(n)xR(n)

= νR(1:N,1)
RI

(n− 1) + xI(n)xR(n),

(4.33)

which is recursively updated. The first row of RRI(n) is updated in a similar manner, i.e.,

R(1,2:N)
RI (n) = νR(1,2:N)

RI (n− 1) + xR(n)x
(2:N)T

I (n). (4.34)

In eq. (4.34) we do not calculate the first element of the row, since it is already computed

in eq. (4.33). Using this approach, the matrix R(n) is computed with the update of three

N × N block-matrices. Recall that for each block-matrix, we only need to update the

first row – in the case of RR(n) and RI(n)– or the first row and the first column (in the

case of RRI(n)). We use this low-cost form to update matrix R(n) in the DCD-WL-RLS

algorithm (see Table 15).

Assume that the matrix R(n) is updated with the procedure shown before. To obtain

the DCD-WL-RLS, recall eq. (4.18), but in the instant n− 1, i.e.,

R(n− 1)w(n− 1) = p(n− 1). (4.35)

Assume that an approximate solution w̃(n− 1) is available. We define the residue of the

normal equations, after obtaining an approximate solution w̃(n− 1), as the vector

ζ(n− 1) = p(n− 1)−R(n− 1)w̃(n− 1). (4.36)

Moreover, define

∆R(n) = R(n)−R(n− 1), (4.37)
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∆p(n) = p(n)− p(n− 1), (4.38)

and

∆w(n) = w(n)− w̃(n− 1). (4.39)

Substituting eqs. (4.37), (4.38) and (4.39) in (4.35), after some manipulation, we obtain

R(n)∆w(n) = β0(n), (4.40)

where

β0(n) = ζ(n− 1) + ∆p(n)−∆R(n)w̃(n− 1). (4.41)

The DCD is used to solve equation (4.40) instead of (4.18), which is a way of taking

advantage of the previous solution w̃(n − 1) to reduce the complexity of the algorithm.

This is due to the iterative structure of DCD – solving (4.40) is equivalent to starting

DCD with w̃(n− 1) as initial condition, reducing the number of DCD iterations (and the

complexity) necessary at each time instant. We apply the DCD algorithm to iteratively

solve (4.40) and obtain the approximate solution

w̃(n) = w̃(n− 1) + ∆w̃(n). (4.42)

Equation (4.36) is also updated in terms of β0(n) and ∆w̃(n), using eqs. (4.41) and

(4.42), i.e.,

ζ(n) = β0(n)−R(n)∆w̃(n).

Recall (4.37) and (4.38). Using the second identity of (4.19) and (4.20) in eqs. (4.37) and

(4.38), respectively, we can express

∆R(n) = (1− ν)R(n− 1) + xRC(n)x
T
RC
(n) (4.43)

and

∆p(n) = (1− ν)β0(n) + d(n)xRC(n). (4.44)

Define the filter estimative

y(n) = xT
RC
(n)w̃(n− 1).

Using (4.43) and (4.44) in eq. (4.36),

∆R(n)w̃(n− 1) = (ν − 1) [p(n− 1)− ζ(n− 1)] + xRC(n)y(n), (4.45)

which can be used in (4.41) to obtain

β0(n) = νζ(n− 1) + e(n)xRC(n),
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where e(n) = d(n)−y(n) corresponds to the a priori error. The DCD-WL-RLS algorithm

is summarized in Table 15, where we also provide the initialization of the algorithm. The

DCD algorithm is used to solve step 9 of Table 15. Note that ζ(n) corresponds to the

residue r computed by the DCD method, so that in step 9 we obtain both ∆w̃ and ζ(n).

Table 15: DCD-WL-RLS algorithm
Step Equation

Initialization:
∆ŵ(0) = 02N×1, ζ(0) = 02N×1, RR = δIN , RI = δIN , RRI = 0N

for n = 1, 2, . . .

1 R(1,1:N)
R

(n) = νR(1,1:N)
R

(n− 1) + xR(n)xR(n)

2 R(1,1:N)
I

(n) = νR(1,1:N)
I

(n− 1) + xI(n)xI(n)

3 R(1,1:N)
RI

(n) = νR(1,1:N)
RI

(n− 1) + xI(n)xR(n)

4 R(2:N,1)
RI (n) = νR(2:N,1)

RI (n− 1) + xR(n)x
(2:N)T

I (n)
5 RR(n), RI(n), RRI(n) ⇒ R(n)
6 y(n) = xT

RC(n)w̃(n− 1)
7 e(n) = d(n)− y(n)
8 β0(n) = νζ(n− 1) + e(n)xRC(n)
9 R(n)∆w̃(n) = β0(n) ⇒ ∆w̃(n), ζ(n) (solved using DCD)
10 w̃(n) = w̃(n− 1) + ∆w̃(n)

end

Table 16 compares the complexity of the developed algorithm with the SL, WL and

RC-WL-RLS. There are two rows referring to the DCD-WL-RLS. The first presents the

complexity considering that ν can be any real number such that 0 < ν < 1. The second

assumes that ν = 1 − 2−m, m ∈ N, which allows the substitution of multiplications by

bit-shifts and sums in steps 1, 2, 3, 4 and 8 in Table 15.

Table 16: Computational complexity of the SL-RLS, WL-RLS, RC-WL-RLS and DCD-
WL-RLS per iteration

Algorithm Additions and shifts × ÷
SL-RLS 6N2 + 14N − 1 7N2 + 21N + 1 1

WL-RLS 24N2 + 28N − 1 28N2 + 42N + 1 1

RC-WL-RLS 6N2 + 11N 8N2 + 14N + 1 1

DCD-WL-RLS 16N + Pa − 1 20N + Pm − 2 -

DCD-WL-RLS 32N + Pa − 3 12N + Pm − 1 -
(ν = 1− 2−m)

Note that in Table 16, Pm = 0 and Pa < Mb(8N + 2) +Nu(2N + 3), if the complex-

valued cyclic DCD is applied, and Pm = 0 and Pa < 6Mb+Nu(4N +4) if complex-valued

leading-element DCD is used.
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4.3 Simulations

In this section, we compare DCD-WL-RLS using the DCD with a leading element

with the RC-WL-RLS and the SL-RLS algorithms. For this purpose, we consider a system

identification problem based on the approach of [38], and we assume that the input signal

is given by

x(n) =
√
1− τ 2xR(n) + jτxI(n), (4.46)

where xR(n) and xI(n) are two real-valued uncorrelated complex-Gaussian processes,

with zero-mean and variance σ2
R = σ2

I = 1. τ is used to define a non-circular input: when

τ = 1/
√
2, x(n) is second-order circular. Otherwise, it is non-circular.

To show the DCD-WL-RLS algorithm performance, we consider three scenarios:

1. In the first scenario, the system to be identified has 30 coefficients. The parameters

are given by

wopt,1,i = β1[(1 + cos(2π(i− 3)/30)− j(1 + cos(2π(i− 3)/60))], for i = 1, 2, . . . , 30

(4.47)

where β1 = 1/||wopt,1||2 is used to normalize the wopt,i. For this case, we assume

that the desired signal d(n) is given by

d(n) = Re{wH
opt,1x(n)}+ η(n), (4.48)

where η(n) is zero-mean Gaussian noise, i.i.d, and the SNR=40dB. τ = 1/
√
2,

such that WL techniques are expected to achieve better MSE performance when

compared to SL methods, as presented in Section 2.1.2.4.

2. In the second scenario, we assume that τ = 0.3 and that

d(n) = wH
opt,1x(n) +wH

opt,2x
∗(n) + η(n), (4.49)

where

wopt,2,i = β2[(1 + cos(2π(i− 7)/30)− j(1 + cos(2π(i− 7)/60))], for i = 1, 2, . . . , 30

(4.50)

and β2 = 0.4/||wopt,2||2. Since the contribution of the real and the imaginary parts

of x(n) are weighted differently, x(n) is non-circular. Recalling that xR(n) and

xI(n) are uncorrelated Gaussian noise, one can verify that the autocorrelation and

pseudo-correlation matrices are given by C = I60 and P = (
√
1− 0.32 − 0.3)I60.



97

Additionally, using C, P and the values of wopt,1 and wopt,2, one can verify that

q∗ 6= 0, such that the WL estimation is required to fully extract second-order data.

3. In the last scenario, we evaluate the tracking performance of the DCD-WL-RLS

algorithm, when the set of optimum coefficients change. For this purpose, we use

the same scenario of the second group of simulations, but we assume that d(n) is

given by (4.49) only in the first half of the iterations. After that, the coefficients

change, and d(n) is given by

d(n) = wH
opt,1x(n) +wH

opt,3x
∗(n) + η(n), (4.51)

where

wopt,3,i = β3[(1 + cos(2π(i− 7)/30)− j(1 + cos(2π(i− 7)/60))], for i = 1, 2, . . . , 30

and β3 = 0.6/||wopt,3||2.

For all scenarios, we define the RC-WL-RLS forgetting factor νRC = 1 − 2−6 and we

initialize ΦRC(0) = 5 · 10−3I60. νDCD-RLS is chosen equal to νRC, and H = 1. The SL-RLS

uses the same forgetting factor used by the other techniques, but it is initialized with

ΦSL(0) = 1 · 10−2I30. We compare the mean-square error (MSE) of the techniques in two

situations:

1. Fixing the value of Nu = 8 in the DCD-WL-RLS and varying the number of bits

Mb as 2, 4, 8 or 16;

2. Setting Mb = 16 bits and choosing Nu to be 1, 2, 4 or 8.

The curves are obtained with mean of 300 realizations. Figures 9 and 10 show the results

for the first scenario, while figures 11 and 12 present the curves for the second case. The

tracking performance is presented in figures 13 and 14

From figures 9 and 11, we note that for a fixed Nu, the precision of the DCD-WL-RLS

algorithm increases as the number of bits Mb increases, when compared to the RC-WL-

RLS implemented with Matlab precision. With this information, we can choose Mb to

guarantee an specific MSE – of course bounded by the SNR – and use the algorithm with

the minimum number of bits necessary for a given implementation. We also verify that

the SL-RLS is outperformed by the RC-WL-RLS and by the DCD-WL-RLS algorithms,

when the number of bits is 8 and 16. When Mb is low, the MSE is limited by the number
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Figure 9: MSE comparison between the RC-WL-RLS, DCD-WL-RLS and SL-RLS algo-
rithms using Nu = 8 and Mb = 2, 4, 8, 16, for the first scenario. Mean of 300 realizations.

0 100 200 300 400 500 600 700 800 900
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

 

 

M
S
E
(d
B
)

Iterations

RC-WL-RLS

SL-RLS

DCD-WL-RLS(Nu=1)

DCD-WL-RLS(Nu=2)

DCD-WL-RLS(Nu=4)

DCD-WL-RLS(Nu=8)

Figure 10: MSE comparison between the RC-WL-RLS, DCD-WL-RLS and SL-RLS algo-
rithms using Mb = 16 and Nu = 1, 2, 4, 8, for the first scenario. Mean of 300 realizations.
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Figure 11: MSE comparison between the RC-WL-RLS, DCD-WL-RLS and SL-RLS al-
gorithms using Nu = 8 and Mb = 2, 4, 8, 16, for the second scenario. Mean of 300
realizations.
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Figure 12: MSE comparison between the RC-WL-RLS, DCD-WL-RLS and SL-RLS al-
gorithms using Mb = 16 and Nu = 1, 2, 4, 8, for the second scenario. Mean of 300
realizations.
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Figure 13: MSE comparison between the RC-WL-RLS, DCD-WL-RLS and SL-RLS al-
gorithms, when the coefficients change after 900 iterations. Nu = 8 and Mb = 2, 4, 8, 16.
Mean of 300 realizations.
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of bits used by DCD, and the performance is poor. The SL-RLS algorithm diverges after

870 iteration, in both simulations.

In Figures 10 and 12, we see that, for a fixed number of bits, when Nu increases, the

convergence of the DCD-based techniques is accelerated. We note that the convergence

for Nu = 1 and Nu = 2 is slower than that of the DCD-WL-RLS algorithms, and the

steady-state performance with these first two values of Nu is not presented in the figures.

In general, the DCD-WL-RLS achieves the same steady-state MSE performance of the

RC-WL-RLS algorithm. However, the convergence is slower than that of the RC-WL-

RLS algorithm. When we apply the DCD to solve the normal equations, we reduce

the complexity to O(N), but the trade-off for the low-cost is the additional number

of iterations to achieve the steady-state MSE. Since we control the additional number

of iterations by choosing a convenient Nu, this approach is very attractive for low-cost

implementations. As expected, the SL-RLS is outperformed by the WL techniques in

both simulations.

Figures 13 and 14 show the tracking performance of the new method when the set

of optimum coefficients changes. Note that when Nu = 8 and Mb varies (see Fig. 13),

using low values of Mb (2 and 4), the DCD-WL-RLS technique is not able to achieve the

same tracking performance of the RC-WL-RLS algorithm, since the MSE performance is

affected by the low number of bits. WhenMb = 8 or 16, the DCD-WL-RLS has a tracking

performance close to that obtained with RC-WL-RLS. When Mb has a fixed value and

Nu varies (see Fig. 14), we notice that the tracking performance is improved when the

value of Nu increases. In both simulations the SL-RLS algorithm diverges.

4.4 Conclusions

In this chapter, we presented the DCD-WL-RLS algorithm, a low-cost and numerically

stable version of WL-RLS, since it uses DCD to solve the normal equation, avoiding the

propagation of the inverse autocorrelation matrix. The DCD-WL-RLS is applicable for

problems where the entries of the real and imaginary parts of the input are tap-delay lines,

such that the autocorrelation matrix can be updated in a low-cost manner. Combining

the DCD and the cheap update of the autocorrelation matrix, we obtained an algorithm

with cost linear on N .

The first two scenarios considered in our simulations showed that the convergence of

the proposed algorithm is affected by the values ofNu andMb. WhenNu is a large number,
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the convergence is accelerated but the computational complexity is also increased. When

Mb is low, the MSE is limited by the number of bits used in the representation, and the

estimation error increases. The tracking performance simulations showed that the DCD-

WL-RLS is able to track the non-linear perturbation caused by a change in wopt, even for

low values of Nu. There is a relation between the value of Nu and the convergence rate

after the non-linearity: the technique converges slower when Nu is low. As expected, we

verified again thatMb limits the steady-state MSE, when Mb is low. From our simulation

results, we conclude that a proper design of Nu and Mb (in our examples, Nu = 8 and

Mb = 16 bits) is required to keep the cost low and the MSE performance close to that

obtained with the RC-WL-RLS.
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5 LOW-COMPLEX ADAPTIVE

BEAMFORMING USING THE HOMOTOPY

ALGORITHM

Adaptive beamforming techniques are used in sensor arrays to enhance the reception

of a signal of interest and suppress interference [7]. They implement techniques such

as the minimum variance distortionless response (MVDR) beamformer [7] using data

collected from sensors, since the second-order statistics required to compute the MVDR

beamformer, in general, are not available.

Although many fields apply adaptive beamforming techniques, such as radar, sonar

and wireless communications [7], it is challenging to implement traditional approaches in

large arrays. Techniques such as the LMS, the conjugate gradient (CG), and the RLS

algorithms [7,24,45] have their convergence and tracking performances affected by the size

and/or the eigenvalue spread of the input correlation matrix [45]. This performance can

also degrade due to mismatch and modeling errors. Therefore, beamformers with many

parameters may require many snapshots to converge, which can be incompatible with

the requirements of some applications (for instance, space-time adaptive processing for

airborne radar [71–74], where the amount of data involved requires a high computational

cost to implement the beamformer).

As an alternative to traditional methods, robust adaptive beamformers were proposed

to reduce the performance degradation caused by steering vector uncertainties and also to

enhance interference cancellation. Recent advances also include techniques such as [75],

[76] and [77], which use a distributed approach to compute the beamformer. Techniques

such as adding a diagonal loading to the correlation matrix [78–81], the robust Capon

beamformer of [33,35] (RCB), which uses the eigenvalue decomposition of the correlation

matrix to compute the beamformer, and techniques based on worst-case performance

optimization [34, 35] are some examples of robust beamformers. Many others can be

found in the literature, (see [35] and references therein, for instance). However, most of

these techniques are costly to compute (for instance, the beamformers of [33] and [81]
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have cubic computational complexity in the number of sensors in the array), which make

them difficult to implement.

In this chapter, we focus on arrays for which the number of signal sources is less

than the number of sensors, such that the correlation matrix can become ill-conditioned

when the ratio of the source to the noise power is high. We propose ℓ1-norm regularized

algorithms to regularize the matrix, and we show that this approach enhances the signal-

to-interference-plus-noise ratio (SINR) performance at a low computational cost. The use

of ℓ1 regularization has the additional advantage of making the algorithm robust against

sensor failure. For this purpose, we employ a modified version of the homotopy algorithm

[69], which is an ℓ1-norm regularized technique used in many applications, such as recovery

of sparse signals from noisy measurements [37] and channel estimation [36]. Homotopy

is generally applied to solve sparse systems of equations, and it helps the selection of the

minimum amount of regularization required to compute the solution, reducing the bias.

In the approach of this chapter, the homotopy strategy is not applied to sparse systems

of equations, but to regularize the correlation matrix in a low-cost way. The proposed

algorithms are extensions of the adaptive re-weighting homotopy (ARH) of [37] to the

complex domain (C-ARH). We also develop new low-cost iterative versions of the C-ARH

algorithms, suitable for adaptive beamforming. We show that we obtain techniques that

can be applied at cost O(N2) (where N is the number of array elements), if the number

of interferers remains constant with an increase of N . This case could model radar and

sonar applications [82], assuming that the number of targets is approximately constant.

In applications for which the number of interferers grows linearly with the increase of N ,

such as in MIMO communications [83], for which larger arrays are designed to serve a

higher number of users, we show that the computational complexity increases, but our

approach is still advantageous for a range of values of N .

In this text, we present the C-ARH and the multi-candidate (MC)-C-ARH algorithms,

which we proposed in [40], and the iterative versions of these techniques, developed in

[41]. We show that the iterative approach is doubly advantageous, since it improves the

SINR performance and also reduces the computational complexity.

The contributions presented in this chapter are summarized as follows.

1. We extend the ARH algorithm of [37] to the complex domain, and propose a modi-

fication with better performance (but higher computational complexity), the multi-

candidate C-ARH.

2. We devise the iterative C-ARH (It-C-ARH) and the iterative MC-C-ARH (It-MC-C-
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ARH) algorithms to further improve the SINR performance with a reduced compu-

tational cost. We show that the iterative approaches outperform their non-iterative

counterparts, improving the steady-state SINR.

3. We show how the DCD algorithm (presented in Chapter 4) can be used to further

reduce the computational complexity of the C-ARH-based algorithms. For beam-

forming applications, its is shown that the iterative techniques applying DCD have

computational complexity proportional to O(N2), if the number of interferers does

not increase linearly with N . We also show that our approach is still advanta-

geous for a range of values of N , if the number of interferers increases linearly with

the number of sensors. In this case, the computational cost is O(N5), but N5 is

multiplied by a low value.

4. An analysis of properties of the proposed algorithms is presented along with an

assessment of their computational complexity.

5. We present a simulation study comparing the proposed algorithms to existing robust

techniques. We show that the iterative algorithms using the DCD present a small

SINR performance degradation when compared to the RCB of [33], the adaptive

beamformer with variable loading (VL) of [80] and the general-linear-combination-

based robust Capon beamformer (GLC) [81] algorithms, but under some conditions

on the relation between N and the number of interferers, the iterative algorithms

require less computations, and are also robust against sensor failure, a property that

these methods do not have.

This chapter is organized as follows: Section 5.1 presents the system model and the

problems for which the C-ARH-based techniques are proposed. In Section 5.2, we present

the C-ARH and MC-C-ARH algorithms. In Section 5.3, we propose the iterative versions

of C-ARH and MC-C-ARH, while in Section 5.4 we use the DCD algorithm to obtain

low-cost algorithms. Section 5.5 presents the analyses of the algorithms, and Section 5.6

shows simulation results. We conclude the chapter in Section 5.7.

5.1 System Model and Problem Statement

Consider a uniform linear array (ULA) with N sensors, and assume S signals, where

one arrives from the desired direction of arrival θd, and the other S − 1 signals are inter-

ferers, as described in Figure 15. Additionally, assume that the signal of interest and the
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ULA

N sensors

S sources

s1

s2

sd

sS−1

sS

θ1
θ2

θS−1

θSθd

Figure 15: Uniform linear array

interferers are uncorrelated and that θd is known. Define the N×S matrix B, where each

column bk corresponds to a steering vector [7] as given by

bk = [1 e−jπsin(θk) . . . e−jπ(N−1)sin(θk)]T , 1 ≤ k ≤ S.

At snapshot n, the sensor array data are modeled as

u(n) = Bs(n) + η(n), (5.1)

where s(n) contains narrowband analytic signals produced by the S sources. η(n) is a

vector of zero-mean, independent and identically distributed (i.i.d.) Gaussian noise with

variance σ2
η. The noise in each sensor is also assumed independent from the noise in other

array elements. Without loss of generality, define θd = θ1 and bd = b1. The coefficients

of the MVDR beamformer [7] are given by

̟MVDR = wMVDR/b
H
d wMVDR, (5.2)

and wMVDR is the solution to

RtwMVDR = bd. (5.3)

Rt is the theoretical N ×N correlation matrix [7], which is defined as

Rt = E{u(n)uH(n)} = RdInt +Rη, (5.4)
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where

RdInt = BE{s(n)sH(n)}BH (5.5)

and

Rη = E{η(n)ηH(n)} = σ2
ηIN . (5.6)

Express (5.1) explicitly in terms of the direction of interest (subscript d) and the inter-

ference (subscript Int), i.e,

u(n) = bd sd(n) +BInt sInt(n) + η(n), (5.7)

to write RdInt as

RdInt = Rd +RInt, (5.8)

where Rd = σ2
dbdb

H
d , RInt = BIntE{sInt(n)s

H
Int
(n)}BH

Int
and σ2

d is the variance of the signal

of interest.

Note that the computation of the beamformer requires the solution of a linear system

of equations. When the number of sources is smaller than the number of sensors, Rt

can become ill-conditioned, requiring some form of regularization to compute wMVDR.

In addition, if the measurements of some sensors are not available (if a sensor fails), a

dimensional-reduction of the system of equations can be made before the introduction

of the regularization, reducing the computations to obtain the beamformer. We consider

both situations and show that by using the ℓ1-norm regularized algorithms presented in

this text, one can estimate the beamformer and improve the SINR performance with

only O(N2) computations (if the number of interferers does not increase with N), while

techniques such as [33] require O(N3) computations. The proposed ℓ1 algorithms are also

shown to be robust against errors in estimating faulty sensors.

5.1.1 Small number of interference sources

Consider that the number of interferers plus the source of interest is S, and that

S is smaller than the number of sensors N . Assume that the interference sources are

uncorrelated among each other, such that rank(E{ssH}) = S, and assume that the angles

θk are selected such that rank(B) = S. Using properties of the rank of matrices (see [46])

one can show that1

rank(RdInt) = rank(BE{ssH}BH) = S. (5.9)

1Note that we drop here time indices to simplify notation.
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Since rank(RdInt) = S < N , the eigenvalue decomposition [46] of RdInt is given by

RdInt = V

[

D0 0S×(N−S)

0(N−S)×S 0(N−S)×(N−S)

]

VH, (5.10)

where the columns of V are the eigenvectors of RdInt, and D0 is a diagonal matrix con-

taining the S non-zero eigenvalues of RdInt. Recalling that VVH = IN , and using (5.6)

and (5.10) in (5.4), we obtain

Rt = V

[

D0 + σ2
ηIS 0S×(N−S)

0(N−S)×S σ2
ηI(N−S)

]

VH. (5.11)

Using eq. (5.11), it is easy to see that the condition number [46] of Rt is given by

κ(Rt) = (d0MAX
+ σ2

η)/σ
2
η, (5.12)

where d0MAX
stands for the maximum eigenvalue of RdInt. Equation (5.12) shows that Rt

becomes ill-conditioned if the noise power is much smaller than d0MAX
. In this case, a

regularization can be added to Rt to improve the computation of wMVDR in (5.2). While

this is usually done using ℓ2-norm regularization (diagonal loading) [78], we will show

that our ℓ1-norm regularized algorithms also reduce the effects of the ill-conditioned Rt,

improving the computation of the beamformer and leading to low-cost algorithms. In

addition, the use of homotopy allows our algorithms to choose just the right amount of

regularization, reducing bias.

5.1.1.1 Reducing the system of equations when there are faulty sensors in
the array

When a sensor j is not working properly, its measurements should be discarded.

This information can be incorporated into the model with a modification of eq. (5.7), by

introducing an N ×N diagonal matrix E, i.e.,

u(n) = E (bd sd(n) +BInt sInt(n) + η(n)) , (5.13)

where the diagonal entries of E are equal to 0 for faulty sensors that do not contribute

to beamforming, and 1 otherwise. When ejj = 0, we zero the j-th element of all steering

vectors, which eliminates the signal produced by sensor j. Using (5.13) to compute the

correlation matrix, we obtain

Rt = E (RdInt +Rη)E. (5.14)
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Assuming that the array has F < N faulty sensors (but that there are still more working

sensors than sources, i.e, N − F > S), and that these sensors are grouped such that E

has the last F diagonal elements equal to 0, Rt is given by

Rt =

[

RRR 0(N−F )×F

0F×(N−F ) 0F

]

, (5.15)

where RRR = R̃dInt +σ2
ηIN−F and R̃dInt is a matrix obtained from the first N −F columns

and the first N − F rows of RdInt. Ideally, if we know matrix E, we can define bRR

as the entries of bd related with the N − F working sensors, so that we can solve the

lower-dimension system of equations

RRRw = bRR, (5.16)

where w contains the N − F non-zero entries of wMVDR. Matrix RRR will still be ill-

conditioned when the eigenvalues of R̃dInt are much higher than the noise power, and

regularization might be necessary to reduce the condition number and improve the com-

putation of w.

From (5.15) and (5.16), we see that matrix E is required to obtain RRR. In general, E

is unknown and has to be estimated beforehand. In this text, we use the energy detection

method [84] to estimate the faulty sensors. However, we show through simulations that

our ℓ1-regularized algorithms are robust against errors in detecting faulty sensors, so that

one might choose not to check for sensor failure.

5.2 Proposed complex homotopy algorithms

The complex homotopy algorithm (CH) was proposed in [36] as an extension of the

real-valued homotopy technique [69] to the complex field. For both cases, the algorithm

solves the optimization problem2

minimize
w

||Aw − y||22/2 + h||w||1, (5.17)

where w is a column vector with M entries, A is a P ×M matrix, y is a P × 1 vector,

||w||1 =
∑M

i=1 |wi| and h > 0 is a regularization parameter. The initial value of h should

be large at first, but is reduced till h = 0 to compute w, as we explain below.

2Note that we introduce the algorithms for a general P×M matrixA. For our beamforming approach,
M = P = (N −F ) (the number of working sensors), A is an estimated version of RRR and y corresponds
to bRR.
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The CH algorithm iteratively solves (5.17) using a support set Γ that is updated at

every iteration. The solution to (5.17) is obtained defining the function

f(w) = ||Aw − y||22/2 + h||w||1, (5.18)

and then computing the subgradient [85] of f(w), that must be equal to zero, that is

∂f(w) = −AH(y −Aw) + h∂||w||1 = 0. (5.19)

The subgradient of ∂||wi||1 of the i-th element is given by

∂||wi||1 =
{

wi/|wi|, if wi 6= 0

0, otherwise.
(5.20)

Using (5.20), then eq. (5.19) can be written equivalently to two optimality conditions [36]

aH
i (Aw − y) = −hzi, for all i ∈ Γ

|aH
i (Aw − y)| < h, for all i ∈ ΓC

, (5.21)

where ΓC is the complement of Γ, and zi is the i-th entry of the vector z, which is

obtained applying the sign function elementwise on w. ai is the i-th column of A. For a

large enough h, the solution of (5.17) will be w = 0. The algorithm starts by computing

maxi(|aH
i (Aw − y)|), used to initialize h with the largest value for which Γ is non-empty.

At each iteration, one element is added or removed from Γ, and h is moved to h−ǫ, where
ǫ is chosen so that h− ǫ is a breakpoint, i.e., the first point for which the new solution to

(5.21) will need to add or remove an index to Γ. Denoting the new solution by w+ ǫ∂w,

(5.21) becomes

AH
Γ (AΓwΓ − yΓ) + ǫAH

Γ AΓ∂wΓ = −hzΓ + ǫzΓ

|aH
i (Aw − y) + ǫaH

i A∂w| < h− ǫ, i ∈ ΓC

, (5.22)

where we use subscript Γ to define AΓ as a matrix that contains only the columns of A

for which the indices are in Γ. Similarly, wΓ, ∆wΓ, yΓ and zΓ contain only the entries of

w, ∆w, y and z with indices in Γ, respectively.

For a sufficiently small ǫ, ∂w is constant, so that we can use the first equation of

(5.22), to compute ∂wΓ – which corresponds to update only the entries of ∂w for which

the indices are in the support set, while the other entries remain equal to zero – as the

solution of the linear system of equations

AH
Γ AΓ∂wΓ = zΓ. (5.23)

To obtain the smallest value of ǫ for which the support must be updated, we substitute
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∂w in the second equation of (5.22). Then, we update h with

h← h− ǫ. (5.24)

The algorithm continues until h = 0 or some stopping criterion is met. References [69]

and [36] present a detailed description of the algorithm.

5.2.1 The Complex Adaptive Re-Weighting Homotopy
Algorithm

In [37] the real-valued homotopy algorithm was modified to solve the ℓ1-weighted

optimization problem

minimize
w

||Aw − y||22/2 +
M∑

i=1

hi|wi|, (5.25)

where hi are positive weights. The motivation to modify the optimization problem and

solve (5.25) instead of (5.17) was the possibility to adjust different weights to penalize the

solution coefficients, which could be applied to reduce bias in the estimation of nonzero

coefficients [37].

The ARH algorithm applies a re-weighting approach to quickly compute w, when the

column vector h, which contains the weights of (5.25), is replaced by a re-weighting vector

h̃. The idea behind the algorithm is that the solution moves to w + δ∂w when h moves

towards h̃ along a straight line (1− δ)h+ δh̃, for δ ∈ [0, 1], where ∂w does not depend on

δ. The re-weighting is adaptively adjusted after every homotopy iteration, according to

the changes in the solution and on the support set. Each h̃i can be adjusted separately

from the others, such that the weights given to the elements in Γ can be set to shrink

at faster rate than the other elements of w, reducing the bias and also accelerating the

convergence to the solution. The criterion to select the re-weighting can follow a number

of heuristics [37], but should favor the quick shrinkage of the weight of the parameters in

Γ for faster convergence. Simulation results in [37] have shown that ARH yields better

performance and reconstruction accuracy than ℓ1-based solvers (YALL1 [86], SpaRSA

[87], SPGL1 [88]) used for recovering sparse signals from noisy measurements, while it

requires lower computational complexity.

To present the C-ARH technique, and later introduce the multi-candidate C-ARH

algorithm, assume that A, w and y are complex entities. For convenience, also assume

that δ ∈ [0, δ̃]. In Section 5.2.2, we use different values of δ̃ to construct a diverse set

of possible solutions, which is exploited by the multi-candidate algorithm to improve the
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performance. Considering these assumptions, we can use an approach similar to that

applied to derive the CH algorithm. For this purpose, define the function

f(w) = ||Aw − y||22/2 +
M∑

i=1

hi|wi|. (5.26)

Using the subgradient of f(w) and setting it equal to zero, we can rewrite the resulting

expression as the optimality conditions

AH
Γ (AΓwΓ − yΓ) = −HzΓ

|aH
i (Aw − y)| < hi ∈ ΓC

, (5.27)

where H = diag(hΓ), and z is a vector whose entries are the signs of the corresponding

entries in w. When h moves to (1− δ)h+ δh̃, (5.27) changes to

AH
Γ (AΓwΓ − yΓ) + δAH

Γ AΓ∂wΓ = −HzΓ + δ(H− H̃)zΓ

|aH
i (Aw − y) + δaH

i A∂w| < hi + δ(h̃i − hi), i ∈ ΓC

,

and H̃ = diag(h̃Γ). To compute ∂w, we solve the system of equations

(AH
Γ AΓ)∂wΓ = (H− H̃)zΓ, (5.28)

where zi = aH
i (Aw− y)/hi, i ∈ Γ, and the elements of ∂w outside the support are set to

zero.

We have to check if a breakpoint occurs to update the support. A breakpoint occurs in

two situations: when an element of w ∈ Γ changes sign, or when one inequality becomes

an equality in (5.21). When an element changes sign, it must be removed from Γ. Recall

that w is updated as w ← w + δ∂w. An element of w crosses zero when

δ = −wi/∂wi, for some i ∈ Γ. (5.29)

Define wR = Re{w}, wI = Im{w}, dR = Re{∂w} and dI = Im{∂w}, and recall that

δ must be a real number in the interval [0, δ̃]. The parameter δ has a real value in eq.

(5.29), only if

wRi
/dRi

= wIi
/dIi

, i ∈ Γ. (5.30)

An element γ− is removed from Γ if (5.30) holds for some i, and if (5.29) is in [0, δ̃], for

the same breakpoint. If two or more breakpoints fulfill the restrictions, the smallest one

is removed, which can be defined using

g = min+(−wRi
/dRi

), for all wRi
/dRi

= wIi
/dIi

, i ∈ Γ
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where min+(·) returns the smallest positive value in the argument. When g is empty, no

term is removed, and C-ARH proceeds by choosing an element γ+ that must be added to

Γ. In this case, γ+ is chosen by

γ+ = argmax
i∈ΓC

|aH
i (Aw − y)|. (5.31)

The last step is the update of hi ∈ ΓC , which is given by

hi ← max
j
|aH

j (Aw − y)|, for all i ∈ ΓC . (5.32)

The algorithm stops when the maximum hi ∈ Γ is smaller or equal to a pre-defined

parameter τ . We summarize the algorithm in Table 17.

5.2.1.1 Re-weighting choice

We compute the re-weighting with

h̃i = min (ς, ς/̺|wi|) , for all i ∈ Γ, (5.33)

where ̺ = N ||w||22/||w||21 and we use ς = 2σ2
η in the algorithms proposed in this text3.

This re-weighting is based on an approach proposed in [37]. We chose (5.33) since it

allows the selection of different re-weighting values, but with a maximum pre-defined re-

weighting of ς. Term ̺ introduces information of how the support size changes through

the iterations. As w converges to the solution and elements are added to the support

set, the value of the relation ||w||22/||w||21 decreases. This information can be exploited

to measure changes in the support set, and to update h̃i. |wi| captures the influence of

the solution entries in the re-weighting: for larger values of wi, the less is the value of the

re-weighting, which helps to reduce bias.

We tried different re-weightings in the simulations presented in Section 5.6, and we

selected (5.33) since it provided the best SINR performance for our beamforming scenario.

5.2.1.2 Computational cost

The main contribution to the computational cost of each C-ARH iteration comes from

computing

AH (y −Aw) = AHy −AHAw (5.34)

3Note that other values of ς and other re-weightings can also be applied.
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and ∂w. The term (5.34) does not explicitly appear in Table 17. However, if we consider

the steps 2 and 9 (or 2 and 10, if the “else“ condition of step 9 does not occur), we see that

at every iteration, step 2 uses the elements of (5.34) computed with ai, i ∈ Γ, while step

9 (or 10) uses the elements which are calculated with the remaining ai. Recalling that

steps 2 and 9 (or 2 and 10) occur at every iteration, we notice that (5.34) is computed

every C-ARH step. This computation is costly in general, but it can be done with lower

cost if some a priori information about A is available.

Table 17: C-ARH algorithm

Input: A, y, τ , δ̃ Output: w, Γ
Initialize: ∂w = 0, w = 0, hi ← maxi |aH

i y| for all i, Γ← argmaxi |aH
i y|

Repeat:

1 Select h̃
2 For all i ∈ Γ, compute zi = aH

i (y−Aw) /hi
3 Solve (AH

Γ AΓ)∂wΓ = diag(hΓ − h̃Γ)zΓ
4 Compute wR = Re{wΓ}, wI = Im{wΓ}, dR = Re{∂wΓ} and dI = Im{∂wΓ}
5 g = min+(−wRi

/dRi
), for all wRi

/dRi
= wIi

/dIi

6 δ = min(g, δ̃)
7 w = w + δ∂w

8 hΓ = hΓ + δ(h̃Γ − hΓ)

9 if δ < δ̃
Γ← Γ \ γ− ⊲ Remove an element from Γ

else
γ+ = argmaxi∈ΓC

|aH
i (Aw − y)|

Γ← Γ ∪ γ+ ⊲ Add a new element to Γ
end

10 hi ← maxj |aH
j (Aw − y)|, for all i ∈ ΓC

until maxi(hi) ≤ τ

In a general approach, A can vary during the algorithm computations, requiring

AHA and AHy in (5.34) to be re-computed at every iteration. Using the fact that AHA

is symmetric, both terms are computed with P (2M2+6M) additions and P (2M2+6M)−
(M2+3M) multiplications. On the other hand, whenA is invariant through the iterations,

pre-computation of AHy and AHA can be used to reduce the number of operations. In

this case, AH (y −Aw) uses a matrix-vector product and the addition of two vectors,

achieving a lower cost proportional to |Γ|M per iteration (where |Γ| is defined as the

cardinality of Γ). The maximum cost per C-ARH iteration corresponds to 4|Γ|M + 5|Γ|
multiplications, 4|Γ|M + 5|Γ| additions and 3|Γ| divisions, plus the computation of ∂w

(which is the solution to a |Γ| × |Γ| system of equations), and the cost to obtain h̃. The
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re-weighting applied in this chapter uses an additional cost of 3|Γ| + 2 multiplications,

3|Γ| − 2 additions, |Γ|+ 1 divisions and |Γ| square-roots per iteration.

To compute the solution to (5.25), C-ARH executes a number of iterations, where it

adds or removes elements to the support of w. Assuming that K is the total number of

non-zero entries in the solution, the minimum number of iterations required to compute

w is K. In this case, the algorithm only adds elements to the support, and the solution

is obtained with (K2 +K)(2M + 4)− 2K additions, (K2 +K)(2M + 4) + 2K multipli-

cations, 2K2 + 3K divisions, (K2 +K)/2 square-roots, plus the solution of K systems of

equations with dimension p×p, where p starts at 1 and linearly increases up to K during

the iterations. Note that when the algorithm removes elements from Γ, the number of

iterations increases. To check how frequently elements are removed from the support,

we used C-ARH to solve a large number of examples with different values for A and y.

We compared the number of elements removed with the total amount of iterations used

to compute the sparse vector w, and we noted that these events occur rarely (in less

than 1% of the iterations). Therefore, we assume that the minimum complexity we just

derived can be used as a reasonable approximation to the number of computations used

by C-ARH.

5.2.1.3 C-ARH applied to beamforming

The algorithm presented in Table 17 can be applied to sparse systems of equations in

general. For the purpose of this text, we use the C-ARH to obtain a low-cost method to

regularize eq. (5.3) and compute the MVDR beamformer.

Let R(n) be an approximation to Rt and RRR(n) be an approximation to RRR at

snapshot n. For beamforming, we solve eq. (5.25) using A = RRR(n) and y = bRR,

resulting in the following system of equations

RRR(n)w(n) = bRR, (5.35)

where the solution w(n) is used in

̟RR(n) = w(n)/bH
RR
w(n) (5.36)

to compute the beamformer.

To solve (5.35), we first need to obtain R(n) and E, so that the diagonal entries of

E can be used to access the contribution of the working sensors, allowing us to obtain
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RRR(n) and bRR. We assume that R(n) is iteratively updated with

R(n) = νR(n− 1) + u(n)uH(n), (5.37)

where 0 ≤ ν < 1 is the forgetting factor. Note that (5.37) can be written as

R(n) =

n∑

j=0

νn−j[u(j)uH(j) + ξI], (5.38)

where ξI is the initial regularization. Taking the expectation of (5.38) and recalling that

E{u(j)uH(j)} = Rt, one can show that [45]

E{R(n)} = Rt/(1− ν), when n→∞. (5.39)

Due to normalization in (5.36), the constant (1 − ν) does not affect the computation of

the beamforming solution, allowing the use of R(n) in (5.35).

The estimate of E can be obtained from the diagonal elements of R(n), using a

technique based on the energy detection method [84]. To explain this approach, recall

equations (5.15) and (5.39). It is easy to see that there are only two possibilities for the

diagonal elements of R(n), when n→∞, i.e.,

rjj(n→∞) ≈
{

σ2
η/(1− ν), if the j-th sensor is faulty

(r̃2
dIntjj

+ σ2
η)/(1− ν), otherwise.

Assuming that the sources are uncorrelated, r̃2dIntjj is given by

r̃2dIntjj =

S∑

i=1

σ2
si
, (5.40)

where each σ2
si
corresponds to the variance of the i-th source, and σ2

s1
= σ2

d. In this case,

one expects that the diagonal entries related to faulty sensors must have smaller variance,

since they only measure noise [40, 89, 90]. We exploit this fact to estimate E.

To define if a sensor is faulty, consider that after a few snapshots it is possible to

perceive that some diagonal entries of R(n) have higher values than others. The faulty

sensors are identified using a threshold, based on the maximum rjj(n). We assume that

if an element rjj(n) is at least 6dB smaller than the maximum entry, then the j-th sensor

is faulty. The threshold is computed with

Thr = 10−0.6maxj(rjj(n)), (5.41)

and all the diagonal entries of R(n) are compared to (5.41). If rjj(n) is smaller than Thr
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for some j, then the j-th sensor is faulty, and ejj is set to 0. Otherwise, we set ejj = 1. This

technique is easy to implement (it only requires one multiplication and N comparisons)

and is efficient for finding the faulty sensors, as can be seen in our simulation results. To

further reduce the complexity, we can apply (5.41) only for the first t snapshots, turn the

estimation of E off, and then use the last estimated matrix E for the remaining snapshots.

Using this approach, we assume that t snapshots are sufficient to obtain a good estimate

of the faulty sensors.

The C-ARH algorithm applied to beamforming is summarized in Table 18. Recalling

that RRR(n) and R(n) areM×M and N×N , respectively, the computational complexity

corresponds to the cost of the algorithm in Table 17, plus the cost to update R(n) and to

compute E and ̟(n) – steps 1, 2 and 4 in Table 18. These steps require the additional

cost of 3M2+5M +3N +5 multiplications, 2M2+4M +2N −1 additions and 1 division.

Table 18: C-ARH algorithm applied to beamforming

Input: bd, ξ, u(n), ν, δ̃, τ , t Output:h(n)
Initialize: R(0) = ξI, w(0) = 0

for n = 1, 2, · · ·
1 R(n) = νR(n− 1) + u(n)uH(n)
2 if n < t then compute Thr = 10−0.6maxj(rjj(n))

and estimate E to obtain RRR(n) and bRR

3 Use δ̃ and τ in C-ARH to solve RRR(n)w(n) = bRR ⇒ w(n) (see Table 17)
4 ̟(n) = w(n)/bH

RRw(n)
end for

5.2.2 Multi-Candidate Complex Adaptive Re-Weighting
Homotopy

In the C-ARH algorithm, when we choose δ̃ = 1, h moves towards h̃. However, we

can choose a different δ̃ and define a re-weighting scheme that is a linear combination of h

and h̃. Since in general there is no information about the weighting vector that generates

the most accurate w, the combination of the two weighting vectors can be a better option

than only h̃. In this context, MC-C-ARH is proposed to exploit multiple weight choices.

We start with the definition of a set ∆ of NC candidates for δ̃. For each δ̃ ∈ ∆ =

{δ1, δ2 . . . δNC
} the algorithm computes the corresponding solution wi(n). A comparison

criterion (e.g., the MSE or the SINR) is used to define the best solution computed for
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each snapshot. The candidate with the best figure of merit is selected. In Table 19 we

summarize the algorithm, applied to beamforming.

In general, Rd, RInt and Rη are not available, and an indirect method is required to

select the candidate which provides the highest SINR. Define RIntη = RInt+Rη and recall

that Rd = σ2
dbdb

H
d and bH

d ̟i(n) = 1. The SINR for the i-th candidate is given by

SINRi(n) =
̟H

i (n)Rd̟i(n)

̟H
i (n)RIntη̟i(n)

=
σ2
d

̟H
i (n)RIntη̟i(n)

, (5.42)

and it is maximized when ̟H
i (n)RIntη̟i(n) is minimum. Since RIntη is unknown, (5.42)

cannot be directly minimized. As an alternative, we note that the minimization of

̟H
i (n)Rt̟i(n) = σ2

d +̟H
i (n)RIntη̟i(n), (5.43)

also maximizes the SINR, and an estimate R(n) of Rt can be used to compute (5.43).

However, the computation of (5.43) is costly, proportional to O(N2). To reduce the

number of computations, we propose a simpler method, with cost O(N).

Defining RIntη = DIntη +G, where DIntη = σ2
Intη

I has the diagonal entries of RIntη, and

G contains the other elements, we can write

SINRi(n) =
1

(σ2
Intη/σ

2
d)||̟i(n)||22 + (1/σ2

d)̟
H
i (n)G̟i(n)

. (5.44)

If we consider only two candidates, and that SINR1(n) > SINR2(n), then we obtain

||̟1(n)||22 < ||̟2(n)||22 + [̟H
2 (n)G̟2(n)−̟H

1 (n)G̟1(n)]/σ
2
Intη. (5.45)

Assuming that G is small compared to σ2
Intη

I, then the second term on the right-hand side

of (5.45) can be neglected. Extending the idea to Nc candidates, we obtain the proposed

selection algorithm

̟MAX(n) = ̟k(n) when k = arg mini(||̟i(n)||22), i = 1, 2, . . . , Nc. (5.46)

Our simulations show that MC-C-ARH improves the SINR performance, when compared

to C-ARH.

5.2.2.1 Computational cost

MC-C-ARH starts with the update of R(n) (step 1, Table 19) and the computation of

E (step 2, Table 19). Then, the algorithm computes the C-ARH solution wi(n) (step 3,

Table 19), ̟i(n) (step 4, Table 19) and ||̟i(n)||22 (step 5, Table 19) for each candidate.
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Recalling that N ×N is the dimension of R(n), while M ×M is the dimension of RRR(n),

R(n) is updated with 3M2 − 3M + 3N multiplications and 2M2 − 2M + 2N additions.

The cost to compute ̟i(n) is 8M + 4 multiplications, 6M − 1 additions and 1 division,

while the computation of ||̟i(n)||22 uses 2M multiplications and 2M − 1 additions for

each candidate. The total computational cost is 3M2 +M(10Nc − 3) + 3N + 4Nc + 1

multiplications, 2M2 +M(8Nc − 2) + 2N − 2Nc additions, Nc divisions, plus the cost to

solve the C-ARH algorithm Nc times.

Table 19: MC-C-ARH algorithm applied to beamforming

Input: bd, ξ, u(n), ν, ∆, τ , t Output: ̟MAX(n)
Initialize: R(0) = ξI,wi(0) = 0, ∀δi ∈∆

for n = 1, 2, · · ·
1 R(n) = νR(n− 1) + u(n)uH(n)
2 if n < t then compute Thr = 10−0.6maxj(rjj(n))

and estimate E to obtain RRR(n) and bRR

for all δi ∈∆ :

3 Use C-ARH with δ̃ = δi and τ to solve RRR(n)wi(n) = bRR ⇒ wi(n) (see Table 17)
4 Compute ̟i(n) = wi(n)/b

H
RR
wi(n)

5 Compute ||̟i(n)||22 for all i
end for

6 m = argmini{||̟i(n)||22} ⊲ Find the best candidate
7 ̟MAX(n) = ̟m(n)

end for

5.3 Iterative algorithms using the C-ARH method

In this section, we propose iterative algorithms based on the C-ARH technique. The

idea behind these approaches is that we can compute the solution at snapshot n by adding

an update term to the solution obtained at snapshot n− 1, reducing the computations to

obtain w(n). For this purpose, consider that the solution to (5.35) at snapshot n is given

by

w(n) = w(n− 1) + ∆w(n), (5.47)

where ∆w(n) is the updating term. Since w(n−1) is known at snapshot n, we use (5.47)

in (5.35), to obtain

RRR(n)∆w(n) = β(n), (5.48)
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where we define

β(n) = bRR −RRR(n)w(n− 1). (5.49)

In this case, we can write the minimization problem

minimize
∆w

||RRR(n)∆w(n)− β(n)||22/2 +
M∑

i=1

hi|∆wi(n)|, (5.50)

which is similar to the minimization problem solved by C-ARH in (5.25). Therefore, we

can define A = RRR(n), y = β(n) and w = ∆w(n), and use C-ARH to compute ∆w(n).

The result is then applied in (5.47), to compute w(n). We call this approach the iterative

C-ARH (It-C-ARH) algorithm.

The It-C-ARH algorithm computes β(n) at every snapshot, which requires the com-

putation of a complex matrix-vector product and the addition of two complex vectors.

Using this approach, the total number of operations corresponds to 4M2 multiplications

and 4M2 additions. However, the computation of β(n) at snapshot n can be implemented

less costly, using quantities computed in the previous snapshot. For this purpose, assume

that R(n) is updated as presented in eq. (5.37), and use it in (5.49) to write

β(n) = bRR −
[
νRRR(n− 1) + uRR(n)u

H
RR
(n)
]
w(n− 1)

= (1− ν)bRR + νbRR − νRRR(n− 1)w(n− 1)− uRR(n)u
H
RR(n)w(n− 1) (5.51)

= (1− ν)bRR + ν[bRR −RRR(n− 1)w(n− 1)]− uRR(n)u
H
RR
(n)w(n− 1)

where uRR(n) contains only signals obtained from sensors working properly. We define

the residue

ζ(n− 1) = bRR −RRR(n− 1)w(n− 1) (5.52)

and

z(n) = wH(n− 1)uRR(n) (5.53)

to write

β(n) = (1− ν)bRR + νζ(n− 1)− uRR(n)z
∗(n) (5.54)

Using (5.51) and (5.47), ζ(n) can be written in terms of the ∆w(n), i.e.,

ζ(n) = bRR −RRR(n)(w(n− 1) + ∆w(n)) = β(n)−RRR(n)∆w(n), (5.55)

which can be efficiently computed to reduce the computational cost. When C-ARH com-

putes ∆w(n), it computes only the K entries in the support of ∆w(n). In this case,

C-ARH gives us perfect knowledge of the K non-zero entries of ∆w(n). With this infor-

mation, we can exclude the columns of RRR(n) that are multiplied by the zero entries of
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∆w(n) in (5.55), such that the residue can be computed with 4KM multiplications and

4KM additions. Using this result to compute (5.51), the computational cost to calculate

β(n) corresponds to 4KM + 6M multiplications and 4KM + 6M additions.

In Table 20 the It-C-ARH algorithm is presented, and in Table 21 we describe the

iterative MC-C-ARH algorithm, introducing multiple candidates for δ̃. Notice that we

use the same criterion applied by MC-C-ARH to select the best candidate in the iterative

multi-candidate technique.

Table 20: It-C-ARH algorithm applied to beamforming

Input: bd, ξ, u, ν, δ̃, τ , t Output: ̟(n)
Initialize: R(0) = ξI,w(0) = 0, ζ(0) = 0

for n = 1, 2, · · ·
1 R(n) = νR(n− 1) + u(n)uH(n)
2 if n < t then compute Thr = 10−0.6maxj(rjj(n))

and estimate E to obtain RRR(n) and bRR

3 z(n) = wH(n− 1)uRR(n)
4 β(n) = νζ(n− 1)− uRR(n)z

∗(n) + (1− ν)bRR

5 Use C-ARH with δ̃ and τ to solve RRR(n)∆w(n) = β(n) ⇒ ∆w(n), Γ
(see Table 17)

6 Compute w(n) = w(n− 1) + ∆w(n)
7 Compute ζi(n) = β(n)−RRR(n)∆w(n)
8 Compute ̟(n) = w(n)/bH

RR
w(n)

end for

Computational cost of the It-C-ARH algorithm: Compared to C-ARH (see

Table 18), the iterative technique requires the additional computation of z(n), β(n),

w(n) and ζ(n) (respectively steps 3, 4, 6 and 7 in Table 20). The term (1 − ν)bRR does

not change through the snapshots and can be pre-computed to reduce the computations.

The total implementation cost per snapshot is 3M2+(15+4K)M+3N+5 multiplications,

2M2 + (14 + 4K)M + 2N + 2K − 3 additions, 1 division, plus the cost to compute the

C-ARH algorithm in Table 17.

Computational cost of the It-MC-C-ARH algorithm: The computation of

the iterative multi-candidate algorithm differs from the MC-C-ARH algorithm in the

addition of steps 3, 4, 6 and 7 in Table 21. With the additional steps, the complexity cost

increases and is given by 3M2 + (4KNc + 20Nc − 3)M + 3N + 4Nc + 1 multiplications,

2M2+(4KNc+18Nc−2)M+2N−2KNc−4Nc additions, Nc divisions and the computation

of C-ARH (Table 17) Nc times.
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Table 21: It-MC-C-ARH algorithm applied to beamforming

Input: bd, ξ, u, ν, ∆, τ , t Output: ̟MAX(n)
Initialize: R(0) = ξI,wi(0) = 0, ζi(0) = 0, ∀δi ∈∆

for n = 1, 2, · · ·
1 R(n) = νR(n− 1) + u(n)uH(n)
2 if n < t then compute Thr = 10−0.6maxj(rjj(n))

and estimate E to obtain RRR(n) and bRR

for all δi ∈∆:
3 zi(n) = wH

i (n− 1)uRR(n)
4 βi(n) = νζ i(n− 1)− uRR(n)z

∗
i (n) + (1− ν)bRR

5 Use C-ARH with δi and τ to solve RRR(n)∆wi(n) = βi(n) ⇒ ∆wi(n), Γ
(see Table 17)

6 Compute wi(n) = wi(n− 1) + ∆wi(n)
7 Compute ζi(n) = β(n)−RRR(n)∆wi(n)
8 Compute ̟i(n) = wi/b

H
RRwi

9 Compute ||̟i(n)||22 for all i
end for

10 m = argmini{||̟i(n)||22} ⊲ Find the best candidate
11 ̟MAX(n) = ̟m(n)

end for

5.4 The homotopy algorithms using DCD iterations

The C-ARH algorithm solves a linear system of equations (step 3, Table 17), which

is costly to compute. In this case, an efficient method to compute the solution is very

important to keep the complexity low.

For this purpose, the use of DCD (see Section 4.1) is particularly interesting for the

iterative algorithms, since the previous solution can be employed as an initial condition

to DCD, allowing the use of a small Nu. The non-iterative algorithms cannot use this

initial condition, and would require a large number of DCD iterations Nu to compute the

solution. For this reason, we focus now on the iterative techniques. For It-C-ARH and

It-MC-C-ARH, DCD is used to solve (5.28), where A = AH
Γ AΓ and y = (H − H̃)zΓ.

To further save operations – just like we proposed for the DCD-WL-RLS in Section 4.2

– we can also select the forgetting factor as ν = 1 − 2−l, where l is a positive integer.

This choice of ν substitutes multiplications by additions and bit-shifts in eqs. (5.37) and

(5.51), reducing the complexity to update RRR(n) and β(n). As it is shown in Section 5.6,

the algorithms using DCD outperform our previous approaches, with further reduction in

the number of computations. Both the complex-valued cyclic-DCD and the DCD with a

leading element can be applied in the proposed iterative algorithms. However, we use the
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DCD with a leading element to compute the complexity presented in Table 24 and in the

simulations of Section 5.6.

5.5 Analysis of some properties of the C-ARH-based

algorithms

In this section, we summarize some analysis results that explain and give insight into

the algorithms’ behavior. We show why the C-ARH algorithm provides SINR performance

gains even when the system of equations is not sparse, and we also define the range of

values for δ̃ for the multi-candidate algorithms. In addition, we compare the iterative and

non-iterative algorithms to give some insights into the performance differences observed in

the simulations. We then dedicate a section to summarize the computational complexity,

and to provide some implementation tools to achieve low-cost algorithms.

5.5.1 C-ARH applied to regularize sparse and non-sparse
problems

At the k-th homotopy iteration4, the C-ARH algorithm (see Table 17) uses

AH
Γ (AΓwΓ(k − 1)− yΓ) + δAH

Γ AΓ∂wΓ(k) = −HzΓ(k) + δ(H− H̃)zΓ(k) (5.56)

to compute the solution w(k) = w(k − 1) + ∂w(k). Assume δ = 1, and recall that

zΓi
(k) = wΓi

(k)/|wΓi
(k)|. Equation (5.56) can be written as

AH
Γ AΓwΓ(k)−AH

Γ yΓ = −D(k)wΓ(k), (5.57)

where we use D(k)wΓ(k) = H̃zΓ(k), and D(k) is a diagonal matrix with diagonal entries

dii(k) = h̃i/|wΓi
(k)|, i ∈ Γ. (5.58)

Using D(k) in eq. (5.57), we obtain

(
AH

Γ AΓ +D(k)
)
wΓ(k) = AH

Γ y, (5.59)

showing that a diagonal regularization is introduced. As shown in Section 5.1.1, when the

number of interferers is small, (5.57) is ill-conditioned, and the regularization provided by

C-ARH helps to improve the estimates.

4Note that we use k to denote different homotopy iterations and avoid confusion with index n, which
denotes snapshots.
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5.5.2 Selection of the regularization parameter δ̃

The values of the δ̃ must all be in the interval [0, 1] to avoid negative weights. In fact,

the weight update is

h← (1− δ)h+ δh̃ ∈ Γ, (5.60)

where we just reorganized step 8 in Table 17 to make clear the contribution of h and h̃

to the right-hand side of the equation. It is easy to note in eq. (5.60) that δ must be in

[0, 1] to guarantee that h is always positive.

5.5.3 Differences between the iterative and non-iterative
algorithms

The C-ARH algorithm computes an iterative solution to the minimization problem

presented in eq. (5.25) (where A = RRR(n) and y = bRR for beamforming). It uses

an ℓ1-norm regularization to w(n), helping ill-conditioned systems of equations and also

favoring sparse solutions. The iterative approaches, on the other hand, solve a modified

minimization problem (see (5.50)), where the ℓ1-norm regularization is applied to the

solution update, ∆w(n). Using ∆w(n), w(n) is obtained with w(n) = w(n−1)+∆w(n).

Since the iterative approach employs w(n−1) as an initial condition to compute w(n), it

is expected to start each iteration closer to the real solution than C-ARH, since the later

uses w(0) = 0. In this case, It-C-ARH is expected to require less updates to compute

w(n), which implies in a lower computational complexity.

An additional difference between the approaches concerns on how they compute w(n)

when there is no sparsity, which is the case when they are applied to regularize ill-

conditioned systems of equations. In this case, C-ARH tries to compute a sparse w(n),

which is expected to be costly (since many iterations may be spent to change the support,

trying to obtain a sparse solution) and also have poor performance. It-C-ARH, however,

only searches for a sparse ∆w(n). The update is designed to require a low number of

iterations, such that it concentrates only on a few features at each iteration. Since w(n)

is iteratively updated, all the entries of w(n) can be updated through the snapshots, such

that a low-cost and regularized solution is expected to be obtained. Using this approach,

It-C-ARH should outperform C-ARH, as verified in the simulations of Section 5.6.
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5.5.4 Computational complexity

In this section, we summarize the computational complexity of the proposed algo-

rithms. Tables 22 - 25 are arranged in a nested structure, each table adding a layer

needed for the solution of the beamforming problem.

In Table 22, we show the computational cost per iteration of the C-ARH algorithm

(as described in Table 17). The number of operations is presented as a function of the

support size |Γ| at each homotopy iteration. At every iteration, the algorithm computes

the solution of a linear system of equations, with the dimension |Γ| × |Γ|. Different

approaches can be used to solve the system of equations, such as an LU factorization,

which is an O(|Γ|3) technique, and the DCD algorithm, which is the low-cost alternative

used in this dissertation. The total cost to compute w(n) (assuming that the maximum

support size is given by K) is presented in Table 23. The cost to implement C-ARH using

the DCD with a leading element is also detailed.

Table 24 shows the complexity of the algorithms proposed for beamforming. In our

simulations comparing the iterative and non-iterative techniques (see Section 5.6), we

notice that It-C-ARH and It-MC-ARH use a very low number of homotopy iterations per

snapshot, which makes their computational cost much lower than the cost of C-ARH and

MC-C-ARH. The simulations also indicate that the iterative algorithms have better SINR

performance. When we use the DCD in the C-ARH algorithm, further reduction of the

computational cost is obtained, since multiplications are replaced by additions and bit-

shifts, and the parameter Nu can be designed to be a small number. Table 25 summarizes

the number of computations used by the recursive algorithms using DCD iterations.

The dominant terms in the computational complexity of all the homotopy-based tech-

niques are K2M (see Table 23) andM2 (see Tables 24 and 25). Since the relation between

M and K is unknown and K could be, in principle, any function ofM , the computational

complexity could be higher than O(M2). However, as it is shown in our simulations in

Section 5.6, the computational complexity of the DCD-based techniques depend on the

relation of the number of interferers andM : if the number of interferers does not increase

linearly with M , the computational complexity is O(M2). If the number of interferers

grows linearly withM , the techniques are more costly to compute, but we show that there

is still a range of values of M in which our methods are more advantageous than other

algorithms from the literature.

Note that we use (5.33) for all techniques presented in this text. Selecting a different

re-weighting, the required number of computations may change, modifying the values
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presented in Tables 22 and 23.

Table 22: Computational complexity of C-ARH per homotopy iteration

Alg. + × ÷ √·
C-ARH 4|Γ|(M + 2)− 2 4|Γ|(M + 2) + 2 4|Γ|+ 1 |Γ|

Plus the solution of a |Γ| × |Γ| linear system of equations

C-ARH (DCD) 4|Γ|(M +Nu + 2) + 4Nu + 6Mb − 2 4|Γ|(M + 2) + 2 4|Γ|+ 1 |Γ|

Table 23: Minimum computational complexity of C-ARH per snapshot (when the total
support size is K)

Alg. + × ÷ √·
K2(2M+4)+ K2(2M+4)+ 2K2+3K (K2+K)/2

C-ARH K(2M+2) K(2M+6)
Plus the solution of K systems of equations with dimension

p× p, where p = 1, 2, . . . , K

C-ARH K2(2M+2Nu+4)+ K2(2M+4)+ 2K2+3K (K2+K)/2
(DCD) K(2M+6Nu+6Mb+2) K(2M+6)

Table 24: Computational complexity per snapshot of the algorithms applied to beam-
forming

Alg. + × ÷ C-ARH
(Tab. 23)

C-ARH 2M2 + 4M 3M2 + 5M 1 1
(beamf.) +2N − 1 +3N + 5
MC- 2M2+(8Nc−2)M 3M2+(10Nc−3)M Nc Nc

C-ARH +2N−2Nc +3N+4Nc+1
It- 2M2 + (4K + 14)M 3M2 + (4K + 15)M 1 1

C-ARH +2N + 2K − 3 +3N + 5
It-MC- 2M2+(4KNc+18Nc−2)M 3M2+(4KNc+20Nc−3)M Nc Nc

C-ARH +2N+2KNc−4Nc +3N+4NC+1
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Table 25: Total computational complexity of the algorithms using DCD iterations

Alg. + × ÷ √·
DCD-It- 3(M2+5M+N−1) 2M2+ 14M+2N 2K2 (K2+K)/2
C-ARH +K2(2M+2Nu+4) +5 +K2(2M+6) +3K+1

+K(6M +6Nu+6Mb+4) +K(6M+ 6)
DCD- 3(M2−M+N) 2(M2−M+N)+1 Nc(2K

2 Nc(K
2+K)/2

It-MC- +NcK
2(2M+2Nu+6) +Nc(K

2(2M+4) +3K+1)
C-ARH +NcK(6M+6Nu+6Mb+4) +K(6M+24)+4)

+Nc(18M−4)

5.6 Simulations

In our simulations, we compare the SINR performance of the proposed algorithms

and techniques from the literature. We also study the computational complexity of our

new techniques. For all scenarios, we consider a 64-sensor ULA. The direction of interest

is fixed at angle 20o, but the number of interferers can vary. We perform four groups of

simulations. In the first scenario, we assume that there are 5 faulty sensors in the array,

and we use a faulty-sensor detector to identify them. The faulty sensors are randomly

selected, and all the techniques considered in the simulation use RRR(n) to compute the

beamformer. In the second simulation, we use the same conditions as before, but we

assume that we are unable to identify the faulty elements. For this situation, we show

that the proposed techniques are robust to errors in the detection of faulty elements.

In the simulations of Section 5.6.3, we study the steady-state SINR performance of the

proposed techniques when the SNR varies. For all these cases, we assume that the number

of interferers is fixed and positioned in the angles 30o, 45o, 53o and 60o.

In Section 5.6.4, we perform simulations using only the DCD-based techniques to

observe the relation between the number of homotopy iterations (K) and the number of

sensors in the array (M), if the number of interferers vary. Our purpose is to model K as

a function ofM , and apply it in the expressions of Table 25 to obtain an accurate result to

the number of multiplications used by each technique. Using this approach, we show that

if the number of sensors is kept constant, which is a scenario that approximates sonar

and radar applications [82], the number of multiplications required by the techniques

is O(M2). If the number of interferers grows linearly with M , the computational cost

is O(M5), but we show that there is a range of values in which our techniques are

advantageous, less costly than the VL approach of [80], which is O(M2). This last

scenario can be associated with problems of MIMO communications [83], in which the
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number of users increases with the array dimension.

In the simulations applied to compare our techniques to other algorithms from the

literature, (Sections 5.6.1 and 5.6.2), we present the SINR performance of C-ARH, MC-

C-ARH, It-C-ARH, It-MC-C-ARH, DCD-It-C-ARH and DCD-It-MC-C-ARH, and we

compare these methods to the O(M3) RCB of [33], the RLS algorithm [7] without the

addition of regularization, and to a method using a diagonal loading (DL) added to

RRR(n). We use the approach of [78] to regularize RRR(n) by adding to the matrix

the diagonal loading 10σ2
ηI, assuming exact knowledge of ση. The solution to (RRR(n) +

10σ2
ηI)w(n) = bRR is then used to compute the beamformer, which cannot be implemented

using RLS. Here, we use the Matlab solution of systems of equations (the \ operator, LU
factorization in most cases), at cost O(M3). We also compare the new techniques with

the GLC technique of [81] (O(M3)) and to the O(M2) VL algorithm of [80]. The RCB,

the GLC and the VL algorithms are briefly presented in Appendix B (see page 140). We

present the SINR performance and the number of homotopy steps used by the proposed

techniques, which expresses the maximum dimension of the system of equations solved by

the homotopy-based algorithms. To determine the faulty sensors in the first simulation,

we use the energy detection method, as presented in Section 5.2.1.3. Matrix E is estimated

only during the first 100 snapshots. Afterwards, we freeze the last estimated value of E

for the remaining snapshots.

For all simulations, the power of each interferer is 10 times the power of the signal of

interest, σ2
d = 1. The SNR is 8dB, and the noise is a zero-mean Gaussian i.i.d. sequence.

The signals produced by the sources are zero-mean binary sequences of −1 and 1, and

we use eq. (5.37) to estimate Rt iteratively. The forgetting factor is given by ν =

1 − 2−6 ≃ 0.9844 and R(0) = 10−3I. The algorithms are adjusted in the first simulation

to achieve the maximum SINR in the steady-state. We keep the same values for the

parameters in the second simulation to study the effect of the incorrect identification

of faulty sensors to the beamformer computation. In the third simulation, we vary the

SNR and study the SINR gain of the techniques, assuming that the parameters of the

algorithms are still adjusted as proposed in the first simulation. We use 500 snapshots,

and assume that the algorithms achieve the steady-state after 400 snapshots. We then use

the last 100 snapshots to compute the steady-state SINR. In the last simulation, we set

the parameters as applied in the first simulation, but there are no faulty sensors and the

the number of interferers is varied, allowing us to plot curves to study the relation between

M and the number of homotopy iterations. We also use 500 snapshots in this case, and

apply the last 100 snapshots to compute the mean number of homotopy iterations used
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by the techniques.

The simulations presented in this section are obtained with the mean of 200 realiza-

tions.

5.6.1 Regularization when the faulty-sensor detector is applied

For the simulation presented in this section, we assume that there are 5 faulty sensors,

and that the faulty-sensor detector is applied to identify and exclude them from the

computation of the beamformer. To adjust C-ARH and MC-C-ARH, we use τ = 0.32

and define three candidates for the MC-C-ARH algorithm, given by ∆ = [0.6 0.8 1].

The iterative algorithms It-C-ARH and It-MC-C-ARH use a stopping parameter τIt = 2,

while DCD-It-C-ARH and DCD-It-MC-C-ARH use τDCD = 5, Nu = 8, Mb = 16 bits

and H = 2. The multi-candidate iterative algorithms use the same set of candidates as

selected for MC-C-ARH, and the constraint of the RCB is given by ǫ = 0.1. Figures 16

and 17 present the SINR performance and the number of homotopy iterations required

by the proposed techniques to compute the MVDR beamformer.

From Figure 16, one can see that the C-ARH algorithm and the DL approach have

almost the same SINR performance after 400 snapshots, and that both algorithms are

outperformed by the MC-C-ARH algorithm after 200 snapshots. The proposed iterative

algorithms outperform the other homotopy-based techniques, and the highest SINR is

achieved by the DCD-based algorithms. The iterative algorithms outperform their non-

iterative counterparts with a lower number of homotopy iterations, which reduces the

number of computations. For instance, consider the average number of iterations used by

C-ARH (which is 58), It-C-ARH (3) and DCD-It-C-ARH (1.5), presented in Figure 17,

after they achieve the steady-state. Using these values of K in the equations presented in

Tables 23, 24 and 25, we compare the number of multiplications used by these methods.

The C-ARH algorithm requires 400471 multiplications plus the cost to solve 58 systems of

equations of sizes from 1×1 to 58×58. The It-C-ARH algorithm uses 26211 multiplications

and solves only 3 systems of equations of sizes from 1 × 1 to 3 × 3. The DCD-It-C-

ARH algorithm, the least costly of them, uses only 8386 multiplications. No additional

multiplications are required to solve the systems of equations, since the DCD algorithm

does not require multiplications.

The GLC and the DCD-It-C-ARH algorithms present the same SINR at the steady-

state, but they are both outperformed by DCD-It-MC-C-ARH. The DCD-based iterative

algorithms are only outperformed by the RCB and VL, which achieve an SINR perfor-
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Figure 16: SINR performance when there are 5 faulty sensors. Mean of 200 realizations.
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Figure 17: Average number of homotopy iterations per snapshot when there are 5 faulty
sensors. Mean of 200 realizations.
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mance 1.5dB higher than the DCD-It-MC-C-ARH. But the convergence rate of the VL

is slower than that achieved by the DCD algorithms.

Notice that the RCB and GLC methods have computational cost of O(M3), while

VL algorithm is O(M2), since its complexity is 20M2+32M +5 multiplications, 18M2+

24M − 6 additions and 3 divisions. In Section 5.6.4, we use simulations to show that the

computational complexity of the DCD-based techniques isO(M2), whereM2 is multiplied

by 2, if the number of interferers does not increase with M . In this case, the DCD-based

techniques are the less costly algorithms in this simulation.

5.6.2 Robustness to errors in the identification of faulty sensors
in the array

In this simulation, we show that the iterative techniques are robust when the faulty

sensors cannot be identified and excluded from the array. We assume that the array

has 5 faulty sensors, but the detector is unable to identify them. For this situation, we

cannot reduce the dimension of the correlation matrix, and the SINR performance of the

algorithms might be affected. We maintain the value of the parameters used in Section

5.6.1, and we show that the iterative DCD-based algorithms present almost the same

performance. Figure 18 and 19 show the results.

In this scenario, the performance degrades for all the algorithms, but the techniques

using the DCD are less affected by the faulty sensors. The better performance of the

DCD algorithms is explained by the very low number of homotopy iterations used by

these techniques. To understand this, recall the algorithm presented in Table 17. To add

an element to the support set, the algorithm selects the columns of the matrix which are

most correlated to the residue. When the algorithm starts, it first adds to the support the

highly correlated features of the matrix, for which the selection is not affected by the noise

introduced by the faulty sensors. However, after a few steps of the C-ARH, the columns

less correlated to the residue and the columns introduced by the faulty sensors can be

mistaken, and the algorithm can add to the support wrong elements, leading to poor

performance. Since the DCD iterative algorithms use a very low number of iterations,

they only add to the support the most correlated elements, easier to identify, reducing

the error and improving the SINR performance.
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Figure 18: SINR performance when there are 5 faulty sensors, but they are not identified
by the detector. Mean of 200 realizations.

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

 

 

C-ARH

C-ARH

MC-C-ARH(174 iterations in the steady-state)

MC-C-ARH It-C-ARH

It-MC-C-ARH

DCD-It-

DCD-It-

H
om

ot
op

y
it
er
at
io
n
s

Snapshots

Figure 19: Average number of homotopy iterations per snapshot when there are 5 faulty
sensors, but they are not identified by the detector. Mean of 200 realizations.
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5.6.3 SINR × SNR curve

In this simulation, we study how the steady-state SINR varies when the SNR changes.

We consider the scenario of the first simulation, but now we vary the SNR in the range of

−10dB to 60dB. For this purpose, we compare the DCD-based iterative techniques with

the RCB, VL, GLC and DL algorithms. We consider only DCD-based techniques in this

simulation, since they presented the best SINR performance in the previous comparisons.

Figure 20 presents the SINR × SNR curve, and Figure 21 shows the number of homotopy

iterations used by the proposed algorithms.
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Figure 20: SINR performance of the proposed techniques when the SNR varies.

From Figure 20, we note that the GLC outperforms the other techniques when the

SNR is low, but its performance degrades when the SNR increases. The RCB and VL

outperform the other techniques when the SNR is higher than 0dB, but the maximum

difference between these algorithms and the DCD-based techniques is approximately 2

dB, when the SNR=16dB. However, in this case the number of homotopy iterations is

very low. In Figure 21, we see that when the SNR is low (less than 0dB), the DCD-

based techniques require a higher number of homotopy iterations, and their performance

is poor. When the SNR reaches 0dB, the number of iterations used by the techniques

decreases. The low SNR probably hinders the selection of the terms that must be added

to the support of C-ARH, leading to poor performance and a higher number of homotopy
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Figure 21: Average number of homotopy iterations used by the proposed techniques when
the SNR varies.

iterations, which tends to the number of sensors. For higher SNR, the performance is

improved and the number of iterations decreases. As we will show in Section 5.6.4, in

a scenario where the number of interferers is constant if M increases, the computational

cost of the DCD-based techniques is proportional to 2M2, while RCB and GLC have

complexity proportional to M3, and the VL algorithm has complexity quadratic on M

(but multiplied by a factor 20). Since the number of homotopy iterations is high for low

SNR, the expression of the number of multiplications probably is not able to capture the

real number of operations. However, for higher SNR, (SNR> 0dB), when the SINR rate

improves, we expect the expression of the complexity to hold, and the trade-off between

complexity and performance should favor the iterative methods. The relation between

the SNR and the number of homotopy iterations used by the DCD-techniques will be

addressed in future work.

5.6.4 Simulation study of the computational complexity of the

DCD-It-C-ARH and DCD-It-MC-C-ARH algorithms

In this section, we present a simulation study on the computational complexity of the

DCD-based techniques. We perform three simulations to model the relation between the

number of homotopy iterations and the number of sensors in the array (M), so that we
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can obtain a better approximation for the computational complexity of the techniques,

presented in Table 25. The situations considered are the following:

1. In Figure 22, we study how the number of homotopy iterations varies if the number

of sensors increases, but the number of interferers is kept constant. The number of

sensors is varied in the set [8, 16, 20, 32, 64, 80, 128].

2. In the scenario used to obtain Figure 23, we assumed that the number of interferers

depends linearly on the number of sensors, and increases at rateM/8. For this case,

we use M = [16, 32, 64, 128, 256].

3. In Figure 24, the number of interferers grows with the square root ofM . The values

of M applied to this simulation are [16, 25, 36, 49, 64, 81, 100, 121, 144].

To obtain the figures, we adjusted the parameters of the algorithms with the same values

used in the first simulation, but there are no faulty sensors.
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Figure 22: Average number of homotopy iterations versus the number of sensors in the
array, when the number of interferers is constant.

In Figure 22, the number of iterations required by each technique to compute the

beamformer starts at a low number of homotopy iterations and quickly decreases to a

constant level (1.3 for DCD-It-C-ARH and 4.5 for the multi-candidate technique), which
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can be modeled by an exponential decay. The number of homotopy iterations required by

DCD-It-C-ARH can be modeled as 6 ·exp(−0.06M)+1.3, while the relation is modeled by

12 · exp(−0.05M) + 4.5 for DCD-It-MC-C-ARH. Applying these equations to the expres-

sions obtained in Table 25 to compute the number of multiplications of each algorithm, the

term 2M(6 ·exp(−0.06M)+1.3)2 appears in the expression of DCD-It-C-ARH. For DCD-

It-MC-C-ARH, the term is given by 2M(12 · exp(−0.06M)+4.5)2. To determine which is

the dominant term in the computational cost, recall that 6 ·exp(−0.06M)+1.3→ 1.3 and

12 · exp(−0.06M) + 4.5→ 4.5 when M increases, so that 2M(6 · exp(−0.06M) + 1.3)2 →
3.4M and 2M(12 · exp(−0.06M) + 4.5)2 → 40.5M . Therefore, the dominant element in

the computational cost is 2M2, and the techniques are O(M2).

In Figure 23, we verify that if the number of interferers increases linearly with

the number of sensors, at a rate of 1/8, the number of homotopy iteration increases

quadratically. In the simulation of Figure 24, we observe a linear relation between

M and the number of homotopy iterations, when the number of interferers increases

with
√
M . Using the data from Figure 23, the equations that better model the re-

lation are given by 5.7 · 10−5M2 + 3.5 · 10−2M − 8.6 · 10−2 for DCD-It-C-ARH, and

8.4 · 10−5M2+1.2 · 10−1M +6.9 · 10−1 for the multi-candidate technique. Replacing these

equations in the expressions of Table 25, we notice that our algorithms are O(M5), but

the factor that multiplies M5 is low. To show that our techniques can be advantageous

even in this situation, we compare the number of multiplications of the DCD-based al-

gorithms and VL, when M varies. Figure 25 shows the results, and we note that the

DCD-It-C-ARH is less costly than VL for arrays in which the number of elements is up

to 255, while the multi-candidate approach requires less multiplications if M is less than

140 elements.
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Figure 23: Average number of homotopy iterations versus the number of sensors in the
array, when the number of interferers grows linearly at the rate of M/8.
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Figure 25: Number of multiplications versus the number of sensors in the array for VL,
DCD-It-C-ARH and DCD-It-MC-C-ARH – the number of interferers varies linearly with
M .

5.7 Conclusions

In this chapter, we have presented new beamforming algorithms based on the ℓ1-

norm regularized C-ARH technique. Our iterative algorithms have low computational

complexity and are robust against ill-condition in the input autocorrelation matrix, which

arises when the number of interferers is small compared to the number of sensors.

We compared our methods with the diagonal loading approach of [78], the RCB of

[33], the GLC of [81] and the VL of [80], robust beamformers, in two situations: one

in which faulty sensors are removed from the equations, and another in which faulty

sensors are not correctly detected. In the first situation, our iterative algorithms perform

better than C-ARH, MC-C-ARH, the diagonal loading approach of [78] and GLC, but

they are outperformed by the RCB of [33] and the VL algorithm. In the second scenario,

when the contribution of the faulty sensors is not removed from the sample correlation

matrix and the algorithms keep the same parameters as in the first simulation, the DCD-

based iterative methods are robust and outperform the other techniques, except for the

VL algorithm. But VL converges more slowly than the DCD-based techniques to the

steady-state.
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The computational complexity of our new techniques was presented as a function of

the number of sensors and the support size of C-ARH. Since the iterative algorithms

require fewer homotopy iterations per snapshot than the C-ARH and MC-C-ARH algo-

rithms, they are less costly to implement. For the DCD-based techniques, the number

of computations is much lower, since many multiplications are replaced by bit-shifts and

additions. To obtain more accurate expressions for the computational complexity of the

DCD-based techniques, we performed simulations in which we studied the relation be-

tween the number of sensors and the average number of homotopy iterations used by the

techniques, if the number of interferers varies. We considered two situations: in the first,

the number of interferers is constant, and in the second, it increases linearly with the array

dimension. For the first case, the complexity is quadratic in M , while the complexity is

O(M5) in the other approach. Based on these results, our DCD-iterative techniques are

less costly than the RCB, the GLC and the DL algorithms, which are cubic inM , and also

than VL (for which the cost is proportional to 20M2), if the number of interferers does

not depends on M . If the number of interferers increases linearly on M , our techniques

are less costly than VL only for a range of values of M .

The simulation comparing the SINR performance of the DCD-based algorithms to

other techniques, when the SNR varies, has shown that the proposed algorithms are low-

cost alternatives for SNR values higher than 0dB. For these values of SNR, if the number

of interferers is constant, the complexity is O(M2), so that the trade-off between SINR

performance and computational complexity favors our techniques. For lower values of

SNR, the performance is poor, the average number of homotopy iterations increases and

they become costly.
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Appendix B

In this appendix, we briefly present the RCB, the GLC and the VL algorithms.

The Robust Capon beamformer (RCB)

The RCB [33] is a technique which uses an eigenvalue decomposition of the correlation

matrix to compute the beamformer. For this reason, it is costly to compute and is cubic

on M . The algorithm is summarized in Table 26 (we use the same notation and variables

used for our algorithms, to make the comparison among the techniques easier). Note that

ǫ is a parameter used to adjust the regularization, and τ is a small constant to stop the

update of λ in Table 26 (see step 6).

Table 26: Robust Capon beamformer

Input: bRR, uRR, ν,ǫ, τ Output: ̟(n)

Initialize: RRR(0) = ξI,w(0) = 0, b̃RR = bRR

for n = 1, 2, . . .
1 RRR(n + 1) = νRRR(n) + uRR(n+ 1)uH

RR
(n+ 1)

2 Compute the eigenvalue decomposition of RRR(n+ 1) to obtain V (the
matrix of the eigenvectors) and d, a vector with the eigenvalues.

3 Compute z = |V H b̃RR|
4 Define λ = 0
5 Compute yi = zi/(1 + λdi)
6 While |||y||2 − ǫ| > τ

7 λ = λ + (||y||22 − ǫ)/
∑M

i=1

2z2i di
(1 + λdi)3

8 end
9 Compute matrix D0, for which the diagonal entries are given by 1/λdi
10 b̃RR = bRR − V D0V

HbRR

11 RRR(n + 1)w(n+ 1) = b̃RR ⇒ w(n+ 1)

12 ̟(n+ 1) =
w(n+ 1)

b̃
H

RR
w(n+ 1)

end
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Adaptive beamformer with variable loading (VL)

The VL technique uses an iterative variable loading approach to add regularization

to the autocorrelation matrix and improve the computation of the beamformer. The

approach of [80] is summarized in Table 27. One can show that the complexity of this

approach is given by 20M2 + 32M + 5 multiplications, 18M2 + 24M − 6 additions and 3

divisions.

Table 27: Adaptive beamformer with variable loading

Input: bRR, uRR, ν, τ = 10σ2
η Output: ̟(n)

Initialize: RRR(0) = ξI,w0(0) = 0, p = 0
for n = 1, 2, . . .

1 RRR(n+ 1) =
1− νn
1− νn+1

RRR(n) +
1− ν

1− νn+1
uRR(n+ 1)uH

RR
(n+ 1)

2 r1 = bRR − τp(n)−RRR(n + 1)w0(n)

3 µ1 =
rH
1 r1

rH
1 RRR(n+ 1)r1

4 w0(n + 1) = w0(n) + µ1r1

5 r2 = w0(n+ 1)−R(n+ 1)p(n)

6 µ2 =
rH
2 r2

rH
2 RRR(n+ 1)r2

7 p(n+ 1) = p(n) + µ2r2

8 ̟(n+ 1) =
w0(n+ 1)

bHRRw0(n+ 1)
end
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The general-linear-combination-based robust Capon

beamformer (GLC)

The GLC is presented in Table 28. Note that it updates RRR using a window with

Nw entries. The method requires the solution of a linear system of equations (see step 8),

which would require O(M3) operations in a approach using LU decomposition.

Table 28: General-linear-combination-based robust Capon beamformer

Input: bRR, uRR, ν, M , Nw Output: ̟(n)
Initialize: RRR(0) = ξI,w0(0) = 0, ρ1 = 0

for n = 1, 2, · · ·
1 RRR(n + 1)=RRR(n)+

1

Nw

(uRR(n+1)uH
RR
(n+ 1)−uRR(n−Nw+1)uH

RR
(n−Nw+1)

2 ρ1 = ρ1 + ||uRR(n+ 1)||42 − ||uRR(n−Nw + 1)||42
3 ρ =

1

N2
w

ρ1 −
1

Nw
||RRR(n+ 1)||22

4 v = trace(RRR(n+ 1))/M
5 a = min(vρ/||R(n + 1)− vT ||22, v)
6 b = 1− a/v
7 RGLC = aI + bRRR(n+ 1)
8 RGLCw(n + 1) = bRR ⇒ w(n+ 1)

9 ̟(n + 1) =
w(n+ 1)

bH
RR
w(n+ 1)

end
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6 POSSIBILITIES TO CONTINUE THIS WORK

In this chapter, we present an overview of possible research lines to continue this

work. We present ideas which can lead to new algorithms and some possibilities to better

exploit the techniques proposed in this text.

6.1 Development of an analysis for the DCD

algorithm

The computational complexity gain of the DCD method is based on the iterative

solution of a modified normal system of equations, where the coefficients are bit-wise

updated. Since the update is nonlinear, the performance analysis of the algorithm is

challenging and still unsolved.

A first attempt to study the convergence of DCD-based algorithms was proposed in

[91], where a second-order analysis of the DCD-RLS algorithm was developed, assuming

some simplifications. In that case, the instantaneous correlation quantities were replaced

by their deterministic expressions in the normal equations, and DCD was applied to

solve the resulting system of equations. That approach provided some insights on the

algorithm’s behavior, but there is still a misfit between the model and the simulations.

Additionally, the approach was not used to directly study the DCD, since the non-linearity

of the DCD iterations make it difficult to apply traditional tools used to study iterative

methods.

Another consideration in the study of DCD is the computational complexity of the

technique. Papers such as [25, 28, 92] assume that the DCD’s complexity is linear with

the regressor length N , since it appears multiplied by Nu (generally chosen Nu ≪ N).

However, one can question if Nu is related to N somehow, that is, if Nu must be increased

as N increases to keep some performance criterion constant. This problem also remains

an open question, and the development of an accurate analysis of the DCD algorithm

could help to answer this question, providing better support to apply this method.
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6.2 Using DCD iterations in other algorithms

Since DCD iterations can be used to reduce the complexity of complex-valued algo-

rithms, it is natural to imagine the extension of this approach to quaternion techniques.

The WL quaternion RLS [15], for instance, presents high complexity due to the quaternion

elements and also due to the WL approach. The development of a quaternion algorithm

using DCD iterations could lead to a substantial cost reduction. If an algorithm using

both DCD iterations and our RC approach, one could obtain a quaternion WL algorithm

of very low complexity.

Another possibility is the use of DCD iterations in an approach similar to that of

[93]. In that work, a series-cooperative structure was proposed to combine two adaptive

filters, in order to achieve better MSE performance than a parallel combination [94] of

algorithms. In that paper, two LMS filters were used in the cooperative structure. If a

series structure of a DCD-RLS filter and an LMS filter was considered, one could expect a

faster-converging and lower-complexity combination of filters, very attractive for hardware

implementation.

Given the flexibility of the DCD, this method can be extended to other algorithms

which solve the least-squares problem. Other possibilities can be proposed, leading to

new low-complexity algorithms.

6.3 Distributed estimation with adaptive filters ap-

plying DCD iterations

In distributed estimation techniques [95, 96], it was shown that the communication

between the nodes provides estimation gains and robustness to the global estimation.

However, the information exchange between the nodes leads to an energy consumption

problem, since data must be transmitted to every node. In this case, DCD iterations can

be an alternative to save energy.

In [31], a DCD-based diffusion RLS was proposed to reduce the computational cost

and also make the distributed technique robust against numerical instability. Simulation

results have shown that the DCD-based technique can perform as well as the original

algorithm but, as it happens to techniques which apply DCD iterations, there is a trade-off

between complexity and performance. Since distributed techniques using DCD iterations

are just starting to be studied, there is plenty of opportunities to research.
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Some interesting questions that arise – and that were not addressed in [31] – can be

listed:

1. How the maximum number of DCD iterations Nu must be designed to achieve a

pre-defined estimation error, and what is the impact in the network if we choose a

small Nu, or a different value of Nu for each adaptive filter in the network.

2. How to choose Mb to save energy and still guarantee satisfactory performance of

the distributed estimation, since an increase of the number of bits to be transmitted

implies in the increase of the number of transmissions and energy consumption.

3. How many bits must be used for internal storage within a node and for communi-

cation?

4. How Nu and Mb can be related to provide the best trade-off energy consumption-

estimation gain.

Note that the answer to these questions can improve the knowledge of DCD and also help

the design of new approaches, mixing DCD and distributed algorithms.

6.4 Advances with quaternion algorithms

In the research with quaternion algorithms, one possibility to continue the work pre-

sented in this dissertation is the development of simpler expressions to the second-order

analysis obtained for QLMS-based algorithms in general. Another possibility would be the

development of an analysis using quaternion algebra, which could be difficult to obtain,

since this algebra still lacks some basic tools, such as ways to compute the eigenvalues.

As already proposed in Section 6.2, we can also modify DCD for the QRLS (or WL-

QRLS) algorithm. Note that we can use an approach similar to that used in Chapter 2

to modify the WL-QRLS, and then extend the DCD to the quaternion domain to obtain

a low-complexity WL algorithm.

6.5 Research on the beamforming techniques using

the homotopy algorithm

The beamforming techniques proposed in the Chapter 5 can be easily extended to

WL algorithms, for which we could also apply the extended real regressor vector used by
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the RC-WL-LMS algorithm, as it was presented in Chapter 2.

Considering the techniques proposed in the text, some points still need more research

to clarify the design of the parameters and also the behavior of the techniques:

1. The re-weighting used by C-ARH algorithm was selected based on simulation results.

It would be interesting to study other re-weighting options and also try to obtain

an analytical approach to design h̃.

2. The values used for the stopping criteria were also selected based on extensive

simulations. An analytical approach – or at least some bounds to select these

parameters – would help the designer to access the best properties of the algorithms

for a given problem.

3. A simulation study of the C-ARH-based algorithms is also required to understand

their behavior for other scenarios (for instance, for non-Gaussian noise or when the

noise is spatially or temporally correlated).
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7 FINAL CONSIDERATIONS

In this text, we concentrated on the development and on the analysis of new low-

cost techniques for adaptive filtering. In the first part of the dissertation, we proposed

WL techniques for which the complexity reduction was achieved excluding the redun-

dant second-order information from the autocorrelation matrix. In the second part, we

developed new techniques for WL processing and for beamforming, which applied DCD

iterations to reduce the computational cost.

In Chapter 2, we exploited WL estimation concepts to develop low-cost complex-

valued WL adaptive filters. We replaced the WL data vector of the WL-LMS and WL-

RLS algorithms by a real-valued vector containing the same information. Using this

approach, redundant second-order statistics in the autocorrelation matrix are avoided,

and the computational complexity is reduced, since many complex-complex operations are

substituted by real-complex operations, less costly. Simulations comparing the proposed

and the standard WL algorithms showed that they present the same MSE performance.

The computational complexity evaluation showed that the RC-WL-LMS and the SL-

LMS algorithms have the same computational cost, which is about one-fourth the cost to

compute WL-LMS. RC-WL-RLS also has a complexity similar to that obtained with the

SL-RLS algorithm, which is less than one-third of the cost of WL-RLS.

The approach used for complex-valued WL estimation in Chapter 2 was extended

to the quaternion domain in Chapter 3. We showed that the quaternion autocorrelation

matrix has redundant terms that can be avoided, and we exploited it to propose RC

algorithms with real input vector. A general description to quaternion gradients was

applied to study QLMS-based techniques, and it was shown that different gradients may

lead to the same quaternion adaptive filter. This general approach helped us to show that

gradients similar to the i-gradient lead to the fastest-converging WL algorithms if there is

correlation only between two quaternion elements, or when the input is real and given by

the concatenation of the entries of q. Mean and a mean-square analyses suitable for any

QLMS-based algorithm were obtained and particularized for WL algorithms using real
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regressor vector. We derived simple equations to compute the steady-state EMSE and

MSD, and a model to study the convergence of WL techniques. Bounds to choose the

step size of real-input WL-QLMS algorithms which guarantee the convergence in the mean

and in the variance were also obtained. We proposed the RC-WL-iQLMS algorithm, and

showed that it is the fastest-converging WL-QLMS algorithm with real regressor vector.

The technique is equivalent to WL-iQLMS, but it is less costly to compute. It also

corresponds to the 4-Ch-LMS algorithm, written in the quaternion domain.

In Chapter 4, the RC-WL-RLS algorithm was revisited and modified to apply DCD

iterations. We proposed the DCD-WL-RLS algorithm as a low-cost method (O(N)) for

cases where the real and the imaginary entries of the input vector are tap delay-lines. This

fact was exploited to obtain a low-cost update of the estimated WL autocorrelation matrix.

DCD iterations were applied to further reduce the complexity, which was possible due to

a modification on the equations of the RC-WL-RLS algorithm. We showed that DCD

computes the update at very low cost, since a few number of DCD iterations (Nu) can be

used for this. The DCD-WL-RLS algorithm was compared to other WL-RLS algorithms,

and we showed that it can achieve an MSE performance similar to that obtained with

RC-WL-RLS, but at reduced cost.

In Chapter 5, we extended the ARH algorithm to the complex field, and we proposed

low-cost beamforming algorithms based on the C-ARH method. We first developed the

C-ARH and multi-candidate C-ARH algorithms, which were later modified to obtain their

iterative versions, less costly. The iterative algorithms exploit the solution of the previous

snapshot as an initial condition for the actual iteration, helping to reduce the number

of homotopy iterations and thus reducing the computational complexity. Using DCD

iterations, further complexity reduction was obtained with the DCD-It-C-ARH and DCD-

It-MC-C-ARH algorithms. We used simulations to show that the DCD-based techniques

are O(M2) if the number of interferers does not grow with the number of sensors. When

the number of interferers increases linearly with the number of sensors, the techniques

are O(M5), but for a range of values of M , they are still less costly than the O(M2)

VL technique. Simulations also have shown that the C-ARH-based algorithms are robust

against sensor failure. We compared the SINR performance of the proposed algorithms

with other techniques from the literature: the RCB, DL and GLC, O(M3) techniques,

and the VL algorithm. The trade-off between SINR performance and computational

complexity favors our DCD-based techniques.
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