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ABSTRACT OF THE DISSERTATION

Stability and Performance of Adaptive Filters
without Slow Adaptation Approximations

by

Vitor Heloiz Nascimento
Doctor of Philosophy in Electrical Engineering
University of California, Los Angeles, 1999
Professor Ali H. Sayed, Chair

The performance of an adaptive filter is crucially dependent on its rate of con-
vergence, steady-state mean-square error, and stability properties, especially in
finite-precision implementations. Exact performance analyses only exist for in-
finitesimally small step-sizes or under certain so-called independence assumptions.
There are practically no counterparts of these analyses for larger step-sizes in the
literature. Such results are desirable since they would serve as a guide for the
design, and also for a better understanding, of adaptive filters with faster con-
vergence speeds. Progress in this direction is often hindered by the complexity of
the (possibly time-variant and nonlinear) update relations that arise when slow

adaptation approximations are not employed.

This dissertation develops techniques for the stability and performance anal-
yses of adaptive filters without resorting to slow adaptation approximations. The
work expands the four main methods of analysis that have been used so far in the
literature, namely, mean-square stability analysis, almost-sure stability analysis,

Lyapunov stability analysis, and analysis by simulation or experimentation.

Among the original contributions of this work are the first computable lower

xvi



bound on the largest step-size that guarantees mean-square stability in the ab-
sence of the independence assumptions (Ch. 4); a detailed study of the behavior
and properties of ensemble-average learning curves and how special care is needed
in using them to predict or evaluate the performance of an adaptive filter (Ch.
5); a proof that an adaptive filter can actually have two rates of convergence;
one rate for the initial phase of operation and another faster rate for later time
instants (Ch. 5); a new leakage-based algorithm that avoids both the drift and
bias problems of existing adaptive methods (Ch. 6); and a Lyapunov stability
analysis for floating-point implementations in worst-case scenarios (Ch. 6). Fur-
ther contributions to the independence theory itself are provided in Chs. 2 and
3, especially an analysis of the normalized LMS algorithm. The introduction and
the concluding remarks of each chapter indicate the specific contributions of that

chapter and how they relate to available results in the literature.

xvii



CHAPTER 1

MOTIVATION AND CONTRIBUTIONS

In this chapter we provide an overview of the class of stochastic-gradient adaptive
algorithms that we shall deal with in this dissertation. In particular, we review
the least-mean squares (LMS) algorithm, the normalized LMS algorithm, and the
leaky LMS algorithm. We also comment briefly on the common framework for
the analysis of these algorithms via the independence assumptions, and we end

the chapter by explaining the scope and contributions of this work.

1.1 LINEAR ESTIMATION

The problem of linear least-mean squares estimation is the following. Given a
zero-mean scalar sequence of random variables {y(k) };OZO and another sequence of
zero-mean length-M random vectors {wk}:im we seek length-M vectors {w*k}

such that
g(k) = T w.,
is the optimal linear estimate for y(k), in the sense that w, j solves

o2(k) £ minE(y(k) - afw)’,

v w
where E is the expectation operator and T is the transposition operator. Define

A

v(k) = y(k) — §(k) = y(k) — zEw, -



The sequence {y(k)} is called the desired sequence and {mk} is the input or
regressor sequence. The subscript k£ denotes time. The sequence {v(k)} is the

noise (or error) sequence.

If the second-order statistics of @, and y(k) are known, the weight vector
w,  can be determined using the well-known orthogonality principle of linear
estimation [KSH99]. The principle states that the estimation error v(k) must be

uncorrelated with the regressors xy, viz.,
E(y(k) — @y w. i) z), = 0. (1.1)
Thus define the autocorrelation matrix of x;
Ry 2 (E a:kw;‘:>, (1.2)
and the cross-correlation vector
p 2 (E y(k)a:k>. (1.3)

Assume further that

R-1. The matriz Ry is invertible for all k > 0.
Then (1.1) can be solved for w, i, resulting in
W, = R.'py. (1.4)

When the desired and input sequences {y(k), azk} are jointly wide-sense sta-
tionary, the solution does not depend on time, and the above quantities reduce

to

W, | = Wy, R, =R, P =D, o, (k) = op.



That is, (1.4) reduces to
w, = R 'p. (1.5)

This so-called stationary case will be the main focus of this dissertation.

An important special instance is when {y(k)} and {@;} are Gaussian. In
this case, the orthogonality principle also implies that the noise sequence {v(k)}

is independent of the input sequence {a:k}

Remark. If the sequences {y(k), wk} happen to be related through a linear

model of the form
y(k) = zyw’ +v(k),
for some unknown w?, and with a noise sequence v(k) that is uncorrelated with

x, then it can be verified that

w, = w°.

That is, the linear least-mean squares estimator w, of (1.5) coincides with w®.
Hence, whenever we assume that {y(k), wk} are related linearly, we can assume

that the coefficient vector relating y(k) and xj, is simply w,.

1.2 STOCHASTIC-GRADIENT ADAPTIVE
ALGORITHMS

In practice, the statistics of the input and desired sequences {y(k), wk} are often

unknown (or, at most, only approximations for R and p may be available), so



that the computation of the optimal filter using (1.5) becomes impossible or
innacurate. In the time-variant case (1.4), even if Ry and p, were known exactly,

computing (1.4) at every time step can be costly.

The explicit solution of (1.5) can be avoided by using an adaptive algo-
rithm that computes, at each time instant k£, a new approximation w; to w,.
Among the most commonly used adaptive algorithms are the least-mean squares
algorithm or LMS [WS85] and its variants, including normalized LMS (NLMS)
[TF88|, leaky LMS [GMW82]|, least-mean fourth (LMF) [WW84], signed-LMS and
signed-regressor-LMS [Ewe94, Ewe97], and some other versions of LMS [Set92,
SSB96, TC96]. There are also other important algorithms, in special the re-
cursive least-squares algorithm (RLS) [SK94, Hay96], and the constant modulus
algorithm (CMA) [God80] (used for blind equalization). This dissertation focuses
on the LMS algorithm and two of its most distinguished variants: leaky LMS and
NLMS.

The main advantages of the LMS algorithm, shared by many of its variants,
are its small computational cost, its robustness to modeling errors (such as non-
linearities and quantization errors) [HSK96, RS96, SR98], and its good tracking
of non-stationary signals [Ewe94|. One disadvantage is that the algorithm has

slower convergence than, for example, the RLS algorithm [Hay96].

1.2.1 The LMS Algorithm

The LMS algorithm computes successive approximations wy through the recur-

rence relation

Wiy = Wy + LTy, (y(k) — w;;pwk), with initial condition wy. (1.6)



The design parameter p is known as the step-size. Two important measures of

performance for the LMS algorithm are the errors

’l:bk Wy — Wy, (17)

1>

e(k) = y(k) — zf wy. (1.8)

Ideally, we would require the algorithm to reduce e(k)? from its initial value, and
to keep Ee(k)? close to o2 in steady-state (and w; close to 0). The variance
Ee(k)? is known as the mean-square error, or MSE for short. Similarly, the
trace of the covariance matrix of @y, Tr(E @y, ), is known as the mean-square

deviation, or MSD.

From the recursion (1.6) one can deduce that the rate of convergence of the
algorithm is greatly affected by the step-size. A very small step-size (u ~ 0)
implies that the weights change very slowly at each iteration, and consequently
the convergence rate is small. This is inconvenient, since in many applications
the filter output cannot be used before the MSE, Ee(k)?, achieves a sufficiently
low level. Moreover, in non-stationary environments, slow adaptation may not

allow the algorithm to properly track time-variations.

1.2.2 The Leaky LMS Algorithm

The leaky LMS algorithm is used in situations where the covariance matrix R is
not guaranteed to be invertible, or is ill-conditioned. In these cases, the LMS algo-
rithm may produce unbounded (or very large) estimates wy. This can cause over-
flow in finite-precision implementations, which considerably degrades the perfor-
mance of the algorithm. See [Zah73, Ung74, GMW82, SLJ86, Set92, NS96, BS97|
for examples in equalization, and [IK84, IT86, IS96] for the use of leaky LMS in

adaptive control. We shall discuss these issues in Chapter 6.



The leaky LMS recursion is given by
'wal = (1 — pag)wh + pxy (y(k) — wfwk), with initial condition w,, (1.9)

where we use the symbol w}, to differentiate the leaky LMS weight estimate from
the LMS estimate, wy. The constant g is called the leakage constant. It can
be shown that, while the LMS algorithm attempts to minimize E (y(k) — wfw)z,
the leaky LMS algorithm attempts to minimize [Hay96|

B aalwl? + (o) - afw) "}
The norm ||w|| is the Euclidean norm. The leaky LMS algorithm has two main

disadvantages: it introduces a bias in the solution (see Chapter 2), and has a

higher computational cost than LMS (see Chapter 6).

1.2.3 The Normalized LMS Algorithm

This algorithm tries to improve the convergence speed of LMS, by using the

weight vector wj that solves the following constrained minimization problem:
min ||wh,; — wi|” subject to (zfwj ) =0.
wE

The solution for the optimization is

1

W (y(k) - :c;wa)

n _ n
Wi = Wy +

In order to avoid possible divisions by zero, the algorithm is usually modified as
follows:

L

o g W)~ wewk), (1.10)

n — n
Wiy = Wy +

where a > 0 is a constant, and u is a step-size. It can be shown that this modified

algorithm solves the following optimization problem [Say97]:

, . pllz]?
11‘9’:111 |wp,, — wi|® subject to (zjwh,,) = [1 T ot el (z} wh).



The primary disadvantage of the NLMS algorithm is that its computational
cost is higher than LMS (there is a division and the computation of a norm in

addition to the cost of the basic LMS algorithm).

1.3 THE INDEPENDENCE ASSUMPTIONS

Due to the large range of applications in which the LMS algorithm and its variants
have proven successful, there has been a vast literature on the analysis of the
performance of these algorithms. Unfortunately, the analysis of such algorithms
is not a simple task, unless several simplifying assumptions are made. This is

because adaptive filters are often time-variant and nonlinear systems.

The most important of these simplifying conditions are known collectively as
the independence assumptions. Many of the earlier works (and several recent
ones) were based on the independence assumptions [WMG67, WML76, CL84,
FW85, Ale87, TF88, Slo93, MA97]. Basically, one assumes the following.

M-1 (Modeling assumption). The sequences {y(k), ¢} are related via a

linear model of the form
y(k) =z w, + v(k) (1.11)

for some unknown w., and where v(k) is zero-mean with variance o2, and un-

correlated with xy, i.e.,
Ev(k)zy = 0.
I-1. The sequence {:nk} 18 independent.
I-2. y(k) is correlated with xy, but is independent of all x; with j # k.

I-3. The noise sequence {v(k)} 1s independent of the input sequence.



I-4. The noise sequence {v(k)} is independent and identically distributed (iid).

In applications, these assumptions are seldom satisfied. For example, in chan-
nel equalization, the vectors x; are formed from a delay line, thus «,, shares all
but one of the elements of «,,.1; ®, and x,,; are clearly not independent. Also,
v(k) need not be independent of the regressor sequence xj. This happens, for

example, when v(k) also accounts for unmodeled or undermodeled dynamics.

What makes the results obtained with these assumptions still useful are the
analyses developed in [Dan70, Dav70, KD75, Maz79]. These works showed that
when the step-size is sufficiently small (u = 0), the results obtained using the
independence assumptions are good approximations for the actual performance of
the LMS algorithm. For example, assume that all data sequences are stationary,
and that I-4 holds, but I-1-1-3 do not. Then the true steady-state MSE of LMS
can be shown to be given by [Maz79]

lim Ee(k)? =03+cl,u+c2,u2+...,

k—o00

where ¢; depends on R. The expression that we obtain from the independence
assumptions is [FW85]

lim Ee(k)® = o2 + cip + O(p?),

k—o0

where c; is as before, and O(u?) denotes a function f(u) that decays to zero at

least as fast as u2, i.e.,

|f (1)

2 < o0

lim
p—0 i

Thus, we see that the MSE obtained from the independence assumptions is correct

up to O(u) (i.e., first order in u — this result holds only when I-4 does).

This conclusion was later extended to more general settings in [Rao81, JCR82]



and [ME83]. Similar results were also obtained for different settings using aver-

aging theory [SK95] and by the ODE method [RM51, Lju77, KY97].

We shall discuss the independence assumptions in much greater details in

Chapter 2.

1.4 CONTRIBUTIONS OF THIS WORK

The performance of an adaptive filter is crucially dependent on its rate of con-
vergence, steady-state mean-square error, and stability properties, especially in
finite-precision implementations. Exact performance analyses only exist for in-
finitesimally small step-sizes or under certain so-called independence assumptions.
There are practically no counterparts of these analyses for larger step-sizes in the
literature. Such results are desirable since they would serve as a guide for the
design, and also for a better understanding, of adaptive filters with faster con-
vergence speeds. Progress in this direction is often hindered by the complexity of
the (possibly time-variant and nonlinear) update relations that arise when slow

adaptation approximations are not employed.

This dissertation develops techniques for the stability and performance anal-
yses of adaptive filters without resorting to slow adaptation approximations. The
work expands the four main methods of analysis that have been used so far in the
literature, namely, mean-square stability analysis, almost-sure stability analysis,

Lyapunov stability analysis, and analysis by simulation or experimentation.

Among the original contributions of this work are the first computable lower
bound on the largest step-size that guarantees mean-square stability in the ab-
sence of the independence assumptions (Ch. 4); a detailed study of the behavior

and properties of ensemble-average learning curves and how special care is needed



in using them to predict or evaluate the performance of an adaptive filter (Ch.

5); a proof that an adaptive filter can actually have two rates of convergence;

one rate for the initial phase of operation and another faster rate for later time

instants (Ch. 5); a new leakage-based algorithm that avoids both the drift and

bias problems of existing adaptive methods (Ch. 6); and a Lyapunov stability

analysis for floating-point implementations in worst-case scenarios (Ch. 6). Fur-

ther contributions to the independence theory itself are provided in Chs. 2 and

3, especially an analysis of the normalized LMS algorithm. More specifically, the

following are the contributions of this dissertation.

A)

Independence analysis for singular input covariance matrices. Usu-
ally, the study of the behavior of the LMS algorithm assumes that the re-
gressor covariance matrix, R, is invertible. Nevertheless, in some practical
situations (e.g., in adaptive equalization), it can happen that R is singular
(or very ill-conditioned). The performance of the LMS algorithm when R is
singular is studied in Chapter 2. It is shown that, for any input distribution
(with bounded fourth-order moments), the MSE will converge to a small
quantity, while the error covariance E'&Jkﬁyf in general may be large. This
result allows us to explain the possibility of divergence when the algorithm
is implemented in finite-precision arithmetic, and in Chapter 6 we shall

propose a new algorithm that avoids these problems.

Performance analysis of NLMS. We give a precise analysis of the con-
vergence and steady-state performance of the NLMS algorithm. The idea
is to show how via a suitable change of variables, we can reduce the study
of NLMS to that of LMS. This is made possible by noticing that our change
of variables leads to a new noise sequence that is still uncorrelated with the

new regressor sequence. Although the change of variables itself is already

10



known, there was no precise analysis of its advantages and consequences.

The results in A) and B) rely on the independence assumptions. While such
analyses provide good approximations for the performance of adaptive algorithms
for sufficiently small step-sizes (u & 0), it is often desirable in practice to use
larger step-sizes in order to improve the convergence speed of an adaptive algo-

rithm.

For larger step-sizes, there are essentially no results in the literature that
predict or confirm the behavior/stability of the LMS algorithm (and its variants).
Until recently, simulations were the only available tool to predict the behavior of

LMS with large p, as attested by this quote from [Sl093]:

[43

. we want to concentrate on two important characteristics of an adaptive
filter: its convergence behavior and the steady-state MSE, which remains after
the algorithm has converged. FEzact results for both of these items are very scarce,
and actually only exist for the asymptotic case of small step-size . ( ... ) when
one wants to maximize the convergence speed of the LMS algorithm, a big step
size is needed, and especially when one wants to address the issue of the maximum
step size for stable operation of the algorithm, one needs a theory that is valid
beyond an infinitesimally small step-size range. At this time, no exact theory of

that nature exists.”

This quote highlights the major contributions of this dissertation. As is well
known, there are four main ways to study and analyze the performance of adap-

tive algorithms, viz.,

1. Mean-square analysis.

11



2. Almost-sure analysis.
3. Deterministic analysis.

4. Simulations and/or experimentation.

This dissertation studies and expands each of these methods for use with faster
adaptation. Since performance issues are more naturally treated by mean-square
analysis, we devote most of our attention to this kind of analysis, and to the
relation of other methods to mean-square results. More specifically, and apart
from points A) and B) above, the main original contributions of this dissertation

are the following.

C) Mean-square stability analysis of LMS for non vanishingly-small
step-sizes. Here we build on an approach originally proposed in [FF86]
that leads to a state-space framework. Basically, one finds a dynamic state-
space model for the evolution of the error covariance matrix E ﬁ)k'&;f The
states are the elements of the covariance matrix, in addition to several other

quantities, and the state equation is of the form
Iy =@ + b,

where b is a constant vector, I'y is the state vector, and ® is a constant
matrix. Unfortunately, the dimension of the state-space model grows ex-
ponentially fast with the filter length (for M = 6 the matrix has size
28,181 x 28,181), so the method is computationally feasible only for very
small filter length.

For this reason, the reference [FF86] considered only the case M = 2 (i.e., a
filter with two taps). The reference [DP95] extended the same method for

orders up to M = 6. However, since the size of ® increases exponentially

12



fast with the filter length, it is computationally and analytically infeasible
to study the stability of I'y; = ®I';, + b by working directly with ®.

We instead show that ® is both sparse and structured. These two properties
are then used to derive a lower bound on how large the step-size can be
for stable performance (in the mean-square sense) in the absence of the
independence assumptions. To our knowledge, this is the first such bound
that is computable. In particular, this is also the first general bound that

can be applied when the input sequence is Gaussian.

Convergence speed and learning curves for large step-sizes. In
situations where there are no theoretical results available, or even to con-
firm the validity of new theoretical results, one usually approximates the
MSE performance of an adaptive algorithm by performing several repeated

experiments or simulations, and by averaging the results.

If the step-size is small, it is well-known that the average of a few tens
of experiments gives a good match with theoretical results (obtained from
independence assumptions). We show that the situation is more delicate
(and not as immediate) when the step-sizes are large. It may be necessary
to perform many thousands of experiments in order to achieve a meaningful

result.

Perhaps the most interesting conclusion from our analysis is the fact that
the LMS algorithm has a late rate of convergence, for large k, that may
be considerably faster than the rate of convergence for small k. Several
examples of these facts are given, and a theoretical analysis for the case of

independent inputs is provided.

In fact, as shown in Chapter 5, these results will provide an interpretation

of the differences that occur between mean-square and almost-sure perfor-
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mance analyses.

New variant of the leaky LMS algorithm with no bias and reduced

computational cost.

In Chapter 6 we review the causes and conditions under which the drift
phenomenon can occur, and how the use of the leaky LMS algorithm can
avoid drift. Although leaky LMS successfully avoids drift, the price paid
is that the estimates become biased and the computational complexity is

higher, as compared to that of LMS.

We propose a new algorithm that prevents drift, and yet computes unbi-
ased estimates at essentially the same computational complexity as LMS
itself. We call this new algorithm circular-leaky, and provide both stability
and performance analyses for fixed-point implementations of the algorithm.
Our stability analysis is deterministic and borrows from Lyapunov stability

theory.

The performance analysis, on the other hand, is stochastic, and is valid only
for small step-sizes. By proposing and analyzing this new algorithm, we
sidestep an important open problem, viz., the search for a precise analysis
of the leaky LMS algorithm. The difficulty of this last task is attested by

the following quote from [Set93]:

“Although leakage is one of the most used variants of LMS, it is surprisingly
difficult to analyze its behavior precisely. ( ... ) The problem arises be-
cause the equilibrium of the system is not independent of the inputs. (... )
Because of this dependence of the equilibrium point on the input, it is dif-
ficult to carry out the linearization in either the deterministic or stochastic

approaches. It remains an open issue how to deal with this situation.”
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This problem is rendered meaningless, since our new algorithm has the
advantages of leaky LMS (without the disadvantages), and a precise analysis

of circular-leaky is provided in Chapter 6.
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CHAPTER 2

THE INDEPENDENCE ASSUMPTIONS

This chapter studies the behavior of the LMS, NLMS, and leaky LMS algorithms
under the independence assumptions. As was mentioned before, the independence
assumptions M-1 and I-1-1I-4 are seldom satisfied in practice. Nevertheless, it will
be shown in Chapter 3 that the results obtained assuming the independence of the
inputs (such as rates of convergence, steady-state MSE) are good approximations

for the performance of the algorithms in a slow adaptation regime (i.e., small y).

The independence assumptions M-1 and I-1-1-4 were applied to the study of
the LMS algorithm since the 1960s [WMG67, WIMT5], for the case of Gaussian
variables. The motivation for their use was mainly to obtain a tractable math-
ematical framework. A more precise treatment, still for the Gaussian case, was
later published in [FW85]; and a more elegant solution appeared in [FB88]. An
analysis for non-Gaussian variables was presented in [Hsi83], but the results are

not as detailed as for Gaussian variables.

The analysis presented here for the LMS algorithm follows the treatments in
[FB88] and [SK95] for the Gaussian case. The proofs in the extensions for non-
Gaussian variables are similar to [Hsi83] (although the results for small step-sizes
are original, they follow from more general theorems in the literature, described

in Chapter 3).

The following are the new results developed in this chapter.
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e A performance analysis of the LMS algorithm when the input covariance
matrix R = Exzl is singular (Sec. 2.2). The analysis presented here
expands results in the literature, by giving an expression for the MSD (as
opposed to only the MSE), and by reducing the number of assumptions
made. The case of singular R is important in some applications, as in

adaptive equalization.

e A precise analysis of the normalized-LMS algorithm, using a simple change
of variables. The analysis of NLMS is more involved than that of LMS, due
to the nonlinearity caused by the division by ||z||*. In Sec. 2.4, it is shown
that, if a simple change of variables is performed, the NLMS algorithm
reduces to the LMS algorithm, but Assumption I-3 is no longer true. The

new analysis also shows how to circumvent this difficulty.

e A performance analysis of the leaky LMS algorithm with non-Gaussian

input sequences {y(k),zx} (Sec. 2.3.2).

2.1 INDEPENDENCE THEORY FOR LMS

In this section we study the performance of the LMS algorithm, assuming the

independence conditions, for the following cases:

i) Stationary and Gaussian inputs.
ii) Stationary and non-Gaussian inputs.

iii) Singular covariance matrices.

The results of iii) are new.
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2.1.1 Stationary Gaussian Inputs

In this section, we review the well-known case where the variables @) and y(k)
are assumed to be Gaussian and stationary. Under these conditions, the analysis
is simplified by both the stationarity and the use of the following property of
Gaussian random variables, viz., if @ and b are Gaussian and uncorrelated, they

are also independent [Pap84, p. 151].

This property, the orthogonality principle (1.1), and assumptions I-1-1-2 im-
ply I-3 and I-4 of Sec.1.3. Therefore, the following are the conditions we assume

here:

M-1. The sequences {y(k), :r:k} are related via a linear model of the form
y(k) =z} w, + v(k)

for some unknown w., and where v(k) is zero-mean with variance o2 and uncor-

related with xy,.
I-1. The sequence {:Ek} 18 independent.
I-2. y(k) is correlated with xy, but is independent of all x; with j # k.
R-1. The matriz R is positive-definite (R > 0).
G-1. The random sequences {wk} and {y(k)} are jointly Gaussian.

IS-1. The random sequences {wk} and {y(k)} are jointly stationary.

With these assumptions, the behavior of the LMS algorithm can be described
by studying the mean and the covariance of the weight error vector @y, in (1.7).

From the LMS recursion (1.6) and recalling that @y = w.—wy, the error equation

18



for the LMS is
~ _ T\ ~
Wiy = (I — pepey )Wy — pago(k). (2.1)

The convergence of Wy in the mean is a simple result, as the following theorem

asserts.

Theorem 2.1 (Convergence in the mean). Under assumptions R-1, I-1-I-
2, G-1 and IS-1, the expected value of wy converges exponentially to w, if, and
only if, the step-size | satisfies

2
Amax(R)’

where Amax denotes the mazimum eigenvalue of R.

p<

Proof: Taking expected values of (2.1), we obtain
Ewgy = Ewy — pExpziw, — pExpo(k).
From assumptions M-1, I-1 and I-2, it follows that E z;v(k) = 0 and that
The recursion for the expected value of the weight error becomes
E g, = (I _ uEwkw;‘:) By, = (I — uR) By,

Note that R = Ex;} is symmetric and can be diagonalized by an orthogonal

transformation, say

Q"RQ = A = diag(X), QQ" =1. (2.2)

Substituting into the recursion for E wy, we obtain

Ewy,, = Q(I — ,UA>QTE1111¢-
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From this recursion, it can be seen that E wj will converge exponentially to zero

if and only if pAmax(R) < 2.

The fact that the mean weight error E w; converges to zero does not imply
that the algorithm performs well. For good performance, the variance, E ||wy||* —
(E ||’&J||)2, must also be small. The next (also known) result determines the
covariance Ebyw;, and describes the conditions under which this covariance
remains bounded. It should be noticed that these conditions are much more

restrictive than the conditions in the previous theorem.

Theorem 2.2 (Convergence in the mean-square sense). Define the cova-

riance matrix

Cy, = E[wwy,|. (2.3)
Under assumptions R-1, I-1-1-2, G-1 and IS-1, Cy converges to a constant if,
and only if,

pA <1 and é Z

o A (2.4)

where \; > 0 are the eigenvalues of R. The steady-state MSE is given by

J = lim Ee(k)? = —2

k—o0 1—6’

where e(k) = y(k) — ] wy, and 02 = Ev(k)?.

The trace of the correlation matriz is the MSD, D £ Tr(Cy). In steady-state,

it evaluates to
2 M 1
_ o2y T
klimTr(C’k)z,u i ST
e (1__2111/1)\)
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For u)\; < 1, we get

1
Jzo§(1+§,u’IYR) (2.5)
and
: A : o 1 2
lim Tr(Cy) = lim Ew, @y ~ —uMo;,. (2.6)
k—00 k—ro0 2

Proof: The proof is lengthy, but note that the statement of the theorem asserts
that conditions (2.4) are both necessary and sufficient. Moreover, the theorem

provides explicit expressions for the steady-state MSE and MSD.
Now multiply the error equation (2.1) by its transpose to obtain
Win1Wyy, = (I — papy, ) Wiy, (I — pxray ) + po(k)zgwy, (I — pagey,) +
+ u(I — pzyay ) Orzyv(k) + p*v? (k) zrzy, .
(2.7)

Taking expectations, the cross-terms in v(k) vanish, because of assumptions M-1

and G-1.

Using the independence assumptions, the expected values of almost all quan-
tities are easily found, in terms of R, o2, and Cj. The only term that is not

readily obtained is
E(wkazf(wfﬁjk)z), (2.8)

which depends on the fourth-order moments of ;. The following property of
Gaussian variables is proved in [SK95, p. 295] (see also Appendix 2.A.1). If ¢ is

a Gaussian random variable with covariance A, and 3 is a constant vector, then

E(aa’(afB)?) = ABTAB + 2ABBT A.
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Using this result, a recursion for Cy, is readily obtained as
Cii1 = Cr — u(CeR + RCy) + 24°RCyR + )’ RTr(CkR) + p’ooR. (2.9)

This recursion can be simplified using a change of variables to diagonalize R.

With @ still defined as in (2.2), let
C, 2 QTCQ. (2.10)
Then

Cii1 = Cr — p(CreA + ACk) + 20°ACKA + 1> Tr (ACK) A + pPooA. (2.11)

This is a linear, time-invariant difference equation, though not in standard
state-space form. To study its behavior, the diagonal and off-diagonal elements
of C} are considered separately. The recursion for the off-diagonal elements of

C, turns out to be un-coupled, and each element Cj, ;; satisfies
Critij = (1= pXi + X)) + 26 X)) Cyij, 1 # 5.
This means that C ;; — 0 as k — oo as long as
11— (X + Aj) + 20°NA| < 1 (2.12)

It will be shown shortly that the condition for convergence of the diagonal terms

is more restrictive than (2.12).

The recursion for one of the diagonal elements of C}, is
A
Ver1,i = Cririi = (1= 20 + 202N yp,s + 2N (Tr(ACk) + af,).

These recursions are coupled. To solve them, collect the diagonal elements of Cj

into a vector Ty,

A T
I‘k:[Ck,ll Ck,22 Ck,MM] )
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and define
A T A 242 2 T
L:[)\1 Ao ... )\M] , and A=2uAN—-2u"A" — u”LL".
Using these new definitions, the recursion for C} becomes
L1 = (I — ATy + p’o.L. (2.13)
For this recursion to reach steady-state we need
Amax (I — A)| < 1,

where A(A) denotes the set of eigenvalues of A. This condition holds if, and only
if, 0 < A(4) < 2.
The upper bound on A(A) < 2 is always satisfied. Indeed, Apmax(A) is

Amax (2uA — 2p°A* — P LLT) < Apax (20 — 20°A%) = 2u);(R) (1 — pA;(R)),

where j lies in the interval 1 < j < M, and the fact that LL” is positive semi-

definite was used.

Denoting A;(R) by z, the condition A(A) < 2 simplifies to
2¢(l—z) <2 forallz > 0.

Since the function 2z(1 — z) attains a maximum of 1/2 for & = 2, the inequality

above is always satisfied, and it follows that A\(A) is always less than 2.

The lower bound (A(A) > 0) is satisfied if and only if A > 0. Define
D = 2uA — 2u°A?, and L=D"'L.

In the following, X denotes the matrix that is obtained by deleting the last
M — i rows and columns of an M x M matrix X, and L® denotes the 7 x 1-

vector that is obtained from L by keeping only its first ¢ elements. For example,
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if X =(z);,; € R¥3, XU is
x @) —

With this notation, A > 0 is equivalent to det(A(i)) > 0forl << M.

Therefore, we need

0 < det (A(i)) = det (Q/J,A(i) — 2/12A(i)2 — uzL(i)L(i)’T) = (214
2.1
- det(D(”) det(I _ ME“’L(“T) for 1< < M.
We use a determinant property [Gan60] to evaluate the above expression. For

any two column vectors a and b, it holds that
det(I — ab’) =1 —b"a.

Using this relation, the inequality (2.14) is equivalent to requiring that

i

det (AD) = (2 (1——21_MA>HA )>0, 1<i<M.

(2.15)

This condition holds if, and only if,

pr; <1, for1<i< M, and

Zl—u)\

It is clear that (2.16) implies (2.15). To prove that (2.15) implies (2.16), we

(2.16)

proceed by induction. In order that det (A(l)) be positive, we must have either

pAL
_ 9 _
e >0 and (2—pr1) >0
or
pAL
_ 9 _
e <0 and (2—pr) <0
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This second option cannot occur because if 2—u; is negative, we must necessarily

have

pA pA1
— =1 > 0.
2— [L)\l + /,L)\l —2

Therefore we must have pA; > 0 and ﬁ < 1. We now assume det (A(z)) >0

and conclude that we must have

. P2
2— /,L)\2

>0 and (2 — pAg) > 0.
Proceeding with this argument for the other values of i, we conclude that (2.16)

must hold.

We now argue that the condition for convergence of the off-diagonal elements
of Cy, (2.12), is satisfied if (2.16) holds. Indeed, letting uA; = z and pA; =y,
(2.12) reduces to

flz,y)=z+y—2zy < 1L

Define the set A = {(3:, y): 0<zuy< 1}, and note that z, y € A if the
eigenvalues { ,u)\n}nM:l satisfy (2.16). It can be shown that
max f(z, y) =1,

(z,y)eA

and the maximum is attained only at the boundary of A. This implies that

f(z, y) < 1inside A, and therefore (2.12) is satisfied.

The steady-state value of 'y, can be evaluated as follows: assuming that (2.16)

holds, substitute 'y, for I'y and Ty, in (2.13) to find the steady-state value

T, = p20?A 'L
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Using the matrix inversion lemma (see Appendix 2.A.2) to compute the inverse

of A, we find

AL =(I-2LLY) "D L= (I - PL(-1+ p*LYL) 'LT)D 'L =
LD 'L ) i DL

— 1 + 2 = .
( M 2L™D L 1—2LTD 'L

Using this result, the diagonal elements of C} for & — oo can be computed.

Recalling that the off-diagonal elements converge to zero, C, is

Ly .0

1 2(1—pX1 o .

2 . . . . _
Coo:Mle_l M By : .. : —7”(1—/1/\) .
2 Z’i:l 1_/‘)‘12

Therefore, the covariance of W, is

N o _ -1
Ewoowoo—Coo—2(1_C)(I ,LLR) )

Finally, we can compute the MSE as follows,

E(y(k) — 2fw;)’ = 02 + E(@72;)” =

= 02 + E(@} Riy) = 02 + Tr(RCy) =

= o, + Tr(ACy), (2.17)
which converges to
2
o
=Y 2.18
J=1"" (2.18)
O
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The misadjustment of the algorithm, M,;, measures the relative increase in

the steady-state MSE compared to the optimum value o2, i.e.,

M J —o? c
T2 T 1 —¢
v

For small values of y, this is approximately

My~ gTrR.

2.1.2 Stationary Non-Gaussian Inputs

(2.19)

(2.20)

As mentioned earlier, the performance analysis in this section is similar to a result

in [Hsi83]. It is based on relaxing the requirement G-1 of Gaussian variables. But

we need to re-incorporate assumptions I-3—-I-4, as well as assume the following.

IS-2. The fourth-order moments of x; are bounded by a constant B, i.e.,

E(:E;‘Cack)2 < B < oc.

In summary, in this section we assume that IS-2 holds, as well as:

M-1. The sequences {y(k), wk} are related via a linear model of the form

y(k) = zw, + v(k)

for some unknown w,, and where v(k) is zero-mean with variance o?.

I-1. The sequence {wk} 18 independent.

I-2. y(k) is correlated with xy, but is independent of all x; with j # k.

1I-3. The noise sequence {v(k)} 18 independent of the input sequence.

I-4. The noise sequence {v(k)} is independent and identically distributed (iid).
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R-1. The matriz R is positive-definite (R > 0).

IS-1. The random sequences {wk} and {y(k)} are jointly stationary.

Theorem 2.1 still holds, but Theorem 2.2 has to be modified. If the only
information we have available about the sequence {a:k} is the correlation matrix
R, then the equivalent of Thm. 2.2 will be weaker in the sense that the result will
only hold for p =~ 0. Stronger results can be obtained if the input distribution is

known, as we show in Theorem 2.4 further ahead.
The idea is to simplify the computation of E (zx@f Cyzix}) in (2.8) using
Kronecker products. The Kronecker product of two matrices A € IR™s*" and

B € R™*™ ig defined as [HJ94]

al,lB al,gB . al,naB
as1B  assB ... as, B
A®B=| o 2 (2.21)
_ama,lB Uma 2B ... Gmg, . B_

This operation has several useful properties, but the one that interests us most
is the following. Define the symbol vec(A) to represent an m,n, column vector
formed by stacking the columns of the matrix A one above the other. Let C =
AXB, where A, B, and X are matrices of compatible dimensions. Then the
following equality holds [HJ94, p. 254]

vec(C) = (BT ® A) vec(X). (2.22)

Using these definitions, the next two theorems can be proved. Although the
proof of Theorem 2.3 below is new, the theorem follows directly from more general
results from the literature (as shown in Sec. 3.2). Theorem 2.4 is an extension

allowing for larger values of p.
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Theorem 2.3 (Steady-state covariance). The covariance matriz
Cy = E[w, vy, |

converges to a constant if Assumptions R-1, I-1-1-4, IS-1 and IS-2 hold, and if

the step-size satisfies uB < Ayin(R). If 1 =~ 0, the following approzimations hold

1
o 2 J—
J~0v<1+2uTrR), (2.23)
R
D = lim Tv(C}) ~ ~uMo?. (2.24)
k—o0 2

In addition, the rate of convergence of the covariance matriz Cy, is approzimately

determined by the eigenvalues of (I — 2uR).

Proof: The main point of this proof is to use Assumption IS-2 to ignore the third

term in the recursion for C} below,
Cii1 = Cr — pRCy, — pCrR + 1i® (E(azkw;‘fc_’kwkaﬁ)) + 1?0, R. (2.25)

Recall that in order to obtain the recursion (2.9) for Cy, we needed to evaluate

the term

The computation of F'(C}) was the only place where Assumption G-1 was used in
the proof of Theorem 2.2. Unless the distribution of x; is known, it is impossible
to evaluate F' explicitly. However, we can analyze the recursion for C} for small

i, using Kronecker products and without knowing the distribution of xy.

Indeed, applying (2.22) to (2.25) we obtain the recursion

vec(Cry1) = (IMz —uRQ Iy — ply ® R) vec (Cy) +
(2.26)

+ u? vec (F (C_'k)) + p?o? vec (R),
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where I, represents the identity matrix of dimensions r X 7.
Note that vec (F(Cy)) is a linear function of vec(Cy), since
vec (F(Cr)) =E [(wkwf ® :1:ka> vec (C’k)} 2 G vec(C).
From its definition, G is a symmetric and nonnegative-definite matrix.
To study the stability of (2.26), we use another property of Kronecker prod-

n m

ucts, viz., if {;};_ and {p; }]:1 are the eigenvalues of, respectively, the square
matrices A € R™" and B € R™*™, then the eigenvalues of (I, ® A) + (B® I,,)
are the pairs v; + p;, for all (¢,7) with 1 < i <mnand 1 <j<m [HJ%, p. 268].
This implies that the eigenvalues of (I vz — R ® Ing — plpy ® R) are equal
to 1 — puAm — pAn, where A, are the eigenvalues of R and 1 <m, n, p < M.
To proceed, we need a bound for the norm of GG. Let e; be the i-th canonical

vector of length M, and Y be a matrix with the same dimensions as Cy. The

(4, j)-th element of F'(vec(Y')) is bounded by

E(e?wk:chwkwfei)

< E(nwkn‘*nyn) < B|Y|,

where || - || denotes the Euclidean norm of a vector or the maximum singular value
of a matrix. Using the property of norms ||Al|r < M||A|| for any matrix A, it

follows from the above relation that

|G vec (V)| = [[vec (F))[| = [F)] <

< MB|Y|| < MB|[Y| ;2 8 ||vec(Y)]|,

where || - || denotes the Frobenius norm (this is a very loose bound, but it is

enough for the purposes of this theorem).

The stability of (2.26) is determined by the eigenvalues of the matrix

A2 e — uR® Ing — uly ® R+ 112G.
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Since A is symmetric, its largest eigenvalue is given by

A < g (Jae R =l 0 RJu 175
Yil= Yil=

=1—2uAmin + ,uzﬂa
where A, is the smallest eigenvalue of R. We conclude that A is stable if R is
positive-definite (Ay; > 0) and p is sufficiently small. In addition, if A is stable
and p is small enough, the steady-state vec (C_'oo) satisfies
(,uR@ Iy +ply ® R) vec(Coo) & <,uR® Iy +ply @ R— ,u2G> vec(Coo) =
= p?o’ vec(R).

(2.27)

Since for small ;4 and R > 0 the matrix (R®IM +Iy®R—- uG) is non-singular,
we conclude that
-1
vec(Coo) = 202 (Ing2 — A)_1 vec(R) ~ po? (R QI+ Iy ® R) vec(R).

This inverse can be computed as follows. Applying (2.22) to (2.27), we obtain

the relation

RCy + CoR ~ puo’R.
Multiplying this relation on the left by @7 and on the right by @Q, where QT RQ =
A and A is diagonal (2.2), we obtain

ACw + Cooh & po?A,

where, as before, Co, = QTC5Q.

From the above relation, we conclude that C, is approximately diagonal,

with the diagonal entries approximately given by (Coo)m. ~ uo?/2; ie.,

2
Lo
Co & T”I.

31



The MSD and MSE follow directly from this expression.

If the distribution of x; is known, we can give a more detailed analysis. The
proof for the theorem below was actually already given in the proof of Thm. 2.3,
but we state this result separately since it provides a solution for the performance
of the LMS algorithm with general distributions of the (iid) input sequence {mk},
valid for all values of the step-size. Note that the step-size does not need to be

small in the statement of the theorem.

Theorem 2.4. If all fourth-order moments of x; are known, and under the As-
sumptions R-1, I-1-I-4, IS-1 and IS-2, the weight-error covariance Cy can be

computed by the recursion:
vec(Crt1) = [Tz — p(R® In) — p(In ® R) + B E (zrpzy, @ wixy,) | vec(Cr) +
+ p?olvec(R), (2.28)

where the initial condition is Cy = Ebyivg (which we assume known).

We do not give expressions for the steady-state MSE and MSD, since these
will depend on the particular distribution of x;. Nevertheless, these values can
be computed once (2.28) is obtained. As an example, assume that {wk € IRz} is

a sequence of iid (independent and identically-distributed) random vectors,

2k = [a (k) a2(k)]T,

whose entries a;(k) are mutually independent and uniformly distributed between
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—1 and 1. It follows that R = 1/3 I,

- e
5 003
1 T mn_ |05 50

L®R=RQI, = -1, and E(wkwk (%4 wkwk) =
: 0530
5 0 0 ¢

With these values, and taking x4 = 0.01, we can compute C,, by setting Coo =
Cri1 = Cy in (2.28), obtaining

o g2 |0005023 0 po?

OO:O.’U ~

0 0.005023

On the other hand, for u = 0.5, we have

o _ g2 |03261 0
o = UU

0 0.3261

which is substantially different than 0.25021.

2.2 SINGULAR INPUT COVARIANCE MATRIX

When the Assumption R-1 does not hold, or when R is ill-conditioned, it still can
be shown that the MSE remains bounded and converges to a small quantity. In
fact, even the MSE convergence rate will not appear to be excessively slow if R
is very close to singular — but the MSD will be affected in an undesirable way,

as we show in (2.31) and (2.37) below.

The case of singular R arises in some applications, especially in channel equal-
izers for which the sampling rate at the receiver input is higher than the trans-
mitter symbol rate (such equalizers are called “fractionally-spaced equalizers”,

or FSE’s, see [QGT77, GMW82, Pro89, GHW92, TFC96]). One example where
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the input covariance matrix is singular can be found in [GMW82]. We present
a modified version of the example here, showing that an FSE whose input has
bandwidth equal to 2/T (where T is the symbol rate) may lead to a singular

covariance matrix.

Figure 2.2 depicts an equalization scheme with a fractionally-spaced equalizer.
The equalizer sampling period, 7', is equal to one-half the symbol rate 7. The
input to the equalizer is the vector

T

e =|a(k—M+1) a(k-M+2) ... a(k)|

where the sequence {a(k)} is obtained by sampling the filtered received signal,
d(t), with a rate 1/T" = 2/T, i.e.,

a(k) = d(T'k).

Denote by D(w) the power spectrum of d(t), i.e.,

V(t)

Channel
Encoder / Channel Receiving
— & e — e —e ;
s(n) Transmitter Filter
x(t)
rate VT

T

T’
--— ][ 0O\ O-we—] FSE Qa(—k)o\§0<—d(t)

Figure 2.1: Channel equalization with a fractionally-spaced equalizer.

D) = [ Rar)edr
where j = v/—1, and Ry4(7) is the autocorrelation function of d(¢),

Ra(r) = Ed(t)d(t — 7).
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We will find conditions under which the covariance matrix R = Ezyz} is
singular. Since R is positive-semidefinite, it is singular if, and only if, there exists
a vector u such that u” Ru = 0. Let us evaluate this last quantity for a generic

u:

M M
u"Ru =E (u"z;z u) =E (Z Zumuna(k —m+1)a(k —n+ 1)) =
m=1 n=1

= Z Zumuan n)T’).

m=1 n=1

Now we use the inverse Fourier transform to write

TRu—ZZ(umun/ D(w e“"” ‘*’i—:>:

m=1 n=1

. ’ . ' d
:/ D(w) (Z ume’m‘”T) (Z une_’"“’T) 2—:
—o0 m=1 n=1

Define the function
!
A ;i
§ : Um€ i mwT ’
m=1

and note that U(w) is periodic with period 1/T". We conclude that R is singular
if, and only if,

/_Oo \U(w)|2D(w)d—w =0, (2.29)

0 2T
where |U(w)|? is periodic with period 2/T.
We now present an example satisfying condition (2.29). Let D(w) have band-

width 2/T and satisfy

1, 0<|w|<Z
Dw)=q -1, Z<lw <%

0, otherwise.
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Assume that |U(w)|? is symmetric around w = 1/T. Tt then follows that condition

(2.29) will be satisfied, and thus R will be singular.

Another situation where singular input covariance matrices appear is in the
estimation of multiple sinusoids, where the rank of the correlation matrix is equal

to the number of sinusoids [TK82].

In fact, exactly singular input covariance matrices are rare in practice, but
covariance matrices very close to singular are common, as explained in [GMW82].
Even an ill-conditioned, but non-singular covariance matrix may lead to overflow
(and poor performance) when the filters are implemented in finite-precision arith-
metic (this can be seen from the term (2uA’)~'L; in (2.B.4) in Appendix 2.B).
When the input sequence {mk} is non-stationary, the possibility of filter instabil-
ity increases. In Chapter 6 we discuss the possibility of instability in LMS with
detail.

Our result in this section proves that a singular or ill-conditioned R will not
affect the steady-state MSE (a fact that is known from simulations and practice).
This fact was proved, under a more restrictive (and unnecessary) set of assump-
tions in [Lin88| (see the comments after (2.32)). That reference only studied the

MSE, while we extend the results to provide an expression for the MSD as well.

The theorem uses the following conditions.

M-1. The sequences {y(k), :r:k} are related through a linear model of the form
y(k) = zpw. + v(k)

for some unknown w,, and where v(k) is zero-mean with variance o?.
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I-1. The sequence {:nk} 18 independent.

I-2. y(k) is correlated with xy, but is independent of all x; with j # k.

1I-3. The noise sequence {v(k)} 1s independent of the input sequence.

I-4. The noise sequence {v(k)} is independent and identically distributed (iid).
R-1. The matriz R is positive-definite (R > 0).

IS-1. The random sequences {wk} and {y(k)} are jointly stationary.

IS-2. The fourth-order moments of x are bounded by a constant B, i.e.,

E(zfx:)” < B < oo

We now have the following.

Theorem 2.5. Assume that I-1-I-4 and IS-1 hold, and that the eigenvalues of

R are
A2 A2 2 Ag > A1 == Ay =0.

Then for a sufficiently small step-size u, the MSE computed by the LMS algorithm

18 approximately

2
lim Ee(k)? ~ o2 + u% T(R), (2.30)

k—o00

and the correlation E i satisfies

_ 5 S
lim Cy ~ Q" 2

Jim 0 Q, (2.31)

where 032’2) 1s the lower M — K x M — K block of

Co 2 QTE (wow?) Q,
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and @ 1is an orthogonal matriz that diagonalizes R — see (2.2). In addition, the

steady-state MSD 1is
K
D= u;af, +Tr (052’2)> .

Proof: To simplify the analysis, assume without loss of generality that a change

of variables has been performed such that (see (2.2))
Ex,z] = A = diag(\). (2.32)

In [Lin88|, it was assumed that the entries of the rotated «; above are not only
uncorrelated, but also independent. As the analysis below shows, this is an

unnecessarily restrictive assumption.

From (2.18), the MSE computed by the LMS algorithm is (note that the

relation below still holds if A is singular)
Ee(k)? = o) + Tr(ACy),

where now (using (2.32)), Cy, = E @i = C.

Recall the recursion (2.25) for Cj:
Cri1 = Cyp — uCyxA — uACy, + ,qu(wkwakwkwf) + MQO'I%A,

where we replaced R by A. The argument used in Theorem 2.3 to ignore the

term

must be modified, since now A is singular. The core of the argument below is that
if y is an eigenvector of A relative to the eigenvalue 0, then E(z,z} Crzret )y =

0.
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Indeed, let e; be the the i-th canonical vector. From its definition, A satisfies
efAe; =0, fori> K,
and thus

E(efz;)" =0, fori> K. (2.33)

2

Let the probability space over which xj is defined be (2, P, F), where Q is
the set of possible outcomes of the random variable x;, F is a o-algebra defined
over that set, and P is a probability measure defined on (2, F) [Dur96]. Since

(eT'xy)? is nonnegative, (2.33) implies that the events

Ai={zy: (e]zy) #0} (2.34)
have probability zero for ¢ > K. Therefore, the events
B; = {wk : (a:kwak:nkw;‘:ei) =+ O}, 1> K
have also zero probability. This means that e; is an eigenvector of
E(a:kwakazkazf)

with an eigenvalue of 0. Moreover, since the matrix is symmetric, it can be

decomposed as

D, 0
E(a:ka:ZC’kwka:;‘f) = ,
0 0

where D, € IRE*¥ is a linear function of Cj.

Now write A as

39



where A = diag()\;), 1 < i < K. The recursion for Cj then becomes

|'CI£111) 0(1,2)'| |'CIE1,1) C,l£1,2)'| [ACI£1,1) /—\CI£1,2)'| [CIEI,I)A O'I

ERER ) ] R IS ]
Tl O Lo
0 O 0 0

where Dy, is a linear function of C’,El’l), 0,51’2), 01(62,1), and C,(f’z).
Therefore, the recursions for the blocks C’,(cl’z) and 0,52’1) are un-coupled from

the others, and converge to zero if the step-size satisfies
|1 — pmax ;| < 1. (2.35)
K3
: 2,2) . .
The recursion for C," is simply
2,2 2,2
o =,

i.e., this block remains forever equal to its initial value.

Finally, the (1, 1) block is
C’,&L’ll) = C,(cl’l) - /.U_\C,(cl’l) — ,LLC,El’l)/_\ + 1Dy + oA (2.36)
It is possible to conclude directly from this recursion that C’,ﬁl’l) remains

bounded. Better results can be obtained if the structure of Dy is further studied.

In fact, Dy is the (1,1) block of

C’(l:l) 0 0 0(172)
E (mkwfckwkmf) =E a:k:nf k + k +
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From (2.34), it follows that

Tb 0

TyT 2,2) zpx; =0 with probability 1.
o o]

This implies that Dy is a linear function of C’,El’l), C’,(cl’2), and C,(f’l) only. In
addition, if condition (2.35) is satisfied, C,(cl’z) and C’,gz’l) decay exponentially fast
to zero. Therefore, the recursion (2.36) for the C’,(cl’l)—block is very similar to

(2.25), with A > 0, but with an extra term that decays exponentially to zero.

Since (2.36) is linear, these exponentially decaying terms will have no effect
on the steady-state solution, and the arguments of the proof of Thm. 2.3 can be
repeated to show that for sufficiently small u, the recursion for C,(cl’l) converges
exponentially fast to the steady-state value

2

hmoﬁ”zcﬂﬂzu%L

00
k—o00

Therefore, even if A is not invertible, the performance of the LMS algorithm
appears to be quite good. Unfortunately, however, when the algorithm is im-
plemented in finite-precision arithmetic, there is an additional driving term that
is not proportional to A (see Eq. (2.B.3) in Appendix 2.B). In this case, C’,El’l)
remains bounded, C,(cl’2) and C,(f’l) still converge to 0, but the recursion for C,(f’ 2)

becomes

where A?’z) depends on the size of the word-length used in the implementation

of the filter. Therefore, C,(c2’2) — 00 as k — oo.
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However, the MSE remains bounded. In fact, it is given by
Ee(k)? = o2 + Tr(ACy),

and since A is singular, the diverging part of Cy does not influence E e(k)?.

The divergence of C,(f’z) may cause the registers where wy, is stored eventually
overflow, causing a considerable performance degradation. This problem (also
known as the drift problem of LMS) led to the introduction of the leaky LMS
algorithm. The drift problem is discussed in more detail in Chapter 6, and also

in [GMW82, TK84, SLJ86, Set92, Set93].

2.3 INDEPENDENCE THEORY FOR LEAKY LMS

The leaky LMS algorithm has been proposed to resolve the drift problem of LMS.
It nevertheless introduces problems of its own (such as biased estimates and
increased computational cost). In Chapter 6 we shall develop a new algorithm

that resolves these difficulties.

Meanwhile, since leaky LMS is a popular algorithm, we provide in this section
a performance analysis, assuming the independence conditions, for the following

cases:

i) Stationary and Gaussian inputs.

ii) Stationary and non-Gaussian inputs.

The results of ii) are new. The results of i) have been recently derived in
[Say97], and are new in that they provide both necessary and sufficient conditions
for convergence. A weaker analysis, with only sufficient conditions, appeared in

[MA97].
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2.3.1 Stationary Gaussian Inputs

The analysis for the leaky LMS algorithm is similar to that for LMS, but the
arguments are longer. The most important difference is that E ! does not

converge to zero, i.e., the algorithm computes a biased estimate.

In this section, the following assumptions are made:
M-1. The sequences {y(k), wk} are related via a linear model of the form
y(k) = x;w, + v(k)
for some unknown w,, and where v(k) is zero-mean with variance o?.
I-1. The sequence {wk} 18 1ndependent.
I-2. y(k) is correlated with @y, but is independent of all x; with j # k.
I-4. The noise sequence {v(k)} is independent and identically distributed (iid).
G-1. The random sequences {wk} and {y(k)} are jointly Gaussian.

IS-3. The random sequences {wk} and {y(k)} are jointly stationary.

Recall that the leaky LMS recursion is given by (1.9):

wﬁcﬂ = (1 — pao)wl, + pxy (y(k) - wf'wk), with initial condition wy.

The necessary and sufficient conditions for convergence of the error covariance
matrix in the following statement were recently proved in [Say97]. A weaker,

sufficient condition only, was given in [MA9T7].

Theorem 2.6. Under the assumptions I-1, I-2, G-1, and IS-1, the mean Eﬁ)ﬁc

converges to a steady-state if and only if the step-size satisfies

2

_— 2.38
(o)) + )\max (R) ’ ( )

p<
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The steady-state error computed by the leaky LMS algorithm is given by

lim E'wk = ao(aOI—i- R) wy.

k—o0

In addition, let Q be an orthogonal matriz that diagonalizes R, as in (2.2),

and let the eigenvalues of R be ordered such that
M > A > 2> Ay > 0.

The covariance C), converges to a finite constant if and only if the step-size sat-

isfies
M 2
2 PAT
< , 0<c*= < 1.
g + M1 ; (a0 +XAj)[2 = p(ao + Aj)]

Under these conditions, the steady-state MSE is

M 2 2 M 2(= )2
1 )\ ao(w*).
lim Ee(k)? = 02 + > +y
k—o0 ( ) 1—co = O[O—f—)\)[ (Oéo+)\ )] =1 )\j(a0+)\j)2

1

where ('[v*)J 18 the j-th entry of w, = Quw,.

Proof: We proceed in steps.

Convergence in the mean:

The error equation for the leaky LMS algorithm is
Wiy = ((1— pao)] — papy) Wi, — payv(k) + poow,. (2.39)
Taking expectations, and using I-1, M-1, we obtain

E@ ;= ((1 — pay)I — uR) El, + pogw,,

and the result follows directly. In particular, under the theorem’s conditions,

E ', converges exponentially fast to its limit.
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Convergence in the mean-square:

. . = -] ~ 1T . .
The recursion for the matrix Cy = Ew, @, is given by

ék+1 = (1 — Ma0)2ék — /,6(1 - ,uao)(C_'kR + Rék) + M2RCkR + ,UzRTI‘(RC_’k) -
— poyg (I — pol — uR) E’fvé'wf — Hopw, E'&);’T(I — pogl — ,uR) +

+ pPogw,w? + p?olR.
Let again () be an orthogonal matrix that diagonalizes R, i.e.,
A =Q"RQ, Q"Q =1,
and define C;, = QTCQ. Then the recursion for C, is

Cri1 = (1 — pog)?Cr, — p(1 — pag) (CkA + ACk) + ?ACKA + ?ATr(ACy) —
— pao (I — pool — pA) E @l — popw, E’ﬂ)Z’T(I — paol — pA) +

+ prodw,wl + po?A.

Note that the homogeneous part of this recursion (i.e., removing the constant
terms and the E ) terms) is similar to that for the LMS algorithm. Using
arguments very similar to those of Theorem 2.2, it can be shown that the origin
C = 0 for this homogeneous recursion is exponentially stable. Using this fact,
and since we have shown that Eﬂ)ic converges exponentially fast to its limit, we
can replace E !, by E@' to study the steady-state behavior of the leaky LMS
algorithm. Since again the arguments are not much different than those used in

the proof of Theorem 2.2, we shall not repeat them here — see [Say97].

Note that Assumption R-1 is not necessary for this proof.
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We should point out that the C,, computed above is not the true covariance

of ﬁ)fx,, even asymptotically — to obtain the true covariance, we should subtract

We did not compute the variance, since the error of interest in applications is

really e(k).

2.3.2 Stationary Non-Gaussian Inputs

When the input sequence is not Gaussian, the following new result can be estab-

lished. The assumptions are as before, but with G-1 substituted by:
1I-3. The noise sequence {v(k)} 1s independent of the input sequence,

IS-2. The fourth-order moments of x are bounded by a constant B, i.e.,
E(zfx:)’ < B < 0.

Theorem 2.7. Assume that I-1-1-4, IS-1 and IS-2 hold. Under these conditions,

if the step-size satisfies (2.38), the weight error vector '&22 computed by the leaky

LMS algorithm converges in the mean to

lim E@' = ag(apl + R)* (2.40)

k—o0

In addition, there is a puo > 0 such that, for all u < pg, the steady-state MSE is

k—o00

2)\2 M az('&)*)z
lim Ee(k)? ~ o2 +Z 2ao ;)\07 (2.41)

where ('[v*)z s as i1n the previous theorem.
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If the fourth-order moments of x, are known, the matriz Cj, = E’li)i’&);’T can

be computed from the recursion:

Ew)_, (1 - pao)I —puR 0 E @'
_ = _ | T
vec(Cra1) Gy Go| |vec(Cy)
- (2.42)
UOQW
+ ;
pral vec(w,w?) + p?o2 vec(R)

where G and G2 are given by

Gy 2 —pagw, @ ((1 - pao)T — pR) — pag((1 = poo)l — pR) @ w.,

G, 2 (1 — pao)?Tprz — p(1 — pag) (R ® Ing) — (1 — powg) (Iny ® R) +
T2 (apal @ a:k:cf)],

and the initial condition 1s

[ E @) ]

[vec (E f&;ﬁ,ng)J

Proof: The argument here follows closely the proofs of Theorems 2.3 and 2.4.
The main difference is that, since the recursion for C}, depends on E’&Ji, we need
to consider the recursion for Cy, jointly with that for the mean, in order to obtain

an exact model.

In fact, the recursion for the mean in (2.42) is independent from vec (C_’k), and
thus under the conditions of the theorem, E b} will converge exponentially fast

to the limit in (2.40).

On the other hand, since the matrix

(1= pag)l —pR 0
G, G,

A4
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is block-lower triangular, the leaky LMS algorithm will be stable if, and only if,
-1< )\((1 — pog)I — uR) <1, and — 1 < AGp) < 1.

Again we can follow a procedure similar to the proof of Thm. 2.3 to show that

for small enough p the term 4?E (zzf ® et ) can be ignored.

We conclude that leaky LMS computes stable (in the mean-square sense)
estimates under the conditions of the theorem. Moreover, in steady-state we

have (already ignoring higher powers of y and simplifying),
{20[0le + ROy + 1y ® R] vec(C'oo) ~
N [ao (uao'w* ® Ing + paoly ® w*> (oI + R) " w. + pod vec(w.w?T) + po2 vec(R)| .
Applying (2.22) to this relation, we obtain

209Cs + RCo + CooR =~

pogw,w? (agl + R)™' + pag(aol + R)'w,w?! + pojw,w? + po?R.

Let @ be an orthogonal matrix that diagonalizes R, as in (2.2). Multiplying
the above relation from the left by @ and from the right by Q7, and defining

w, 2 Qw,, the simplified relation below is obtained,

200Co + ACys + CooA ~ afw, @) (] + A)~' + ad(apl + A)'w,w? +

+ pogw, ! + polA.
Note that the term podw.w? can be ignored when compared to
cdw, ! (apl +A) 7t

Moreover, only the diagonal entries of C, enter into the expressions for both the

MSE and the MSD. Each diagonal entry can be computed independently from

48



the others from the above relation. Performing the computations, after a little

algebra we obtain (2.41).

2.4 INDEPENDENCE THEORY FOR NLMS

This section provides a new precise analysis of the performance of the NLMS

algorithm

L

m (y(k) - ‘Ewa)

n _ n
Wy = Wy +

The method will lead to less restrictive conclusions than available in the literature
(e.g., [Sl093]). Our derivation is based on the following observation. Define the

new variables

2™ A Lk 7 o™ (k) 2 _ k) , (2.43a)
a+ ||zx|? a+ [|zx|?
k
and y™ (k) 2 L, (2.43b)
a+ [|zx|?
and define the new covariance matrix
R™ £ Eg"gMT. (2.44)

With these new variables, the normalized NLMS algorithm is equivalent to

the LMS algorithm applied to the model
yM (k) = 2w, + 0™ k),  with  e®(k) = 2 @} + o™ (k).

Note that if Assumption I-3 holds, v(™ (k) and @}, are still uncorrelated, but not
necessarily independent. This relation between the LMS and the NLMS algo-

rithms holds for any input distribution, either stationary or non-stationary. The
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relation can be used in general to easily translate results for the LMS algorithm

to the NLMS algorithm.

Although this change of variables has been used before (see, e.g., [WL9O0,
ABHO97]), the analyses available in the literature are lacking due to three main

reasons:

1. Only the case a = 0 is considered (the case a # 0 is common in practice,

since it avoids potential numerical problems when x; = 0).

2. The conditions for stability are based on results valid for LMS with Gaus-

sian variables — but it is clear that :L'Ecn) cannot be Gaussian (since it is

bounded).

3. No attention was given to the crucial fact that :n;cn) and v™ (k) are still
uncorrelated when Assumption I-3 holds. In this case, we can easily show

that the NLMS algorithm still computes unbiased estimates.

In this section, we resolve these issues and study the performance of the NLMS

algorithm under the following assumptions.
M-1. The sequences {y(k), :L'k} are related through a linear model of the form
y(k) = zgw. +v(k)
for some unknown w,, and where v(k) is zero-mean with variance o?.
I-1. The sequence {mk} 18 independent.
I-2. y(k) is correlated with xy, but is independent of all x; with j # k.
I-3. The noise sequence {v(k)} 1s independent of the input sequence.

I-4. The noise sequence {v(k)} is independent and identically distributed (iid).
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R-1. The matriz R is positive-definite (R > 0).

IS-1. The random sequences {wk} and {y(k)} are jointly stationary.

Note that the transformed input sequence {:13’,3} cannot be Gaussian (since it

is bounded), therefore the new result below is for general input distributions.

Theorem 2.8. Under the above assumptions, the NLMS algorithm computes
asymptotically unbiased estimates and converges in the mean-square sense if 0 <

<2 (for any input distribution). The MSE is, in steady-state and for u =0,
Jro?+ gagv, (2.45)

where

T
2 2 oy {RR(")lE (&) } |
(a+ leul?)

T
D ot Ty {RmrlE (L) } | (2.46)
2 (o + el

Proof: First note that Assumption R-1 implies that R™ > 0. Indeed, assume

and the MSD is

that R(™ is singular, i.e., that there exists a vector u such that
uTRMy = 0.

Therefore, by a sequence of arguments similar to those used to derive (2.34), we

c2lz: UTL;éO
a+ [z

has probability 0. It follows that the event u’x = 0 has probability 1, which

conclude that the set

implies that R is singular. This proves that R is singular if R(™ is singular. A
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similar set of arguments shows that the converse is also true. We conclude that

R™ is positive-definite if, and only if, R is positive-definite.

Convergence in the mean: The NLMS error equation in the new variables is

Wy, = (I — mi")a:in) T) wy — ,u:cgc")v(”)(k).

Taking expected values, and recalling that v(™ (k) and :132") are uncorrelated, we

obtain
Ew},, = (I - R™)Eay},
which converges to zero if, and only if,

R™ >0, PAmax (R™) < 2.

The first of the above conditions is satisfied if, and only if, R > 0, as we have

just proved. The second quantity is satisfied if u < 2, since

T
(n) () T\ _ LrTy,

implies that the covariance R(™ satisfies

T
Amax(R™) = max u” [E (ﬂ” u =

([ul[=1 a+ ||z 2
T
= max E (uT&kzu> <1 (2.47)
[l =1 a+ ||zl

Convergence in the mean-square: Although the results for LMS can be trans-

lated with few modifications to the NLMS algorithm using our change of variables,
in the stability proof we can say more if we do not do so. Indeed, since the in-
put sequence is bounded, it can be shown that the covariance matrix E'&JZ'&JZT

converges to steady-state if 0 < pu < 2, for any input distribution. This is as

52



opposed to the LMS algorithm, where stability conditions are highly dependent
on the input distribution (through Apmax(R)).

Therefore, the proof we present below is significantly different than that for
the LMS algorithm (and, in fact, simpler). Only when we compute the steady-

state MSE, we shall use the results from Theorem 2.3.

Define the matrix of fourth-order moments
A A B (a(aT)?. (2.48)

The key remark in the stability proof is that R, < R, no matter what the
distribution of xj is. To prove this, let a be any constant vector. The argument

below shows that a” (R, — R)a < 0 for all a:

n)T\2 n n)T (n n)T
(n) (n) (,..(n) ())$§c)

a” (e a = aTelV (2" " 2! a=

(2.49)

[EALE T
~ Al a0 < aafal

since ||z||/(a + ||&x||*) < 1. Since the inequalities hold for all (™ it follows

that
aRMa’ = E(a (a7 ) <E(a"zM2""a) = aTRMa. (2.50)
Now assume that I-3 and I-4 hold, and determine the recursion for E ||} ||%:
Bl = (" (1 - pal’e)")" 0 ) + 42 B(laf? Po (1)),

where the independence of x;, and v(k) has been used to cancel the cross-terms.

Expand this expression and use I-1 to separate the expectations of wj and of

:132"):

Bl@f 17 = B( @ (1 - 20R" + 2R 0} ) + 47 B(Jaf? [P0 (157,
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Let Q™ be an orthogonal matrix that diagonalizes R™,

diag(\™) & A & QT R ),

and define
A n N () A n n n €
wp 2QWTwE, g2 QM el = QT ——. (2.51)
a+ ||z
Using the new variables, (2.50), and noting that ||Q(™ Tx.|| = ||z4||, the recursion

for E || w}||? becomes
B * = Bl = of (7 = 2007 - QU RQ N+
+ 2B (2 T2 o™ (k)?).
Let e; be the i-th canonical vector, and use (2.50) to conclude that

el QMTR,QMe; < el A™e; = A"

Using this result, we obtain

M
w{(2A(”) _ NQ(n)TR4Q(n))wk < Z )\z(n)(Q — 1) (wk),-a

i=0
where ((..Jk)z is the i-th entry of the vector wy. Applying this result to the

recursion for E |||, we obtain
M 2
Elap? < Z((l (2 u)AE’”)(wk),.) + 2B (e 20 (k)?)
=1
< (1= (2 = @) Amin(R™)) B lwil® + 1* B ([l >0 (k)?).

From this recursion, and remembering that ,\5") < 1 and that ||lw}|| = [|wk]], it

follows that E ||@}||? is bounded if 0 < p < 2.

If 4 =~ 0, the results from Theorem 2.3 can be used to predict the steady-state

MSE. The recursion for the diagonal elements of the covariance matrix of wy, is
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obtained by simply copying equation (2.13). Ignoring fourth-order moments, the

recursion is
A . n
Qg1 = diag(Ewpwiy,) ~ (I — 2uA! ))Qk + Dy,
where Dy, is

T
Dy 2 E(£,£0v™ (k)?) = 02 (i) ‘

Co\a Al

The steady-state €2, is then

. )\ —1
Qoo = lim @ = p(2A") "D.

o0

Note that the goal is to compute Ee(k)?, not Ee((k)2. Therefore the steady-
state MSE for NLMS is

lim Ee(k)? = 07 + Tr(AQs) = 0 + u% Tr(AA™ ' D).

k—o00

Defining

T
o2 = TrE(AA™ ¢T¢ v (k)2 =a2’I‘r{AA(”)1E< £k )}’
o = BT 66 = a+ [l

the steady-state MSE is

lim Be(k)? = o2 + 202, (2.53)
k—o0 2
The value of 02, can also be obtained experimentally.
¢

Note that if @ = 0 in the NLMS recursion (1.10), the stability condition

becomes both necessary and sufficient. Indeed, when a = 0,

] =1,
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and therefore,
n n n)T (n n)T n

Using this relation, the recursion (2.52) for E ||@}||? becomes

M

B[}, |* = Z((l — (2 — p)A™) (wk)j) + 2B (|l )20 ™ (k)?),

i=1

(n)

and since \;"” < 1, this recursion converges if and only if 0 < u < 2.

Appendix 2.C describes an approximate model that has been suggested in
the literature [Slo93] to compute the MSE and the convergence rate for a = 0.
The results we derived reduce to the approximate values of the appendix if it is

assumed that

)~ (rat) (P o) =47 (o)
E ~ [ E E— | =A E—).
(nwknz & ) \ By Ak

Inserting this approximation into the expression for o2, we obtain, for a small

step-size,
2

1
lim BEe(k)2 ~ o2+ u* e (AN E [ —
Jm Be(k)’ ~ 0y pgy Tr(A) (nwknz)’

which is exactly the expression in the appendix when y < 2. Hence, our results

are less restrictive.

2.5 CONTRIBUTIONS OF THIS CHAPTER

We reviewed the main stability and performance results for adaptive filters when
the inputs and noise form stationary independent sequences. We also established
several new results, in particular the change of variables for normalized LMS

(Sec. 2.4 and Thm. 2.8); Theorem 2.7, which studies the behavior of the leaky
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LMS algorithms with non-Gaussian inputs; and the analysis of LMS with singular

input covariance matrix in Sec. 2.2 and Thm. 2.5.

Although the analysis of adaptive filters using the independence assumptions
has been used for over three decades now [WMG67], it was only until [FW85]
that a precise study of LMS with independent Gaussian {a:k} was developed.
Similarly, the first precise analysis of leaky LMS with Gaussian and independent
inputs appeared only in [MA97, Say97].

While the case of singular input-covariance matrices was considered in [Lin88|,

we extended the results, providing an expression for the MSD, and eliminating

some unnecessary assumptions.

Precise analyses of the NLMS algorithm with Gaussian, independent {wk}
appeared in [TF88|, and a simplified model (different than the one presented

here, see Appendix 2.C) for small step-size and a = 0 was proposed in [Sl093].

References [WL90, ABH97] use the change of variables described in Sec. 2.4,

but their analyses fail in three respects:

1. Only the case a = 0 is considered (the case a # 0 is perhaps more common

in practice, since it avoids potential numerical problems when x; = 0).

2. The conditions for stability are based on results valid for LMS with Gaus-
sian variables — but it is clear that :nén) (as defined in Eq. (2.43)) cannot

be Gaussian (since it is bounded).

3. No attention was given to the crucial fact that :cgn) and v™ (k) are still

uncorrelated when Assumption I-3 holds. In this case, we have shown that
the NLMS algorithm still computes unbiased estimates, while references

[WL90, ABH97]| claim that the estimates are biased.
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Our analysis not only resolves these three points, but is also valid for a generic

input distribution (i.e., it allows for non-Gaussian ).
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APPENDICES FOR CHAPTER 2

2.A SOME USEFUL RESULTS

2.A.1 A Result Concerning Gaussian Variables

Lemma 2.A.1. Let x be a real random variable normally distributed with zero
mean and diagonal covariance matriz A. For any matriz II (symmetric or not),

the following equality holds.

B{@2"Mza” | = ATr(ITA) + ATIA + AII"A.

Proof: The proof is based on the fact that uncorrelated Gaussian variables are
also independent, so if z(; is the i-th element of x, then z(; is independent of

x(;) for i # j. Let K denote the matrix we are looking for, and Kj;; be its i, j-th

M M
Kij=E {l‘(i)%) (Z l‘(m)) (Z Hmnév(n)) } :
m=1 n=1

The right-hand side is nonzero only when there are two pairs of equal indices

element. Then

{i=j,m=n}or {i=m,j=n}or {i =n,j=m}. Assume first that i = j

(diagonal elements). Then the expectation is nonzero only for m = n, i.e.
2 2 2 2 2
K;=E {x(i) anmx(m)} =Y My {22l } = N Tr(TIA) + 2017,
where we used Ez* = 303, if z ~ N(0,02).

For the off-diagonal elements (i # j), we must have either ¢ = n, j = m, or
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The equivalent result for complex variables is the following.

Lemma 2.A.2. Let z be a complex random variable normally distributed with
zero mean and diagonal covariance matriz A, and assume that EzzT = 0 (if

z = x + jy, this implies that ExxT = EyyT).

Under these conditions,
E{wwH:na:H} = A’I‘r(A) + A%

Proof: Almost the same as the proof for the previous lemma. The only difference
is that the fourth moment of a complex circular (and scalar) variable z = z + jy

with zero mean and variance o2 is
E|z|* = E[2* + y*]* = 20~ (2.A.1)

%

2.A.2 Matrix Inversion Lemma

Assume that A and C are invertible. Then the following equality holds [Kai&0]

(A+BCD) "= A~ A'B(C™* + DA™'B) 'DA™,
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2.B  INDEPENDENCE THEORY IN FINITE-
PRECISION ARITHMETIC

In this appendix we study the behavior of the LMS algorithm in finite-precision
arithmetic, using the independence assumptions and also assuming stationarity.
The results presented here were used in Sec. 2.2, and will also be used in Theo-

rems 6.2 and 6.3 in Chapter 6.

Our presentation is based on the results by [CL84] and [Ale87]; see also [Cio87,
BB96b, BB96a]. Note that we still assume independence of x;, (as all the works

treating finite-precision arithmetic to date do).

We assume that the computations are carried using fixed-point arithmetic
with rounding. The data variables (y(k) and xj) are stored with By bits plus

sign, while the weight estimates w); are stored using B, bits plus sign. This

. . 1. . . . . —2By
results in multiplication rounding errors with variance o2 = 2 > for data, and

2 _ 27%Be

o; = 45— for weights.

The weight estimates computed by the FX LMS algorithm will be denoted
zk, and the weight error, Z;. We will write & for the quantized version of xy,
e(k) = fx[g(k) — 2{ &x]. The symbol fx[a] denotes the fixed-point representation

of a.

In addition to assumptions I-1-I-2 and G-1, we need the following:

IFX-1. All variables are scaled so that overflow never occurs (this is a standard

assumption for fixed-point, and in fact amounts to assuming that all variables are

bounded).

IFX-2. Qlzg] = Ty, = o + oy, Qly] = G(k) = y(k) + B(k), and the sequences

{ak} and {ﬂ(k)} are tid, independent of all other variables (including xy and
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y(k)), and with covariances o3I and o2, respectively.

IFX-3. The error n(k), defined by fx[21 ;] = 23 x) + 21 oy + n(k), forms an

2

wd sequence independent of all other variables. Its variance o,

1s dependent on

how the inner product is computed. If each multiplication is rounded before the

2

=M o2. Otherwise, if the quantization is made only after the

additions, then o

additions, o] = 03. We define C such that
03 = Co?,

i.e., C =1 or C = M, depending on how the inner product is computed.

Similarly, the error €, defined by fx[uZie(k)] = p&re(k) + &, is iid, indepen-

dent of all other errors, and has covariance Xe.

The wvector &, depends on how the product pZye(k) is computed. If u is a

power of two, then &, has covariance ¢ = o21. Otherwise,
()] = B el | = (uel) + )i+ €1

where &, (a scalar) and &, (a vector) are independent, so the total covariance of

€ =&+ & s
e 2 o2((1+03)I +R),
(where we assumed that the product pé(k) is stored with B, bits).
IFX-4. All quantization errors n satisfy
E|nl|P~0 forp=>3.

This is a reasonable approzimation if 03 < N(R), and given the fact that the

arithmetic errors are bounded by 2~ Ba=1 M.
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The theorem below is a known result, and was first proved in [CL84] (though
there is an oversight in their argument). The proof given here is different (and

more straightforward).

Theorem 2.B.1 (Steady-state error). Under assumptions R-1, I-1-I-4, IS-
1-IS-2 and IFX-1-IFX-3, the steady-state error of the FX LMS filter is (for
small p)

2 2
Tr
lim E&(k) :af+,u%TrR+ pog It B

k—o00 2

T (%)

2p

(Ilwal?+ (1 +C)) +

2.B.1
poio M ( )

+ (14 C)oj + 5

+

where X¢ depends on how Q[ux'e (k)] is computed.
Proof: Define e(k) = 2] ), + v(k). The recursion for the FX LMS algorithm is

Zp1 = zp + pe(k) ey + pe(k) oy, + p(8(k) — n(k))zy, +

+ u(B(k) — n(k)) o, — pzj oy, — pog zeoy, + &y,
and the error equation becomes

2k+1 = (I — M%sz — uaka;‘f) 2k — ,uwkv(k) - £k —
- M(ﬁ(k) - n(k))ak + N’w:‘fakwk - Mé;fakwk - (2.B.2)
— uZparoy — poyo(k) — p(B(k) — n(k)) e, + pog w.ay.
Taking expectations and using the independence assumptions, we obtain
EZp= (I — uR — /wfll) E z), + pojw.,
from which we conclude that the expected value of the error converges to
lim E 2, = 03 (R +0]) “lw,,

k—o00
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if 0 < /,L()\i + 03) < 2, where ); are the eigenvalues of R. Note that the bias is

nonzero only if oy, is nonzero.

Define the covariance matrix Z; = QE 2,2{ QT , where the orthogonal matrix
@ diagonalizes R, as before. Evaluating QE%kHZ{HQT, we recognize that the

terms with Zj are similar to the terms with Cj in (2.11), only with
A =A+02I

in place of A. In the relation below we already canceled the cross-terms that
average to zero, and invoked assumption IS-2 to ignore fourth-order moments

(we denote QX:QT = A¢, a diagonal matrix)

Zi1 = Z — p(ZkN + N Zy) + O (4 Zy) + oA + 253

+ A¢ + 12(1 + C)aaA + pPai||lw.||*A. -
This recursion is very similar to (2.11), but with Ag+ p?(14+C)o3A+ p?o2A||w.|?
added to the constant term and the modified A'. We conclude that the conditions

for convergence are similar to those in Theorem 2.3.

The steady-state value of Zj, is found using the results of the previous section.

Define

, T
L:|:)\1+0'3 )\2—}—0'2 )\M+0'3 )

L = diag(Ay),
then the diagonal of 7 is

kli_)m diag(Zy) ~ (2,uAI)_1 <u2031}l + L¢ + *(1+ C)o3L + ,u2ac2l||w*||2L>,

(2.B.4)
and (2.B.1) follows.
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2.C ALTERNATIVE INDEPENDENCE ANALYSIS
FOR NLMS

An approximate method to simplify the analysis of the NLMS algorithm has been
proposed in [Slo93]. Unlike our results in Sec. 2.4, this approximation only works

for the NLMS variant for a = 0, viz.,

Zr
Wi = Wy + um(y(k) — afwy). (2.C.1)

The idea is to choose a probability distribution for x; that simplifies the
analysis; it is chosen so that its first and second order moments are the same as
those of x;. Since for small y, the misadjustment and convergence rate depend
primarily on these low order moments, the results obtained using this alternative

distribution should be reasonable.

The assumptions used here are:
M-1. The sequences {y(k), wk} are related through a linear model of the form

y(k) = &fw. + (k)

2

for some unknown w,, and where v(k) is zero-mean with variance o.
I-1. The sequence {:nk} 18 independent.

I-2. y(k) is correlated with xy, but is independent of all x; with j # k.

1I-3. The noise sequence {v(k)} 18 independent of the input sequence.

I-4. The noise sequence {v(k)} is independent and identically distributed (iid).

R-1. The matriz R is positive-definite (R > 0).

IS-1. The random sequences {wk} and {y(k)} are jointly stationary.
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The last assumption defines the input distribution. Let again ¢} be an or-
thogonal matrix that diagonalizes R (see (2.2)). Denote the i-th column of @ by
g, so that

M
R=QAQ" =) Nqg,q].
i=1
IS-2. Assume that
xy, = s(k)r(k)Vy, (2.C.2)

where the random variables r(k), s(k) and V', are independent, r(k) has the same

probability distribution as ||x||, and

P{s(k) = £1} = %,
A .
P{Vk:qi}:pi:TrR’ 1=1...M.

Even though this assumption is rarely met in practice, it does simplify the
analysis. In addition, for small step-sizes only the second-order statistics of xy
and v(k) are important for the analysis (as we shall see in Sec. 3.1). Note that

the covariance of V7 is

E VkVT = )\,qzqz

TrR 4 TR

Define the covariance matrix Cy, = E'&Jk'[v;‘f as before. From the NLMS recursion

(2.C.1), it follows that
T
- LTy | A mkwk T
C =E| |l - Cull — EVV: =
([ “||wk||2] 1 “nwknz) < )
R

s (S knz]c"’[ “ﬁck:w wr (v )

Instead of solving this recursion, recall that E e?(k) = Tr(RC}) and define

(2.C.3)

(k) = (Q7ChQ)
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where (A)” is the (7, ¢)-th element of A. With this definition,

A recursion for \;(k) can be obtained by pre- and post-multiplying (2.C.3) by g7

and g;, respectively. Performing the multiplications and noting that

0 with probability 1 — p;,

Tk
% ] =
1 w.p. pi,
a recursion for \ follows,
< Ai )\ =+ pro? 1
A1) = (1- 02 - ) M+ B2 (B ). @)

This recursion converges if 0 < u < 2. The steady-state value is

2 2
Y uo 1
| )\, k)= . E ’
Jm Al) u<2—u>Ai( r(k)z)

from which the steady-state MSE can be computed.
2

. 2 _ /'Lo-v
fim Bel =2 (B

1
k)?

R

The value of E W cannot, in general, be obtained from knowledge of R alone.

2.D NON-STATIONARY GAUSSIAN INPUTS

The tracking performance of the LMS algorithm with independent and Gaussian
{wk} is well-known. We summarize here the main result. We assume again
that G-1 holds (i.e., that {y(k), @} are jointly Gaussian). However, we are
now interested in the tracking capability of the LMS algorithm when the model
assumed in M-1 is in fact time-variant. Hence we now assume the following

conditions:
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M-2. The sequences {y(k), :L'k} are related through a linear model of the form
y(k) = Trws,k +v(k)

for some unknown time-variant sequence {'w*k}, and where v(k) is again zero-

2

mean with variance o,

and uncorrelated with xy,.

I-1. The sequence {mk} 18 independent.

I-2. y(k) is correlated with xy, but is independent of all x; with j # k.

I-4. The noise sequence {v(k)} is independent and identically distributed (iid).
R-1. The matriz R is positive-definite (R > 0).

G-1. The random sequences {:vk} and {y(k)} are jointly Gaussian.

In addition, we also need to assume IV-1, IV-2, and IV-3 as explained below.

Condition IV-1 is

IV-1. The sequences {mk}, {v(k)} and {'w*k} are statistically independent.

A bound on how fast the “true” weight vectors {w*k} change with time is
also necessary. There are several ways to do this. The assumption presented
here models w, j as a stochastic process. It is also possible to model w,  as a

deterministic, but time-variant sequence (see Sec. 3.2).

IV-2. w, i is a stationary first order autoregressive process, i.e., it is generated

by a model of the form

Wy g1 = Wy g + Mk, 0] <1,
(2.D.1)
w*,k = Wy + wf,k7
where 1y, 1s a zero mean Gaussian white noise of variance 03] , and wyo 1S a

random variable with zero mean, and w, is a constant vector.
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The next assumption is not necessary, but it simplifies the analysis. Results

relaxing this assumption will be presented in Thm. 3.A.1, in Sec. 3.A.

IV-3. The sequences {x;} and {v(k)} are wide-sense stationary (i.e., they

have constant first and second-order moments).

With IV-3, there is only one difference between the results for this time-
variant case and the stationary case. The misadjustment, My, will no longer be
proportional to the step-size u. The conditions for stability and convergence do

not change.

Theorem 2.D.1 (Convergence in the mean). The expected value of wy con-
verges exponentially to w, (the “DC” part of w., i) if Assumptions R-1, I-1-1-2,
G-1 and IV-1-1V-2 hold, and if, and only if, the step-size u satisfies

2
< — 2.D.2
a Amax (E 2l ( )
Proof: We write the error equation, simultaneously with the recursion for Ay 2
Wys k41 — Wy g, aS
’II)k_H = (I — ,uwkwr‘,:)'&)k + ka’v(k‘) — Ak,
(2.D.3)

App1 =0A51+ Ny — M-

Taking expectations, recursions similar to those for the stationary case are ob-

tained:

E w1 I—uR 1 E w,
EAp 0 eI |E A,

The expected values of w; and Ay tend to zero under the assumptions of the

theorem. Note that if wy ¢ is assumed to have nonzero mean (or is deterministic),
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the proof does not change.

The analysis for the covariance is similar. The proof for the following theorem

follows [SK95, pp. 124-126].

Theorem 2.D.2 (Steady-state MSE). Under the Assumptions R-1, I-1-1-}
and IV-1-IV-3, the covariance matriz E by, will reach a steady-state if, and
only if, pA; < 1 and 0 < ¢ < 1, where c is as defined in (2.4). In addition, the

misadjustment will be

2

c o, d
M, = —2 2D4
=i 021-¢’ ( )
and
M
A 1 )‘z
d= . 2.D.5
Proof: Defining
T T
wy 2 [ﬁ);"; ﬁ)?k} ; & = [mf OT] ;
I 1-0)I pxgv(k) —n
A A k
B = ) djk = )
0 61 up

the time-variant LMS equations (2.D.3) can be rewritten as

wit1 = (B — pép&y )wr + .
The covariances of &, and 1, are given by

R 0 I I

A A

Rf = Egk&f = ) R¢' = E"psz = )
0 0 I I
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. ~ A . .
and therefore the covariance Q; = E wjw? satisfies the recursion

Qi1 = BUBT — p (BURe + ReQ BT ) + 21 ReQy Re + (2.D.6)
+ 11 Tr(Q Re)Re + 1’0, Re + 0 Ry

Let again @ be an orthogonal matrix such that QT RQ = A, and define

0 _
sS4 @ , and Q, 2 STQ,S.

0 @

Rewriting the covariance recursion (2.D.6) in terms of {2, we obtain

Qk-}-l = BQkBT - M (BQkAg + AngBT) + 2/1,2A§QkA§ +

+ 1 Te(QuA¢) Re + pPoiA¢ + 02 Ry,

where

[
>
o

Ae =

o
o

This recursion can be de-coupled if we divide €2 into blocks

|2 af, |

= [0z k3]

and write recursions for each of these blocks separately. Starting with €2 3, we
obtain
Qpy1,3 = Qs + 021,
from which we conclude that
lim Q3 =07 (1—6%)7'1,
k—o0

if, and only if, —1 < 6 < 1.
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On the other hand, (o satisfies
Qpy12 =0 o(1 — pA) +60(1 —6)Qp 3 — af;I.
This recursion will converge if, and only if,
16(1 — pAi)| < 1,

where \; are the eigenvalues of R. Under this condition, the steady-state value

will be

((1—6)I+ ubA) .

1
. Q - _ 2
Jim, e = =g

Finally, the recursion for (2 is
Qes11 = Qeq — QU A — pAQg 1 + 20> AQ 1 A +
+(1=6) (U2 + ) + (1—60)°Qps — (1 — 0) (UpA + AQy ) +
+ 12 (Te(QpaA) + 0p) A+ 021
(2.D.7)

Note that €22 and €243 can be regarded as time-functions in the above re-
cursion, since neither of them depends on €2 ;. This implies that, to study the
stability of this recursion, the terms in ;5 and 24 3 can be ignored. The homo-

geneous recursion for €2 ; is therefore,
Q11 = et — pe1 A — pAQp 1 + 20°AQ 1 A + 1 Tr(Qp 1 A).

Comparing the above recursion with (2.9), we conclude that the stability condi-

tions are as in Theorem 2.2.

To find the steady-state {2 1, replace Qq 2 and {2y 3 into (2.D.7), and solve
for Qo0o,1. Eq. (2.D.4) is obtained from the expression Ee(c0)? = Tr(RCly,).

72



CHAPTER 3

THE SMALL STEP-SIZE CASE

This chapter summarizes several results from the literature concerning the analy-
sis of the LMS algorithm (1.6) for small step-sizes 1 and without the independence
assumptions. Basically, it is shown that if u = 0, the conclusions obtained using
the independence assumptions are good approximations for the performance of
the algorithm. Most of the results presented here are for the LMS algorithm.
Some results in Secs. 3.2 and 3.3 also apply for the normalized LMS algorithm.
The proofs of the theorems described in this chapter are very lengthy and are not
important for the next chapters. For this reason they are omitted, but references

to the literature are given.

There are no extensions of most of these results for the leaky-LMS algorithm.
The reason for this gap is that the methods are either especially tailored for LMS
(as in Secs. 3.1 and 3.2), or require that the origin @", = 0 of the algorithm’s error
equation be an exponentially-stable equilibrium point when the noise is identically
zero, which is not the case for leaky LMS. It may be possible to extend the results
of Secs. 3.1 and 3.2 to leaky LMS, but the analysis would be extremely lengthy
and may not be justified. Instead of trying to do so, we shall present in Chapter 6
a new leaky algorithm, circular-leaky, that avoids most of the drawbacks of leaky
LMS (namely, the new algorithm computes unbiased estimates and has smaller
computational cost than leaky LMS). For this new algorithm, the results of this
chapter can be applied. See Chapter 6 and [NS96, NS99c]|.
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Some of the results presented here for the LMS algorithm will be extended

for the NLMS algorithm by using the change of variables described in Sec. 2.4.

3.1 PERFORMANCE RESULTS FOR LMS

This section summarizes results of [Maz79, JCR82] which, in a sense, justify the

use of the independence assumptions.

The following assumption describes the basic model in [Maz79] (the “NDS”

stands for N-dependent and stationary).

NDS-1. The input sequence {mk} 18 created from a tap-delay line, say

T

2o =|a(k—M+1) atk—M~+2) ... a(k)| - (3.1)

The sequence {a(k)} s in turn the output of a linear time-invariant FIR filter

H,
a(k) = Z_j h(i)s(k — 4), (3.2)

where {s(k)} is a binary iid sequence and {h(i)} are the filter coefficients (see
Fig. 3.1).

The result in [Maz79] assumes that the input sequence {s(k)} is binary, i.e.,
s(k) = £1. This model is adequate for equalization applications with BPSK
modulation. Without significant change in the arguments, the assumption of a
binary input sequence {s(k)} can be relaxed to allow for a sequence which takes

a finite (power of 2) number of values.

Using the binary s(k) model, it is shown in [Maz79] that the results obtained
from independence theory can be interpreted as an approximation of the actual

performance of LMS. The main result is the following.

74



WL Al L L 3D

(OO (OHhm ()hN2 - ()hiv)

ST S S @\ »HT-MH)
Xk

Figure 3.1: Model for the input sequence {xy} in [Maz79).

Theorem 3.1. Assume that the input sequence is generated as in NDS-1 with

binary s(k), and that assumptions I-4. IS-1 and R-1 hold, i.e.,
I-4. The noise sequence {v(k)} is independent and identically distributed (iid).
R-1. The matriz R is positive-definite (R > 0).

IS-1. The random sequences {mk} and {y(k)} are jointly stationary.

Then the error between the true value of the MSE and the approxrimation given

by Theorem 2.3 in (2.23) is of the order of u?, that is,

lim Ee(k)? = 02 + plrR

k—o0 2

ol +0(u?).

In addition, the rate of convergence of the average weight error vector E Wy, given

by Theorem 2.1 1s also correct up to order of u. &

A generalization of this result that allows for input sequences {s(k)} that do
not come from a finite alphabet is found in [JCR82|. Instead of NDS-1, the input
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is assumed to satisfy:

NDS-2. Let a(k) = s(k) x h(k), where {s(k)} is an iid sequence, and h(k) is
the impulse response of a causal, length-N FIR filter (h(k) = 0 for k < 0 and

k> N). Assume that the input sequence is

{wk:[a(k—M+1) alk =M +2) ... a(k)]T}

The following theorem extends Theorem 3.1 to the above class of inputs, and

is proved in [JCR&2].

Theorem 3.2 (N-dependent steady-state). If Assumptions R-1, IS-1, IS-2
and NDS-2 hold, and if the covariance Cj, = E'&)kﬁff converges to a constant,
then the steady-state values E o, Coo and E e%(c0), computed by the LMS algo-

rithm, can be expanded as power series in p as below:

No—1
Jlim B = pR™ Z z;x; £ov(0)) + O(p?), (3.3)
2Np—1
kli_)rroloEez(k) =0, + 1 ’I‘rE(vz(O)woazo - Z_l: TrE(v(O)v(z)a:o:I:,) +
L 0(2), (3.4)
lim Cp = uCY) + O (1), (3.5)
k—o00
where
2No—1
RCY + COR = Z E<v(0)v(i)m0mf),
i=1—2Np

In addition, if u ~ 0, the mean E wy converges to its limit approrimately as a
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linear system with modes 1 — u);, where \; are the eigenvalues of R.

Note that it is not assumed that the noise sequence is iid or independent of
the input. If {v(k)} is iid and independent of {wk}, the above equations reduce
to the results predicted by independence theory. Another remark is that there is
no proof of convergence for C; in [Maz79, JCR82], the convergence is assumed.
The convergence (or stability) proof can be found in [MES83|, whose results we

summarize next.

3.2 CONVERGENCE RESULTS FOR LMS

The most important characteristic of the model in NDS-2 is that two input vectors
x;, and x; are independent if the time difference |k — j| exceeds the sum M + N
of the lengths of x; and of the modelling filter 4. This means that w; in LMS
is independent of all input vectors x; for which j —k > N. This fact is the basis

of the convergence proof in [MES83].

For the convergence analysis, the assumption NDS-2 can be relaxed to

NDS-3. The extended sequence {y(k), wk} 18 such that

{' c (y(k - 2)a mk—2): (y(k - 1): :Ek—l)a (y(k), a:k)} and

{(y(k+3), Trss), Wk +7+1), Berjia), -}

are mutually independent whenever j > N. Sequences satisfying this property are

said to be N-dependent.

In addition, it is necessary to bound the moments of the input and desired
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sequences in the following way.
NDS-4. E(||wk||2"N> < 00, for alln < 12.
NDS-5. B(ly(k)|*#7) < oo,

Theorem 3.3. If Assumptions R-1, IS-1 and NDS-2-NDS-5 hold with N >
M/12, then there exists a pair (,uo, B) of positive real numbers such that the
weight error vector wy, given by the LMS algorithm (1.6) satisfies

limsupE || |* < Bp, Vp < po.

k—o00

The values of the constants  and pg are not easily obtainable from the proof

in [MES83]. In particular, 8 depends on E()\min (Zf\igl a:k+iNa:r‘kF+i N))

There is an extension of this result for non-stationary input sequences [EM85].

We summarize these results in Appendix 3.A.

3.3 AVERAGING ANALYSIS

Similar performance results were derived in [Sol89, S0l92, Sol94b] using a different
set of assumptions, and by using a different method of analysis (averaging) that
applies to a wider class of algorithms. The input sequence {a:k} is now not
required to be N-dependent anymore — instead, it is required to satisfy a mixing
condition (i.e., the correlation of «,, and x, “dies out” as the time difference
/m — n| increases). In addition, {®;} is also required to be bounded, i.e., we

assume that there exists a B, < oo such that
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2
sup zi ¢ < By < —, with probability 1.
k>0 12

Note that the condition is not satisfied in the important case of LMS with
Gaussian-distributed input sequences. However, assumption B-1 is always sat-
isfied for the normalized LMS algorithm, since the transformed input :1356") from
Sec. 2.2 is always bounded. Moreover, averaging theory [SK95, BMP87, Kus84,
KY97] requires that the step-size be vanishingly small. Nevertheless, and unlike
the previous results (Thms. 3.2 and 3.3), this theory can be applied to a larger
class of adaptive algorithms, with little modification in the basic theorems. In
particular, we shall use Thm. 3.4 to analyze our new algorithm in Sec. 6.6. The

drawback, as we mentioned above, is that important input distributions (such as

Gaussian) are ruled out.
To describe the correlation properties of the sequence {wk}, we need the

following definition.

Definition 1 (uniform-mixing processes). A random process £, is called a

uniform- (or ¢-) mixing process if there exists a sequence ¢(n) satisfying

¢(n) — Oa
such that
sup  |P(A|B) —P(4)| < ¢(s), Vt,s, (3.6)

AEFER ,, BEF]

where F§ 2 o{&,, t < u < s} (The symbol o{-} denotes the smallest sigma-

algebra generated by a set [Dur96]).

This condition says that two variables £, and &, become essentially indepen-

dent as the time difference |u — s| grows.
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Examples of ¢-mixing processes are deterministic processes, N-dependent pro-
cesses, and processes generated from bounded white noise filtered through a stable

finite-dimensional linear filter [Guo94].

We then assume that

UM-1. The sequence {a:k} is uniform mizing with mizing function ¢(n).

We shall list here the main theorems of general averaging theory, and later

specialize the results to the LMS and NLMS algorithms.

3.3.1 General Averaging Analysis

Consider an adaptive update of the general form
Wyy1 = Wy + puf(k, @), with some initial condition @y, (3.7)

where wy, is the error vector we want to minimize. The function f is stochastic,
i.e., for every k and @y, f(k, @) is a random vector. We could be more explicit
in the notation and write f(&,, wy), where {ék} is a stochastic sequence. For
example, in the LMS case we have f(k, wy) = —xyz; Wy —xxv(k), and €, would

be formed from «; and v(k). Now define the averaged function f,, as

fav(ka '&’) = Ef(ka "b)a

where w is considered constant for the computation of the expected value. For
example, if {wk} is a stationary sequence, the averaged function for LMS is

fav(k, @) = —R@. Define also the averaged system
Wi, = Wi+ pfa(k, @), W =y . (3.8)

The fully averaged system does not allow us to predict the steady-state perfor-

mance of the adaptive algorithm. For this purpose, it is necessary to study the
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partially averaged system below,
’&}il-zl-vl = [I + MVﬁ,fav(O)] ﬁ’ﬁav + ,U(f(k, O) - fav(ka O)) ) (39)

where Vg fa,(0) denotes the value of the gradient of f,, (with respect to W) at

the origin. Using the LMS algorithm as an example again, we have
vﬁ;fav(o) - —Ra (f(k, 0) - fav(ka 0)) = _wkv(k)-

The following result, proven in [SK95, Ch. 9], shows that if the step-size p
is sufficiently small, the original estimates w; will remain close to the partially
~ pav

averaged estimates w,, , and that the steady-state covariance of w; will be close

to that of w}™.

Theorem 3.4 (Averaging result). Consider the error equation (3.7) and its
averaged forms (3.8) and (3.9), where the sequence {&,} is uniform mizing. As-
sume that (i) the origin, 0, is an exponentially-stable equilibrium point of the
averaged system (3.8) with decay rate O(u), (i) the gradient Vg fo,(k, W) exists
and is continuous at the origin, (iii) there exist constant ¢ and c; such that, for

any vectors a and b, the following Lipschitz condition holds
IVaf(k, @) = Vaf(k, b)|| < c|la— b].

Under these conditions, Wy, obtained from (3.7) satisfies

lim sup EH'&;k - '(vZ‘"’H =0, for everye >0, (3.10)
pu—0 k>0
. . ~ ~ DAav 2
L%ICILIEO E||l@, — @™ |" =0, (3.11)
and
: : 1 ~ ~T : : 1 ~ pav ~ pav,T
lim lim { —Ew,w, | = lim lim ( —E@ @™ | . (3.12)
p—0 k—o0 i’ p—0 k—o0 M

81



%

Note that this result does not apply to the leaky LMS algorithm, since the
origin E '&22 = 0 of the averaged leaky LMS error equation is not an exponentially

stable equilibrium point (as shown in Sec. 2.3).

3.3.2 Averaging Analysis of LMS

In the special case of the LMS algorithm, the above results can be extended
— in particular, it is possible to compute more exact values for the MSE, as
in Theorem 3.2. The analysis presented here basically follows from a simple

(deterministic) property of LMS. Compute ||wy]|?:
- . L \2 _ 2
lwpsa||* = llwxll* — 2u(@i )" + p?llak]|* (zh )" —
— 2wy, (I — papy, )zev(k) + ||z |0 (k).

Using Assumption B-1, and adding the above recursion from time k = 0to k = N,

the following inequality is obtained.

N N
l@n1])® + u(2 — uB,) Zez(k) < —2/12'&)%([ — papxy, ) zpo(k) +
k=0 k=0

N
23 el PR (R).
k=0

The averaging argument needs a bounded input sequence to keep the term 2—uB,
positive. Taking expectations on both sides, the O(u) part of the cross-term is

zero (by the orthogonality principle), and the analysis is simplified.

The next theorem provides bounds for the performance of LMS. The proof in

[Sol89] uses the above relation and the assumption:

B-2. The sequence {mk} 1s purely nondeterministic.

82



If x; is formed from a tap-delay line (as in NDS-2), then this assumption
means that the newest element of @y, a(k), cannot be perfectly predicted from
the previous elements a(k — ¢). In other words, if a(k) is any estimator of a(k)

given {a(k — 1) ... a(0)}, then there is a constant o > 0 such that
var(a(k) — a(k)) > o > 0.
The theorem also assumes that the input sequence is stationary, i.e.,

IS-1. The random sequences {wk} and {y(k)} are jointly stationary.

With these assumptions, the following results hold (see also [Ben87]).

Theorem 3.5. Under Assumptions B-1-B-2 and IS-1,

1
Ee(00)’ = oy + sumfo, Tr R+ O(),

where
=1- E k)v Tp ,
m E (v*( Imo|| Zl (v()0 (O)a Bi0m0)
¢ _ EOlo]?)
o2TrR

and 9 = Hf:o (I — ,uw,:z:f) 18 the state transition matriz of the linear time-

varying error equation (2.1).

The constant m can be expanded as

i1 E(v(k)v(0)z{ @o)
E(2?(0)]|o[|?)

m=1-2

O(p).

These results are essentially of the same nature as in Secs. 3.1 and 3.2. The

only difference is in the assumptions — now the N-dependent assumption NDS-2
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is relaxed to allow for the more general class of uniform-mixing processes, but

with the new requirement imposed by the bounded input assumption B-2.

Similar results exist for the case of time-variant {'w*k} (but still with sta-
tionary @) [Sol89]. Unfortunately some quantities are left without definition in

[Sol89], so we do not list the result here.

The case of time-variant @, is studied in [BA80a, BA80b, Bit83, Bit81, CGI1,
Guo94] and [Sol94a]. In these works, the input sequence is xj, is assumed to be
time-variant and uniformly bounded (i.e., Assumption B-1 holds). These works
are very technical, and only confirm the results presented in the previous sections
for a slightly more general class of inputs; for this reason we do not discuss them

further.

3.4 PERFORMANCE AND CONVERGENCE OF NLMS

Several of the above results can be extended to the normalized-LMS algorithm, if
the model of Section 2.4 is used. The averaging analysis is particularly adequate
for the study of the NLMS algorithm, given that the assumption of bounded
inputs is always verified in NLMS (recall that using the change of variables of
Sec. 2.4, the input sequence for NLMS is {mk/\/m}) Therefore, the
averaging theory results for the NLMS algorithm are more general than the results
following Theorems 3.2 and 3.3: these theorems require an N-dependent input
sequence, while averaging requires only bounded inputs (an assumption that is

always satisfied) and the less restrictive uniform-mixing condition.

The transformed recursion for the normalized LMS algorithm (which we re-
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peat below) satisfies all the conditions for Thms. 3.3, 3.4, and 3.5:

K T
wy  =w;, + ————(y(k) — x, w}).
k+1 k a+||:vk||2( ( ) k k)

Recall that the transformed variables are

(n) A x, () v(k) (n) y(k)
= , vW(k)= ————, and y'"(k) = ———,
va+ ||z va+ ||z a+ ||z

and the transformed covariance matrix is

>
1>

R™ £ EgMgMT.

Theorem 3.6. Under Assumptions I-3, UM-1, B-1-B-2, and IS-1, the normal-
1zed LMS algorithm with a > 0 is mean-square stable, and the steady-state MSD

satisfies, when u =~ 0,

2 T
D~ &Tr{R(”)lE (%)}’ (3.13)
2 (@ + [J&]|?)

In addition, the following equality also holds:
2 1 Tzl
lim Be® (k)2 =E — v —,uavar{E ($>} +0(p?),
k=00 (k) a+|lzg]? 2 (a + ||zk)|2)? ()

(3.14)

Proof: The MSD is obtained by direct application of Thm. 3.4 to the NLMS
algorithm. It is clear from the NLMS recursion that f and f,, are differentiable
functions when a > 0. Therefore, Thm. 3.4 holds, and the MSD is, up to first

order in p, equal to the value given in (3.13).

Note that (3.14) is not the MSE, but the expectation of a normalized version of
e(k)?. In general, there is no simple relation between the two, unless {x; } is iid or
||zx|| is constant. Unfortunately, the expression for Ee(k)? cannot be computed
simply by using our change of variables (the argument for the computation of

Ee(k)? in the proof of Theorem 3.5 does not extend to this case). We are not

85



aware of a result in the literature extending Thm. 3.5 to the normalized LMS

algorithm with E e(k)? instead of E (™ (k)2.

3.5 LEAKY LMS ALGORITHM

The extension of the results of Secs. 3.1-3.3 to the leaky-LMS algorithm is not
a simple task, basically because the constant term paw, in the leaky LMS error
equation (2.39) eliminates the exponentially-stable equilibrium point at 0 that
existed in the LMS error equation (2.1). This directly violates one of the main
assumptions of Thm. 3.4 (see the quote from [Set93] in Sec. 1.4). We circum-
vent this difficulty by developing a new leaky algorithm, which we describe in
Chapter 6. In fact, this new algorithm not only makes the analysis possible, but
it actually has a better performance than leaky LMS. See Chapter 6, Table 6.1,
and Figs. 6.4, 6.5, and 6.6.

3.6 CONTRIBUTIONS OF THIS CHAPTER

The extension of Theorem 3.5 to the NLMS algorithm using the change of vari-
ables described in Sec. 2.4 is new. A stability analysis of the NLMS algorithm
without independence assumptions was given for non-stationary {:ck} in [Guo94].
Nevertheless, unlike this reference, our analysis provides computable performance

estimates.

As we mentioned in Sec. 1.4, the extension of the results described in this

chapter to the leaky LMS algorithm is a difficult open problem. Nevertheless,
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we believe that this problem has been rendered virtually meaningless, since we
develop a new algorithm that in many ways surpasses the performance of leaky
LMS in Chapter 6 [NS99c|. For this new algorithm, we extend the results of
Sec. 3.3, see Sec. 6.6.
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APPENDIX FOR CHAPTER 3

3. A TIME-VARIANT N-DEPENDENT INPUTS

We provide here the extension of Theorem 3.3 to the non-stationary case. As we
did in Appendix 2.D, it is also necessary to describe the time variation of w, j
and of the input sequence {mk} The first assumption below substitutes R-1,
saying that the smallest eigenvalue of the covariance matrix of xj is uniformly

lower bounded by a positive quantity.

NDV-1. There exists a positive constant \,, such that, for all k,
)\min (E(ww:f)) > )\m
The next assumption limits the speed of variation of w, i, saying that

l|ws, k41 — W |

is deterministically upper bounded by a quantity A. This way of limiting the
speed of the time variation is different than what was done in Appendix 2.D by
means of a parameter #. Accordingly, the bound for the MSE obtained here will
be different.

NDV-2. The difference
A
Ak = Wy k1 — Wik (3A1)

satisfies supy [|Axl| = A < oo.

The proof of the next theorem also requires that several moments of the
input sequence be bounded. The assumption below replaces NDS-4-NDS-5 for

the non-stationary case.
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NDV-3. There exist positive numbers K, K5 such that

Bl ) < 5,

B(|jyk)| ) < K, Yk > 0.

Theorem 3.A.1. If Assumptions NDV-1-NDV-8 hold, then there exist positive
numbers (,LL(), G, B') such that Wy given by the LMS algorithm (1.6) satisfies

A2
limsup B [|@||* < fp+ 6 —

, Ve (0, o).
k—o00 ,u2 H ( MO)

The proof in [EM85] does not give estimates for the parameters § and 3 .
This means that one does not obtain any actual performance information from
this result, besides learning that the misadjustment does not go to zero as the
step-size is decreased (compare with the results obtained in Appendix. 2.D).
The difference between the two results here and in Appendix. 2.D is due to the
different models of parameter variation adopted. In this section, the parameter
varies according to a deterministic model, while in Appendix. 2.D a stochastic
model was used. Note also that the model used in Theorem 3.A.1 allows for a
time-variant input sequence {:Ek}, while in Appendix 2.D the time-variation was

due to w,,j only.
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CHAPTER 4

MEAN-SQUARE STABILITY OF LMS
WITHOUT SLOW ADAPTATION
APPROXIMATIONS

The results presented so far give a good understanding of the behavior of the LMS
algorithm when the step-size p is sufficiently small (but without quantifying how
small p should be). However, from the recursion (1.6), an infinitesimal step-
size (u = 0) implies that the weight estimates wy change very slowly at each
iteration, and consequently the convergence rate is small. This is inconvenient,
since in many applications the filter output cannot be used before the MSE
Ee(k)? achieves a sufficiently low level. Slow adaptation is also annoying in
non-stationary environments, where a slow convergence rate may not allow the
algorithm to properly track time variations in signal statistics. A designer might
then wish to employ larger step-sizes to improve the convergence speed of the
algorithm, especially during the initial convergence phase (before steady-state is

achieved).

The following questions are therefore relevant and remain largely unanswered

in the literature.

(i) How small must the step-size be so that the independence-based approxi-

mations are still reasonable ? Also, for a given value of the step-size, what
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is the order of magnitude of the error incurred by using these approxima-

tions ?

(ii) What is the real performance of the adaptive algorithm when the step-size

is not small ?

(iii) How large the step-size can get without compromising filter (mean-square)

stability ?

(iv) What is the step-size that gives the fastest convergence rate ?

For step-sizes that are not infinitesimally small, there are very few results in the
literature that predict or confirm the behavior/stability of the LMS algorithm
and its variants (see, e.g., the statement from [Slo93] in Sec. 1.4 regarding this
issue).

The purpose of this chapter is to develop a new method to study the stability
of the LMS algorithm, without relying on the independence assumptions and
without assuming beforehand that the step-size is vanishingly small. Since an
exact expression for the largest step-size (say, pmax) that addresses point (iii)
above is difficult to obtain, we shall instead derive an upper bound g on how
large the step-size can be for mean-square stability (say, 4 < fi < fimax)- While
our bound f is not tight (i.e., close t0 fmax) at this stage of our analysis, it
is, to the authors’ knowledge, the first computable bound to be obtained. It is
applicable to a generic distribution of the input sequence (and in particular, it

allows for a normally distributed input).

The significance of this work is therefore in developing a framework that
studies filter stability without resorting to slow adaptation approximations, and
without assuming that the input sequence is iid. The major contribution is the

fact that our bound is computable, i.e., our result is not only an existence result.
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Given an input distribution and a filter length, a bound & can be easily computed

via a maximization routine (see Sec. 4.4).

Our discussion builds upon an approach originally suggested in [FF86], and
which will lead naturally to a state-space framework. Basically, the arguments
we employ in the future sections can be summarized as follows. We first find a
dynamic state-space model for the evolution of the covariance matrix E dbib; ;
the states of this model will consist of the entries of the covariance matrix in
addition to several other relevant quantities. The state equation will be of the

form
Tip1 = @(u)lx + b, (4.1)

where b is a constant vector, I'y is the state vector, and ® is a constant matrix.
With this model, the largest step-size (umax) that guarantees stable performance
of the LMS filter (and therefore answers point (iii) above) will be the largest p

for which ®(u) is still a stable matrix, i.e.,

T— sup{p such that p(®(n)) <1}, (4.2)

where p(®) denotes the spectral radius of ®, i.e., p(®) = max;|A;(®)|.

Unfortunately, determining fima, in (4.2) is not a trivial task for two main
reasons. First, the eigenvalues of the matrix & depend nonlinearly on the step
size pu and, secondly, the dimension of ® grows extremely fast with the filter length
(for example, for M = 6 the matrix has size 28,181 x 28,181). It is therefore
computationally infeasible to work directly with ®; the approach is feasible only
for relatively small filter lengths. For this reason, reference [FF86] considered
only the case M = 2 (i.e., a filter with two taps), while reference [DP95| used the
same method for orders up to M = 6 coupled with a numerical procedure (viz.,

the power method for sparse matrices) for the evaluation of the eigenvalues of
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®. For larger filter lengths, we need to develop an alternative procedure for the

estimation of ppm.x that does not work directly with the matrix ®.

The approach we propose in this chapter is based on the observation that the
matrix ®, although of large dimensions, is both sparse and structured. These two
properties combined can be used to derive a bound on the step-size for stable
performance. [Moreover, the bound will be such that it is not a function of
the maximum value that ||zy|| can attain; the result will depend only on the

distribution of the input sequence, and on average quantities.|

We start our discussion by studying in some detail the simple case M = 2
(i.e., a filter with 2 taps). This will allow us to explain in a fairly clear manner
most of the steps involved in our construction. In a latter section (Sec. 4.2) we
shall extend the discussion to larger values of M. It will be seen then that the
dimensions of the matrices we work with grow exponentially fast with M, so that
we shall not be able to show all the details in explicit form. Instead, we shall
establish several structural and sparsity properties and exploit them. Moreover,
some new phenomena arise for larger values of M that do not occur for the simple

case M = 2. We shall also address these issues.

4.1 THE STATE-SPACE MODEL FOR M =2

We assume that {y(k), @ } are related via a linear model of the form (1.11), with
a zero-mean iid noise sequence v(k) that is independent of the input sequence.
Using the LMS update (1.6) and the model (1.11), we find that the error equation

for LMS is given by

Wiy = (I — pxpxi )y — pxgv(k) . (4.3)
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We also suppose that the regressors {wk} arise from a tap-delay line, say
T
2= la(k—1) a(k)| - (4.4)

where the input sequence {a(k)} is assumed iid, with zero mean, and moments
o, = Ea(k)?, for p > 1 (note that zero-mean a(k) means o; = 0). These

assumptions imply that

Wy, is independent of a(k) (4.5)

but not of a(k —1). This is the basic property that will yield a linear state-space

model.

Note: for simplicity, in this section only we shall assume that o, = 0 for all

odd values of p,i.e., 0 =03 =05 =... .

We are interested in conditions under which the MSD is bounded (i.e., con-
ditions under which Tr(E 'Lbk'[u;‘f) forms a bounded sequence). This requires that
we study the stability of the matrix ® in (4.1) and determine conditions under
which its eigenvalues are strictly inside the unit disc. It turns out that, under the
above assumptions, the noise sequence {v(k)} does not influence the stability of
the recursion (4.1) since it only affects the driving term b. For this reason, in

this chapter we shall assume v(k) = 0.

4.1.1 Obtaining the Linear Model

We present briefly the main steps of the derivation of the linear model in an
M = 2 example [FF86] in order to highlight the main steps. Later we consider

the case of a general M. Let wy; represent the i-th entry of wy, that is,

T
Wy = [ﬁ)m @k,z] :
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We want to find a state-space model describing the evolution of the entries of

E i), , which we denote by

WF) 2B, k) 2B, k)2 E( w)

>

That is,

These variables will be some of the elements of our state vector I'y.

Using the LMS error equation (4.3) to compute ﬂ)kHﬁJfH, we obtain

= =T - =T T =T = =T, T
Wi 1 Wy = WpW), — UTRT) WpW), — PWrpW), Ty +
(4.6)
2., T ~T_ T
+ P TR, Wi, T, -
The (1,1) element of the above matrices provides an expression for @}, as a

function of quantitites available at time k:

2,11 = (1— palk —1)2)"@2 , — 2ua(k — 1)a(k) (1 — pa(k — 1)%) @y @52 +
+ pPa(k — 1)%a(k)wy ,. (4.7)

Taking expectations and using the independence of a(k) from {a(k — 1), Wy}, it
follows that

n(k+1) =n(k) - 2uE(a(k — 1)%@3,) +

+ 12E(a(k — 1)*@2,) + plon E(a(k — 1)%@2,).

The right-hand side of this recursion does not depend only on 7 (k) to y3(k),

but also on
E(a(k — 1)%%3 ), E(a(k — 1)*@} ),
E(a(k — 1)%@; ,), and E(a(k — 1)*Wy1y,2).
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To proceed, we need to find recursions for these quantities. Note that a(k—1)
is the first element of the vector @, that is, 231 = a(k — 1). The idea is to use

this relation to define the new variables
A - A -
(b 28 (a2, ), 2o(b) 2B (ot a2, ).
A - A ..
25(b) 2 B a3, ), 20(0) 2 B2 ),

and to obtain expressions for these variables at time k£ + 1. For example,

Ya(k +1) = E<$2+1,1w2+1,1>-

An expression for v4(k + 1) can be obtained by multiplying both sides of (4.7)

by 3,11 = 3 = a(k)®. Using (4.5) to compute the expectation, we get
Ya(k +1) = 0271(k) — 2u0974(k) + 0275 (k) + p*0uv6 (k).

After finding similar recursions for all variables, we obtain the linear model

L1 = ®(p)Ty, (4.8)
where
T
Le=mk) vk) .. wk)] (4.9)
and
[ 1 —2u 0 0 ur o ploy 0 ]
oy —2uos 0 0 wloy ploy 0
0 plos 1—2uos+ ploy 0 0 0 0
=10 0 0 1—poy, 0 0 —u(1-2u0)
o4 —2u0y 0 0 wrloy plog 0
0 ploy 09— 2uos+ plog 0 0 0 0
0 0 0 09 — [0y 0 0 —,u(a2 — 2,uc74)
(4.10)
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Note that even for M = 2, the state-space model has already 7 states, and the

matrix ® is fairly sparse.

4.1.2 Mean-Square Stability Analysis

Having formed ® in (4.10), the mean-square stability of the adaptive filter can
now be completely characterized by studying how the spectrum of ® varies with
the step-size . In principle, we can proceed to determine the largest u, say timax,
for which all the eigenvalues of ® will be strictly inside the unit circle. Although
this can be done easily for M = 2, we shall see in later sections that the size
of ® grows exponentially fast with M (see Table 4.1). This creates two main
difficulties:

1. The computation of the eigenvalues of ® for each u becomes computation-

ally demanding.
2. The eigenvalues of ® depend very nonlinearly on pu.

For this reason, we propose in this work an alternative procedure that avoids
working with the eigenvalues of ® altoghether. In particular, we shall show that,
for any M, the computation of the norm ||®|| (the maximum row sum of ®)
can be performed in only O(M) operations, due to the structure of ®. We then
use this fact to compute a bound [ to pmax- The idea is to use the inequality

(see [HJ87] and Sec. 4.4 for more details)

p(®) £ max| \s(®) | < 1@, (4.11)

where p(®) is the spectral radius of ®, and X;(®) is the i-th eigenvalue of ®.
That is, the maximum eigenvalue of ® in magnitude is always bounded by ||®||-
Therefore, a sufficient condition to guarantee that all \; are strictly less than one

is to find the range of u for which ||®(u)||e < 1.

97



Unfortunately, directly applying this idea to ® yields no useful results. To
understand this, simply refer again to (4.10). Note that the absolute sum of the
first row of (4.10) is

=1+2u+ p®+ p?oy >1 forall p> 0.

7
lelle > > (@),
i=1

That is, ||®||w is always larger than unity regardless of u! This is because some
rows of ® have unit entries (this property will in fact hold for all M, not just

M = 2). Therefore, there is no value of y for which ||®||.

Recall, however, that similarity transformations do not alter the spectral ra-

dius of a matrix, i.e.,
p(®) =p (T~ '®T) for any invertible T.

Nevertheless, they do alter the co-norm of a matrix. Our second idea is therefore
to show how to construct a similarity transformation 7" such that there would

exist a i such that
|77 e(u)T|| <1

for all u < fi.

We shall illustrate this procedure for the M = 2 case below, before considering
the general case in Sec. 4.4. We first need to define the row and column operators

below. Define the square matrix
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1 0 0 0 ... 0 0
0 1 0 0 0 0
a A TOW ¢
=10 0 0 ... 1 ... a ... 0] &~
0 0 0 ... 0 ...0..1

1 column j

where the entry o appears in the off-diagonal position (7, 7) (i-e., ¢ # j). This
matrix is a simple modification of the identity, with the (i, j)-th off-diagonal 0

[e%

replaced by a. The effect of pre-multiplying a square matrix A by [I],, i.e.,

[I]z]Aa

is to adding a times the j-th row of A to the i-th row of A. Similarly, post-

o7

multiplying A by [I ]” corresponds to adding a times the i-th column of A to

its j-th column (note that the indices ¢ and j are interchanged in the row and
column operation — in the row operation, it is the ¢-th row that is modified,

whereas the column operation modifies the j-th column of A).

In addition, we note that
(12,) ™" = 135
Therefore, the combination of row and column operations
155 ALl

is a similarity transformation, and it does not change the eigenvalues of A. It

only modifies row ¢ and column j of A.
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We can return now to transforming ® in (4.10). Note that the second row of
(4.10) is very similar to its first row, in the sense that the element (®);; on the
first row is nonzero only if the element (®);; on the second row is nonzero. In
addition, the second row can be obtained from the first by inspection — to move
from row 1 to row 2, we simply need to replace o, by 0,2 (elements that are not
multiples of any o, in row 1, such as —2u, should be treated as if multiplied by
o £ 1).

Therefore, if we apply the row operation [I]; 3“ to replace the entry 1 in the
position (1,1) in (4.10) with 1—2p09, and complete the similarity transformation

with the column operation [/ ]f“z, we obtain

(1240, 0 0 0 u2(1—2uos) (o2 — 2uoa) 0
o2 0 0 0 wlo2 wros 0
0 ulos  ay 0 0 0 0
o) — 0 0 0 1-pos 0 0 —u(1 - 2p09) |,
o4 0 0 0 1o wloe 0
0 uloy  as 0 0 0 0
| 0 0 0 o2 —puos 0 0 fu(o'z — 2ua4)_

where we have defined

A - A A
o 2 [I]l,gl‘@[f]iuza a1 =1 —2uoy + ploy, ay = 03 — 204 + P20

Note that while the row operation replaced the 1 entry in the (1, 1) position
of ® with 1 — 2u05, the column operation replaced the —2u entry in the (1,2)
position with 0. Both changes are important, since now, except for the (1,1)
entry, all terms in the first row of ®1) are O(u?), reducing the absolute sum of

the first row of the transformed matrix to

7
S| @m),,
=1

= |1 — 2u0s| + p?|1 — 2uos| + p|or — 2uos] < 1 (4.12)
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for sufficiently small pu.

It is important to note that the above transformation modified only 3 rows
of ®: besides rows 1 and 2, only row 5 was modified. In addition, row 5 can also
be obtained from row 1 by inspection, this time replacing o, in row 1 with 0,44
in row 5. This observation will carry over to general filter lengths M > 2 — in
general, several similarity transformations will be necessary, but since only a few,
very specific rows are modified by each transformation, we are able to keep track
of all the effects of the transformations without ever having to form the matrix

® explicitly.

We still need to check the other rows of ®1). The absolute sum of row 2 is

7
> @),
=1

Therefore, ||| < 1 requires that oo < 1. This apparently restrictive condi-

= 0y + ploy + ploy. (4.13)

tion can be dealt with via a simple change of variables (that we describe in full

detail in Appendix 4.F, equation (4.F.1)). The idea is to split u as

A
= Kl

and to apply the change of variables
_\ A _ A i\ A
y(k) = Via y(k), T = \/lla Tk a(k) = /pa a(k). (4.14)
These tranformations do not modify the LMS recursion, which now reads
Wy = Wi + Uy (y(k) — wf:ik)

That is, the estimates w;, are not modified by the above transformations. Their

effect is only to modify the moments of a(k), since now

_ A

o, =E(a(k)’) = Mg/2‘7p-
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Therefore, we can always choose p, small enough so that 5, < 1, allowing us

to satisfy condition (4.13).

Note also that the absolute sum of row 5 imposes a similar condition, viz.,

7
Z ‘ (<I>(1))57i‘ = 04 + plog + plog < 1.
i=1

Again, this condition can be satisfied by choosing a small enough u,. To keep
the discussion as simple as possible, we will defer the application of the change of
variables until all similarity transformations have been found. For now, we will

just assume that o2 < 1 and o4 < 1.

Let us verify now the absolute sum of row 3. This row (which is the same in

® and ®()) does not need any modification, since

7
> [,
=1

for small enough p. We can proceed to the next row.

= |1 = 2uos + pPos| + pPoy < 1

Computing the absolute sum of row 4 in ®®) (or in ®, since both matrices

have identical fourth rows), we obtain

7

> [@m),,
=1

Although it is possible to find a range of u for which the above row sum is

= [1 = poa| + p|l — 2po;|.

strictly less than 1, this will not be the case for similar rows with larger filter
lengths. Even in this example, a second similarity transformation can allow for

a larger range of u, as we show next.

Note that the last row (row 7) of 1) can be obtained from row 4 by inspection
(just as row 2 could be obtained by inspection from row 1 in ®). If we apply the
row operation [/],7, and (to complete the similarity transformation) the column

operation [I]} ;, we obtain
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®® = [1),7 oW [1]5; =

[1-2u02 0 0 0 W3 (L —2p02)  p?(o2 — pos) 0 ]
o2 0 0 0 ;120'2 p20-4 0
0 ulos a1 0 0 0 0
= 0 0 0 a1 0 0 wi(oz —pos) | ,
o4 0 0 0 u20'4 u20'6 0
0 wloy  as 0 0 0 0
| o 0 0 02— oy 0 0 uwlos |

where a; and a» are as in the definition of ®(1).

Again, the transformation not only replaced 1 — pos with the quantity 1 —
2109 + o4, but also replaced the O(u) entry in position (4,7) with an O(u?)

entry. Now the absolute sum of the fourth row is

7
> | (@),
=1

which is less than 1 for u < 209/(03+ 04) (if 1/4 > 03 > 04). Note that the only

= |1 — 2u0y + pPos| + p®|oy — podl,

rows modified by this second transformation were rows 4 and 7.

A last transformation can be applied to ®?. Although this transformation
does not achieve significant improvement in this small example, it will be helpful
for larger M. The idea is to eliminate as many O(u?) entries in the first row of ®(2)
as possible, and replace them with O(u?). In this example, we can add u? times
the 5th row of ®® to its first row, and complete the similarity transformation

with the column transformation [I]; ’5‘2 to obtain

ax 0 0 0 0 up2az 0
o2 0 0 0 0 plo4 0
0 plo2 a1 0 0 0 0
oG El 0 0 0 a1 0 0 u2(o2— pos)
o4 0 0 0 0 plos 0
0 p?os an 0 0 0 0
| 0 0 0 o2—pog O 0 uoy ]
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Note that the other O(u?) terms in row 1 cannot be eliminated by a similar
procedure — a simple sequence of row and column operations would only move
the positions of these O(u?) terms, without replacing them by smaller quantities.
For larger filter lengths, most O(u?) can be eliminated, and the above procedure

proves to be useful.

We now apply the change of variables described in (4.14), obtaining the new

matrix
a1 0 0 0 0 ,U/?cC_IQ 0
(o)) 0 0 0 0 [,L;5'4 0
0 /,6?5'2 a 0 0 0 0
= A
=19 o o a 0 0 pt(Gs— pysds)| >
04 0 0 0 0 /L?ﬁ'ﬁ 0
0 /,L%5'4 ao 0 0 0 0
0 0 0 09 — IUf5'4 0 0 /@64
where
_ A - - — — — —
ay = 1 — 2py35 + i394, Gy 2 5y — 241754 + 4256,

We have thus found a sequence of similarity transformations such that the
transformed matrix satisfies ||®®)(uf)||c < 1 for small enough u, and we can

compute a bound for y by solving

A

i max  fisfla,

194 ()l <1

where the condition ||$®) Hoo < 1 is equivalent to
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1 — 256y + p304| + 1} |52 — 20504 + p306| < 1, (4.15a)
Gy + 1304 < 1, (4.15b)

|1 = 2u402 + p}o4| + p3o2 < 1, (4.15¢)

|1 — 20555 + p304| + 13 |52 — pps| < 1, (4.15d)

G4+ p30e < 1, (4.15¢)

|2 — 2554 + p306| + 304 < 1, (4.15f

)
|59 — p155a] + 354 < 1. (4.15g)
The key properties of ® that allowed us to choose simple similarity transforma-

tions were:

1. The relative position of the entries 1, —2u in the first row of ®; and of the
entries 0o and —2uo; in the second row (and similarly with entries 1 — uos

and —u(1 — 2uo3) in row 4; and o3 — poy and —u(o2 — 2u0,) in row 7).

2. The fact that only a few, very specific rows were modified by each row and

column operation.

The relative position of the entries in rows 1 and 2 allowed us not only to
replace the largest entry in row 1 with a smaller quantity, but also reduced all

the other entries to be O(u?).

4.2 THE GENERAL STATE-SPACE MODEL

We now extend the earlier discussion to the case M > 2. As mentioned before,
the size of ® will grow exponentially fast with M. For example, for M = 3, &

is already 37 x 37 (see Table 4.1). Also, some new properties of ® arise that
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were not present in the M = 2 case. Therefore, in the sequel we shall search for

properties of ®, and avoid actually forming it explicitly.

A state equation of the form (4.1) can be obtained for any filter of general
length M, with
T
xr=|ak—M+1) alk—M+2) ... a(k)|
where (4.5) still holds. The starting point is again (4.6), from which we obtain
expressions for each entry of E 4,7}, 41 in terms of quantities available at time
k. We saw in the M = 2 example that these expressions depend not only on the
entries of Eﬁ)kfvf, but also on other quantities for which we also need to find

recursions.

As we mentioned before, the total number of necessary variables grows ex-
ponentially fast with the filter length M. We therefore need to define a general

notation to describe the linear system without actually forming the matrices.

We show in the appendix that all the entries in I'; are of the form
E (a:’,;,llx% x -xzf\fvfilwk,iwk,j) ; (4.16)

where 1 < 4,5 < M, and 0 < py,...,py < 4(M — 1). In other words, each
variable is the expected value of a product of two entries of w,; and powers of
several entries of @;. Note also that powers of the last entry of @y, i a, do not
appear in the above definition. This is because zx y = a(k) is independent of
wy, and of all other a(n), so we can compute expectations involving this term

without having to define new variables, as the example below shows
P1 PM—-1 _PM % % ) — M P1 pPM-1 ~ o~
E (Ik,l .- 'xk,M—lxk,kaﬂwkaJ) = E (a(k)™)E (xk,l . -xk,M—1wk,zwk,J) )

where E(a(k)") = o, (by definition).

106



To refer to (4.16), we shall use the notation

1, py
()

The superscript and subscript of the symbol on the left-hand side completely

A _ ~ ~
SE (2} .. op Wkl 5) -

describe the variable. The superscript is a pair of integers listing the two entries
of W, that appear in the expectation. The subscript, which we refer to as the
power list of the variable, is a list of pairs of integers. In a pair (¢, p;), the first
integer (which we refer to as the indez of the pair) represents an entry of @y, (i.e.,
zk,;), and the second integer is the power to which z ; is raised in the variable’s
definition. Accordingly, we refer to the second number of a pair as its power.
Pairs that have zero power (i.e., pairs (4,0)) are usually omitted from the power

list. For example, Z‘Z’fz)(k) represents the variable E (2} &} 5,31 4)-

5,3

A variable with a subscript of 0 represents one of the entries of E Qbk'&)f, ie.,
2" (k) = E (@ 41x.5) -

We shall refer to such variables as seed variables. All other variables (that is,

variables with a nontrivial power list) will be referred to as auziliary variables.

In Appendix 4.A we show that the recursions for each one of these seed vari-
ables can be obtained by inspection from only four basic recursions. We give a
summary of these results here, and refer to the appendix for the details.

The four basic recursions are listed below. Note that z57 (k) = 23" (k), so we

assume without loss of generality that ¢ < j.
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M-1
(k+1) = 25" (k) — 2u 25y (k) + 17 2} 4y (k) — 200 Z Ay k) +
mti
M-1 M-1M-1
+ 247 Z z(7z 3 )(k) + Z Z zm’; (k) +
oo e 7 (m)
M-1

M-1
+ 240y 2 3)(k) + 2u0y Z zmr;ﬂzf) (k). (4.17)
m=1 ?
m#i

2. i=j=M

M-1
Mk+1) = (1 — 2u0s + p?os) z20PM (k) — 2p(01 — pos Z Z(m, 1
m=1

M-1M-1 M-1
T D) D NCRELIS S
m=1 ll#l m=1

(4.18)
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2 (b +1) = 27 (k) = p 2y (k) = w2l (k) + 0% 20y = ) 20y (R) +
) =
1#i
M-1 N M-1
YA () = (0 R (B = Y A (8) +
1=1 (;:1) Pt =1 !
I#j 1,1 l#g
14 1£i
M_l . . . . M_l
AN zz’gl)(/@) + 2 zz’gl)(k) ity AN (k) +
=1 (31) Uk 93 =1 (;‘:1>
I#j 11 17 1,2
1% 1#]
+ plo, z”ffw(k) — poy zzjﬂf)(k) + 2p%0y zz(fv‘g)(k) — poy 25 4y (k) +
Js Js
‘ M—-1M-1 M-1
+ 2uay 20 (K) + 4 SN AL (k) + 2o Y zl’f’{)(k).
32 1 m— J1 _ 1,1
e (&
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4. i< M

M (k1) = (1= o) 2™ (k) = p(1L = 2u0) =435 (k) -

Mol M-1 M-l

(1= 2um) Y ) o Y () + e 3 sl
1= , =1 =1 "
P 16 ol

— poy Zfi,1) + ploy 22113)(k) — poy zé/flj)v‘r(k) +

M—1M-1 M-1
o L 1,1
+plos 2y (K) + oy D Z<m1 )(k) T ) z(fi%)(k)'
oo =

For our M = 2 example, the above recursions reduce to:
l.i=j5=1
20" (R +1) = 2 (k) = 2p27 ) (k) + 12204 + 12022075 ().
2.i=45=2
22 (k+1) = (1 — 2u0s + p?oq) 20" (k) + u202z(11’}2) (k).
3. 1 < j < 2: there is no such term.
4. 1< M

20 (k+1) = (1- 2/10'2)23’2(]6) —p(l - 2ua2)z(11’?2)(k).

(4.20)

(4.21)

(4.22)

(4.23)

Note that we assumed o3 = 0, in order to be able to compare these recursions

with those derived in Sec. 4.1.
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The operation defined below translates the shift structure of the input se-
quence {mk} to our z-notation, and will be useful to describe the recursions for

auxiliary variables. Consider the generic power list

L, ;
T— 2, p
M-1, pu—
We define the new power list Z + 1 as
1, 0
T+1= e . (4.24)
M-1, pm—

The net effect is that the powers are shifted down in the power list. Note that
the power of the index 1 in Z + 1 is always zero, and that the power of M — 1 in

7 (i.e., ppr—1) does not appear in Z + 1.

With this operation, it is easy to write the recursion for a generic auxiliary
variable 257 (k +1) using the four basic recursions. The algorithm below describes

the procedure (using the case i = j < M as an example).

Algorithm 4.1. The recursion for an auziliary variable z%j (k+ 1) can be ob-
tained by the following modifications of the appropriate basic recursions (4.17)—

(4.20). As we show in Appendiz 4.A, two cases must be considered separately.

(A) The power of the index M — 1 in T is zero.

In this case, the expression for 27 (k + 1) can be obtained from z§’ (k +1)

by augmenting the power lists of all variables on the right-hand side of
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(according to the values of i and j) (4.17)—(4.20) with Z + 1. For example,
ifi =7 < M, we have

(k1) = 250 (k) = 20 2050y (0) 42 2000y () + 0 200 (R) +

T+1 T+1 T+1

(4.25)

Note that the power list (Iifl) may have repeated indices, e.g., (:f) This
can be simplified by adding the powers of every instance of the repeated

index. For example, the power list (jﬁ) can be rewritten as (i,3).

(B) The power of the index M — 1 in T is ppr 1 > 0.

In this case, in addition to augmenting the power lists of (4.17)—(4.20) as

before, we also perform the following substitutions:

1. Replace all o, appearing in the appropriate basic recursion (4.17)-

(4.20) with opypy, -

2. Multiply by op,,_, all terms in the right-hand side of the resulting ez-

pression that are not multiples of any o, for s > 2.

In the case t = j < M, the result is

z%z(k + 1) = Z;}:—l(k) - 2“ Zz(’;ﬁl)(k) +
2 M,M
+ 1O ] 2y )+ -

As an example, we apply this algorithm to obtain the recursions for the aux-
iliary variables in the M = 2 example. We need the recursions for z(ll’}z)(k + 1),

z(ll’,l4)(k +1), 2(21’722)(k +1), and 2(1{,22)(k +1). The power of the index M —1=11in
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the power list of all these variables is nonzero, so we apply rule (B) for all these

variables.

To obtain the recursion for z(ll’g) (k+ 1), we apply (B) to (4.21), obtaining

2y (K +1) = 025" (k) = 20023y (k) + Worziay (k) + wlonz(fy (k):
The recursion for z(11’14)(k + 1) is obtained in the same way:
z(li,14)(k +1)= ‘74;’5(1)’1 (k) — 2NU4Z(11’,12)(I€) + ,U2U4Z(11’,14)(k) + M2062(21’,22)(k)-
Applying rule (B) to (4.22), we obtain
Z(2{,22)(k +1) = (02 — 204 + p?06) 25" (k) + /~0204Z(11’?2)(k)-

The last recursion is obtained by the application of rule (B) to (4.23), resulting

z(ll’,zz)(k +1) = (02 — pos) 292 (k) — p(os — 2u04) 2(11’,22)(/4).

Using our notation and the above method to obtain recursions for the variables
in I';, we can deduce several properties of the state-space matrix ®, as we show
in the next section. However, before we proceed we must define some expressions

that are used below.

1. The phrase “the recursion for the variable 22 (k +1)” refers to the formula

expressing 22 (k 4 1) in terms of variables at time k, e.g., (4.25).
2. The N-th row (column) of ® will be denoted by rowy (coly).

3. We define 7 as the position of variable 25/ (k) in T, (for example, mp"" = 1

if zg" (k) is the first entry of T').

The 7%7-th row of ® describes recursion 2/ (k + 1), whereas the 7%’-th

column of ® contains the coefficients of 27 (k) in each recursion.
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4.3 STRUCTURE OF @

Despite its large size, ® is highly sparse and has considerable structure. Both

features can be used to obtain approximations for some properties of LMS filters.

In [DP95], the sparseness of ® was used to obtain approximations for its
largest eigenvalue; nevertheless, the exponential growth of the length L of T’y
limits the use of such sparse methods to filters of orders up to 6 or 7. To work
with larger filter lengths, it is necessary to study the structure of ® with more
detail. In the remaining of this section, we derive several new properties of ® that
can be used to determine properties of the LMS filter without actually forming

the matrix itself.

4.3.1 Sparsity of ®

Although we shall not give an expression for L as a function of the filter length

M, we can see that it grows exponentially with M from Table 4.1 and Fig. 4.1.

M 11213 4 3 6

Length of Ty, (L) 1]5]37]330| 3,046 | 28,181

Number of non-zero

elements per row of ®

Table 4.1: Size of ® as a function of M.

On the other hand, Algorithm 4.1 and recursions (4.A.6)—(4.A.9) imply that
the number of nonzero elements in each row of ® does not exceed (M + 1)2.

Comparing this last number with the dimension of ® in Table 4.1, we see that ®
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Figure 4.1: Dimension of ® for several values of M. Note that the vertical scale

1s logarithmic.

is very sparse even for reasonably small M.

4.3.2 Permutations and Coefficient Sets

It is also possible to choose a small number of rows of ® (no larger than 16 M —
12) such that all other rows of ® are permutations of these rows. Consider the

contrived example below (which does not correspond to any actual matrix ®):

1 0 —2u  ploy 0 0 0 —2u 0 0
0 —2u 1 ploy 0 0 0 0 —24 0
A=10o, 0  —2uo, p?c¢ 0 0 0 0 —2uo, O
0 —2uo, 0 0 0 w0 02 O 0 —2u0,
| 0 1 0 0 w204 0 0 —2u 0 —2u
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The matrix A has two different classes of rows. Rows numbers 1, 2, and 5
form one class, and rows 3 and 4 form another class. In each class, the entries

appearing in all rows are the same, but the order is different.

To describe a class of rows, we define its coefficient set, which is a list of the
nonzero entries appearing in each row in the class. For example, for the class

composed by rows 1, 2 and 5 above, the coefficient set is

A={@ 0 2m25 Ge,)-
The pair (—2pu, 2) represents the fact that —2u appears twice in each of the rows
1, 2 and 5.

Similarly, rows 3 and 4 are described by the set

B= {(02, 1); (—2po2, 2); (pPos, 1)}'

We show in Appendix 4.B that a general ® has a similar structure. In par-
ticular, all rows of the matrix take their nonzero entries from one of (at most)
16 M — 12 different coefficient sets. The coeflicient sets of ® are listed below (the
sets are valid for M > 3), where p is an integer in the interval 0 < p < 4(M — 1),

and oy 21

Q, = {(ap, 1); (=2uop, M —1); (pP0pia, 1); (2020, M —2);

(4.26a)
(Hop, (M —2)*+1); (2p20p41, M — 1)},
QIJJVI = {(Up — 2u0pi2 + ,U2Up+4a 1)§ (_2N(Up+1 - N0p+3)v M - 1)§ (4.26b)
(U20p+2a (M — 1)2)}7
Qy? = 0y, 1); (—pop, 2(M —1)); (p20,, (M —1)?);
Pl i (un 200 0); e -1
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4.3.3 Entries Identically Equal to 1

By an entry identically equal to one we mean an entry of ® that is equal to one
independently of the values of the step-size ;1 and of the input moments o,. These
entries, which will play an important role in the stability analysis in Sec. 4.4, have

the following property (the proof can be found in Appendix 4.C).

e There is at most a single entry equal to 1 in each row and column of ®.

4.3.4 Properties of Seed Variables

Let i < j < M, and recall that the recursion for z57 (k+1) is (we reproduce below

the case ¢ = j)

M-1
1) = 2°06) = 23 2y () + 4 () = 2 3 () +

M-1 o M-1M-1 . M1 -

+op® ) Zlsy () + 17 PP IEANOENEDY 2l (k) +
. ], . _ i . ],
i i jg; (%zi) T

+ 100 2y (k) = 2p0n 234 (k) + 2101 25 (k) +
(i2) (1, 1) (@3)

M-1
+2ul0 2 M (k).
H o1 ; (]?)( )
i
This implies that the Wé’j -th row of ® has an entry identically equal to 1 on the

main diagonal. We show in Appendix 4.D that
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e Only rows corresponding to seed variables can have an entry identically

equal to 1 on the main diagonal,

e A seed variable zé’j (k) appears with a non-zero coefficent only in the recur-

sions

zz’j{l_17 pM*l)(k + 1)

with par 1 = 0 or 2 < pyr 1 < 4(M — 1) (note that the superscripts are
all the same). This implies that column CO]ﬂ_(i),j has nonzero entries only on

1,J

(M—1, paz_1)’ for p in the above range.

positions 7

4.3.5 Block Structure of ®

To each seed variable zé’i (1 < i < M — 1) there corresponds a dimension-
(M —i+1) block with the following pattern (we show an example of a dimension-4

block. Note that the dimension of a block is given by the number of rows that it

contains):
—2u| 0 0 p204 —2u 0 0 ]
0 0 1] 0 o 0 —2u 0
B, 2 L H (4.27)
0 0 0 0 0 —2u

In general, a block will not consist of consecutive rows of ®, but will be spread
over the matrix. The important characteristic of each block is the position of the

1’s on each row, as we now explain.

It is always possible to organize the rows and columns of ® such that any
given block of dimension K is placed in the first K rows of ®, and such that

element (1,1) is 1, with element (K, 1) equal to o3, and such that the entries in
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the upper superdiagonal in rows 2,3,..., K —1 are equal to 1. However, since we
are not forming the matrix, we describe a block in terms of the relative positions

of the entries that are equal to 1 in &.

Let the rows of a size- K block correspond to rows r; to rg in ®. Then the first
row of the block, r1 (corresponding to recursion z¢*(k + 1) with i = M — K +1),
has a 1 on the main diagonal. Row 7k, which corresponds to z( m_1,9)(k+1), has
all of its nonzero elements on the same columns as row rq, but a o, in row ry is
replaced by a 0,2 in row rx (i.e., the elements of row rx belong to Q3, while
the elements of row r; belong to Q). The other rows are found as follows. Row

rik—1 has a one in column 7g, row rx_o has a 1 in column 7x_», and so on.

This structure, and the relative position of the boxed entries in a block which
are a consequence of the shift structure of the input sequence {wk}, allow us to

analyze the stability of the LMS algorithm without actually forming ®.

In addition to the M — 1 blocks described above, ® has M(M — 1)/2 + 1
blocks corresponding to recursions zé’j (k+1)for1<i<j< M, with dimension
(M —i+1) each. We show below an example of a dimension-4 block corresponding

toM =5,1=2, 7 =4.

0
Chu =
0

o [~] o

(4.28)

I

I
[V
I

=

q

[ V]

o

o

L

Again, the important feature is the relative position of the boxed entries, and the

chain of 1’s in the upper superdiagonal.

A more complete description of the block structure of & can be found in

Appendix 4.E.
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4.4 MEAN-SQUARE STABILITY OF LMS

The goal of this section is to derive a bound for the largest step-size that guar-
antees a uniformly bounded covariance matrix E 7y, i.e., to find an approxi-
mation for pima, defined by (4.2). In view of the results in the previous section,

the LMS algorithm will be stable if and only if [A(®(u))| < 1.

The eigenvalues of ®(u) depend nonlinearly on p and, hence, it is mathemat-
ically intractable to derive an expression for the spectral radius of ® in terms of

w. For this reason, we shall proceed via an alternative route.

For any M x M square matrix A, it holds that its spectral radius is upper
bounded by its co-norm [HJ87], i.e.,

p(A) < [|Alloo,

where ||A||w is the maximum absolute row sum of A,

n
|Allc = max ( E |A”|) = maximum row sum.
1<i<n —
]:

Therefore, if we can find a p that guarantees ||®(u)||s < 1, then it also guarantees
p(®(p) < 1.

We mentioned in the previous section that the rows of ® belong to 16M — 12
classes of rows, and that each row has only O(M?) nonzero entries. Using these

properties, |®||» can be evaluated with little effort, since

L
@]l = max (2 |¢i,j|) :
]:

where ¢; ; is the (4, j)-th entry of ®.

Unfortunately, however, several of the ¢; ; are equal to 1, which makes ||®||

always larger than 1 regardless of p. In addition, ® contains several entries equal
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to o, for 2 < p < 4(M —1), and it would be restrictive to require that o, < 1 for
all p in the above range.

This last difficulty can be overcome with a simple change of variables that
we describe in Appendix 4.F. Nevertheless, this change of variables does not
modify the entries that are equal to 1. To deal with those entries, we propose to

construct a similarity transformation 7" such that there exists a g > 0 satisfying
|71 % (B)T oo < 1. (4.29)
Now since similarity transformations preserve eigenvalues, we obtain

p(2(1) < |IT7@(@)T || < 1. (4.30)

Still, the similarity transformation 7' must be chosen such that the infinity

norm of T '®(u)T remains easily computable.

We describe the construction of the similarity transformation in Appendix 4.G.
Here we will show what the final transformed matrix 7-'®T is, in terms of a block

By, as in (4.27).

Recall that each block By has a row with a 1 on the main diagonal and £ — 2
rows with a 1 outside of the main diagonal. Our task is to replace these 1’s with

smaller terms. The final matrix will have the following characteristics:

1) Rows that have a 1 on the main diagonal are replaced by rows that have

1 — 2u09 + p?o4 on the diagonal. All other elements are either O(u%02) or
O(1).

2) Rows that have a 1 in off-diagonal positions are replaced by rows that
have O(,ul/T) on these positions, where 7 > 0 is a parameter that will be

optimized in (4.32). All other elements will be O(u(™"9/7) e.g.,
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—2u 0 0 —2u O 0 0 0 0
0 0 0 0 —2u —2u 0 O 0
0 0 0 0 0 0 0 —2u —2u
| 02 —2uo2 0 0 —2uoy 0 0 0 0 0 |
is replaced by
0 0 ut/T 0 0 —um=/7  _gu(==D/T o ¢ 0
0 0 0 u/T 0 0 0 0 —2u —2u
w7, 0 2um—1/7g, 0 0 0 0 0 o0 0
(4.31)

Once the matrix is put into this form, it is possible to compute an estimate
B < Himax- The bound [ is the largest value of u such that [|T7'®(u)T|| < 1,
and is obtained from (see also Appendix 4.F)

A

= max . 4.32

s.t. inequalities(4.33a) to /‘ta/‘tf ( )
(4.33d) are satisfied

=I

The maximization is performed over pu, > 0, ug > 0, and 7 > 1. The
constraints are given below, where 0 < p < 4(M — 1) (they are written in terms
of 7, < HaOp)

11— 2569 + p}0a| 4+ p}1G2 — 2up54 + pi56| + 2(M — 2)(M + 3)utos +
+%(M —2)(M — 1)(M® — M? — M — 5)u} + 13(M — 2)(M — 1)p}52 +
+(M? = 5BM + 9) 354 + 24365 + (M — 2)(M — 1)*(M® — 3M? + 3M — T)u} +

1
+o(M = 2)(M® + 9M? — 11IM — 21)u}5, + 8(M — 1)(M — 2)u;53 +

2
+2(M — 2)p3as + (2M® — 2M? — 15M + 23) 354 + 2(M — 1)p$0s < 1
(4.33a)
1 T—1 27—1 27—1
pit T 2(M - Dy + (M= 1) +pyT 52 <1, (4.33b)
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11— 24482 + p384] + (M — 1)°p302 + 2(M — 1)p3as < 1, (4.33¢)

Tp+ (M — 1) (M — 2)ps5, + (2M* — 2M? — 11M + 16)u35, +
\ , N (4.334d)
+2p58p 41 + 2(M — l)ﬂf5p+l + WOpr2 < pf.
Each constraint corresponds to the absolute sum of one row of the transformed

matrix.

Note that there is always a choice of (uy, o) that simultaneously satisfies
all the above inequalities. In fact, for any given p,, inequalities (4.33a)—(4.33c)
can be satisfied by choosing a sufficiently small p; (for which only the terms in
the dominant — i.e., smaller — power of y; must be considered). For example

(4.33a) and (4.33c) can be replaced by
1-— 2,uf<_72 <1

for s ~ 0. The left-hand side of inequality (4.33b) becomes close to zero for
pg ~ 0, so this inequality can also be satisfied by choosing us sufficiently small.
On the other hand, for small y; inequality (4.33d) becomes simply (since
T>1, ,u}/T > g for py = 0)
_ 1
Op < Uy,

which can always be satisfied by choosing p, small enough.

The solid curve in Figure 4.2 shows a plot of the solution i of (4.32) for a
sequence {a(k)} that is normally distributed with o5 = 0.01. The rate of decay
of i is dependent on the signal distribution and is proportional to 1/M* in this
example, as indicated by the broken line. Although f is not a tight bound for
Umax (the discussion in the end of Sec. 6.3 has some more comments on this), it

is the first computable bound (that we are aware of) to be derived.
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Figure 4.2: A plot of i versus filter size M for a Gaussian distribution (continuous

line), compared with the curve 1/(o2M*) (broken line).

4.5 CONTRIBUTIONS OF THIS CHAPTER

In this chapter we described a new method to study the mean-square stability
of LMS by means of a state-space model. The originality of our analysis is
that it provides the first computable lower bound for the maximum step-size
that guarantees mean-square stability of LMS, without assuming that the input
sequence {wk} is iid, and without assuming a-priori that the adaptation is “slow”
(or that the step-size is infinitesimily small). It is therefore not a mere existence
result (such as those presented in Sec. 3.2 and 3.3). Some of the results in this

Chapter appeared in [NS98a].

As noted in [Slo93], the analysis of adaptive filters for larger step-sizes with-
out independence assumptions is an important void in the literature. The only

performance results published so far have been [FF86] and [DP95], but they suf-
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fer from the large dimensions of the state-space matrix involved (since the full

structure of these matrices is not exploited in these works as we do here).

There are several results stating that there is a ¢ such that LMS and other
adaptive algorithms will be stable for all step-sizes satisfying 0 < p < ppax (for
example, the results in Secs. 3.1 and 3.2 are of this kind, and prove the existance
of a pmax as described above under certain assumptions on the correlation of the
input sequence {:r:k}) [Maz79, JCR82, MES83]). Other existence results include
[Bit83] and [BANS8G6, Sol97]. This last work provides a bound for the step-size
that guarantees almost-sure stability of LMS. Nevertheless, not only that bound
is not computable but, as we shall explain in Chapter 5, almost-sure stability

does not imply mean-square stability or reasonable performance.

The analysis in this chapter also points to an interesting connection with the
control literature, in special the theory of singular perturbations [KBB86]. In fact,
it can be shown that a singularly-perturbed model for the ® matrix for M = 2 in
(4.10) reduces to the model used in the ODE analysis (see Appendix 4.H). It was
already noted in [K'Y97] that ODE methods correspond to singular perturbation
approximations, but until now there is no theory relating the full model (as in

(4.1)) and the singularly perturbed models of ODE analysis.
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APPENDICES FOR CHAPTER 4

4.A RECURSIONS FOR GENERIC VARIABLES

In this appendix, we describe in more detail the results of Sec. 4.2. In particular,

we give the full expressions for the four basic recursions.
Consider the expression for @y, , ;, obtained by expanding the (7,) entry of
Wi 1Wy 4 in (4.6):

M

~9 _ 2 2 4\ ~2 2 .
W14 = (1 — 2pxy ; + 1 xkz)wkz - 2,“(1 - Nf‘sz)xkz E :xk,j“’k,jwk,i +
=2
(4.A.1)
M M M
2 2 L 2 -2
+ ptT E : E T Tk 1 D, 0k + E :xk,jwk,j
=2 1=2 1 =2
i=2 1= J

Let ¢ =1 and take expected values on both sides (recalling that zy s = a(k)

is independent of @y and of a(k — n), for all n > 0), to obtain the recursion
E(@2,,,) = E (¢2,) — 2uE (¢2,0%,) + °B (2l @2 ) +...  (4A2)

E @} +1,1 depends on expected values of products of entries of x} and wy, with
the general form E (xﬁflxifja:ﬁlwk’lwk’j), for 1 < j,1 < M. Recursions for each of
these quantities must also be found.

For example, to obtain an expression for E (23, ,W4,1,) = z(ll’;)(k +1), we

proceed as follows. Recalling that zy.11 = 2, multiply both sides of (4.A.1)
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by z} , to obtain

2 ~9 2 2 2,4 \,~2
Tpt1,1Wht1,1 = xk,2(1 — 2y + p xk,l)wk,l -
M
2 2 ~ ~
- 2,u:vk’2(1 — Mmk71)a¢k,1 E Tk, jWk,jWk,1 +
=2 (4.A.3)
M M M
2 2 2 ~ ~ 2 2 ~2
T BT 1 T o E E Tk Tk W j Wk 1+ Tho E :xkz,jwk,j
=2 =2 1 =2
J 12 J

Taking expectations, we obtain the recursion

E ($i+1,1w12c+1,1) =E (ngwlzm) —2pE (xi,lxi,zwi,l) + N2 E (xi,lxi,zlbi,l) T+

(4.A.4)

Note that the above expression can be obtained from (4.A.2) by putting the term
a7 , inside every expectation on the right-hand side of (4.A.2), i.e., E (23,47 ,)
in (4.A.2) is replaced by E (2} 2} ,@; ) in (4.A.4). A similar observation applies

for any variable

D1 Pm—2 PM—-1 ~ ~
E ($k+1,1 - '$k+1,M72mk+1,M71wk+1,iwk+1,j)

for which pp—; = 0. This observation explains Step (A) of Algorithm 4.1 in
Sec. 4.2.

On the other hand, a variable E (:c,’:ﬂrl,l o Thy, mifl‘,}v[_lﬁﬁﬂ,l) with py—1 >
0 has to be treated differently, since zy11 m—1 = zx,m = a(k) is independent of
wy. Step (B) of Algorithm 4.1 can be understood by repeating the arguments

employed to obtain (4.A.4) to zf}f,f_m)(k +1).

Algorithm 4.1 depends on the knowledge of the four basic recursions. We give

the full expressions now.
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4.A.1 Recursions for Generic Seed Variables

We can obtain the expressions for all seed variables at time k£ + 1 in the same
way as we obtained (4.A.2), i.e., expanding the (i, j)-th entry of @41}, and
computing the expectation. The diagonal entries of '&ykﬂ'&);‘f 41 were computed in

(4.A.1). For the off-diagonal entries we have
W1,iW41,5 = (1 — p(wks + @i ) + Nin,ixz,j)wk,iwk,j -

M
2 - 2 ~2
— KTk, (1 - /’ka,i) E :xk,l“’k,lwk,i - N(l - /‘ka,i)xk,jxk,iwk,i -

=1
1]
1#i
M
9 L 9 5 (4.A.5)
- Mxk,i(l - ka,j) E :xk,lwk,lwk,j - M(l - Mﬂfk,j)xk,ixk,jwk,j +
i
1]
M M M
2 ~ ~ 2 2 ~2
+ 1T T 4 T 1Tk mWE Wem + W T iTk j Ti W1
=1 m=1 =1
145 M#F] 1#i
ml 1]

Taking expectations of (4.A.1) and (4.A.5), we obtain:
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M-1
(k +1) = 25" (k) = 2 23} 5 (k) + 1”2 4y (k) — 20 Z_ zzgll)(k) +
e
M-1 M—-1M-1
D IR ORI DD DN O
e e 2, (%)
M-1

m=1
m# i
) M—-1
+ 2P0y 20 (k) + 201 Y zm;f‘{) (k). (4.A.6)
m=1
m#i

. i =j = M — because z » = a(k) is independent of w; and a(k — n), we

have a different expression in this case:

M-1
ME+1) = (1—2uos + ,u2a4) 20" (k) — 2101 — pos Z Z(m, 1
m=1

M-1M-1 M-1
D IDIE AN ORI DAL
m=1 I=1 ’ m=1
l#m

(4.A.7)
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.i#Fji<j< M:

M-1
207 (k+ 1) = 257 (k) — p 2575 (k) — p 275 (K) + 1 zily — 1 2 (k) +
(7 ) (]7 ) (],2) I—1 (ll)
ot
T2 A ) — il (k) % 2l (R) = ) zh () +
I#j .1 1#j
16 124
M-1 o M-1
NP SR e (ORI ORI DR
1=1 531) 1 53 =1 (;1>
I#j i1 l#i 2
1% 1#j (4.A.8)

+ 120y 20 M () — poy zzjﬂf)(k) +2p%0y z’(
jy 1

5
Js

M—-1M-1 M-1
2o () + Y Y AT (B) 2wt Y ) (k)
72 — i 1 — L1
’ 75 (i) i
mel ; 1#j

4. i < j = M — in this case, z3 ; = a(k) is independent of the other variables,
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and the above expression simplifies to:

2 Mk +1) = (1= pos) 7™ (k) — (L = 2u0s) 25 (k) -

M-1 M1 =
I, M | ol
— (1= 2p02) 37 () on 3 £l + i D () -
=1 ’ =1 i ’
1#i l# 7

— uoy zfi,l) + ploy zaf?,)(k) — oy za/‘rlj)v[(k) +

(4.A.9)
M—1M-1 M-1
+ oy 2y (k) + o Y Zl<’":,1 >(k) i zl(’fl’%)(k)'
=1 m=1 m, 1 =1 ’
I#i m#l 1 1

4.B DETERMINING THE COEFFICIENT SETS

Each of the recursions (4.A.6)—(4.A.9) can be applied to several different seed
variables, as we vary 7 and j (except for (4.A.7), which applies only to variable
20"™(k + 1)). Nevertheless, the coefficients appearing on the right-hand sides of
(4.A.6)—(4.A.9) do not depend on the values of ¢ and j. Therefore, even though
there are M (M + 1)/2 different seed variables (recall that z5? = z3"), there are
only four different coefficient sets associated with seed variables (these coefficient

sets correspond to (4.26) with p = 0).

The recursions for auxiliary variables are obtained from Algorithm 4.1. Note
that Step (A) does not modify the coefficient sets, while Step (B) gives coefficient
sets of form (4.26) for p > 0.

To conclude that the coefficient sets are as described in Sec. 4.3.2, we need to
prove that p in (4.26) does not exceed 4(M — 1). This follows from the lemma

below.
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Lemma 4.B.1. There is no variable z%j (k) in Ty whose power list contains the

pair M — 1,pp 1 with ppy 1 > 4(M —1).

Proof: The proof is by induction. We first argue that there is no variable in I',

whose power list contains a pair (1, p;) with p; > 4.

Note that in all variables on the RHS of (4.A.6)—(4.A.9), the power lists are
such that no index has power larger than 4. Since the power of the index 1 in
Z + 1 is always zero, steps (A) and (B) of Algorithm 4.1 imply that the generic
recursion 22’ (k 4 1) will also depend only on variables in whose power lists the
index 1 has power no larger than 4. This means no variable in I'y can have a

power list with a pair (1,p;) and p; > 4.

Consider again a generic recursion z%j (k+ 1). The above conclusion implies
that the maximum power of the index 2 in Z + 1 is 4, and repeating the above
argument we conclude that there is no variable in I';, whose power list has a pair
(2, p2) with py > 8.

Proceeding with this argument, we conclude that the pair (M — 1,pp_1) in
the power lists of all variables in T'y is such that py, 1 < 4(M — 1). This fact,
and Step (B) in Algorithm 4.1, imply that the range of p in the coeflicient sets
(4.26)is 0 <p<4(M—1).

This result also proves that the length of I'; is finite, and bounded by
(4)(2x4)(3x4)(...)((M —1) x 4) =4"(M —1)!

Although this is a loose upper bound for the length of Ty, it shows that I'y and

® are indeed finite.
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4.C ENTRIES IDENTICALLY EQUAL TO 1

The row property of Sec. 4.3.3 can be verified by simple inspection of recursions
(4.A.6)—(4.A.9). We prove the column property below, i.e., we show that every

column of ® has at most one entry equal to 1.

Assume that the same variable 2% (k) appears with a coefficient equal to 1 in

the recursions for both 27°(k 4 1) and 2" (k + 1),
2P (k+1) =27 (k) + ..., 20k 4+1) =2 (k) + ..., (4.C.1)
for some r, s, m, n, and where the power lists 7 and K are

]-a D1, 1) qi1,

M -1, py— M-1, qu-
for some integers P1,P25---,PM—-1 and q1,492,---,qpm—1-

We shall prove that the fact that z'I] (k) appears with a coefficient of one in

both recursions in (4.C.1) implies that
20 (k+1)=20"(k+ 1), (4.C.2)

i.e., that r =m, s=mn, and J = K.

In fact, from recursions (4.A.6)—(4.A.9) and Algorithm 4.1, we must have
Ppv1=qu-1=0, r=m=14, s=n=j, and J+1=K+1=Z. (4.C.3)
On the other hand, from (4.24), we need
b1 =qu, P2 = g2, e Pv—2=Aqm—2 (4.C.4)

in order to have 7 +1 =K + 1.

Conditions (4.C.3) and (4.C.4) imply (4.C.2).
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4.D PROPERTIES OF SEED VARIABLES

The properties described in Sec. 4.3.4 can be proved as follows.
Our first goal is to prove that only rows of ® corresponding to recursions for

seed variables zf,’j (k 4+ 1) have an entry equal to 1 on the main diagonal.

A row of ® has a constant entry 1 on the main diagonal if and only if the

corresponding recursion 227 (k + 1) is such that
2k +1) =27 (k) +...

However, from Algorithm 4.1 in Sec. 4.2, we know that the first term on the RHS
should be z'Iil(k) Since the only case where Z+ 1 =7 is Z = 0, it follows that

only rows of ® corresponding to seed variables have 1s on the main diagonal.

The second goal is to find in which recursions z;*(k+1) a seed variable 257 (k)
can appear with a nonzero coefficient. Assume then that 27°(k 4+ 1) depends on
the seed variable z5” (k). From Algorithm 4.1, we know that z5*(k 4 1) depends
only on variables whose power list contains Z + 1. Looking at the definition of
Z + 1, we see that the only case in which Z+1=0is when Z = (M — 1, pap_1),

for any pp_1 > 0.

4.E BLOCK STRUCTURE OF &

We describe how the blocks described in Sec. 4.3.5 are obtained using an example

with block dimension 3 and M = 4. Consider the recursion for z3>(k+1) (4.A.6),

2 (k+1) = 2% (k) — 2u 2(22”22)(k) — ...
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On the other hand, the recursion for z(22’,22)(k + 1) is (applying Algorithm 4.1 to
the recursion for z3(k + 1) above)
2,2 2,2 2,2
z(m)(k +1)= z(3,2)(k) —2u Z(ﬁ;)(k) + ...
Finally, the recursion for 2> (k+1)is

(3.2)

2(23;,22)(k +1) = 03 2% (k) — 2u0, z(22’,22)(k) +...

Assume that 7r§’2 =1, 7r(22’22) = 2, and 7r(23’,22) = 3. Then the first three rows of ®
form a block Bj
1 —2u 0

Bs= |0 0 1
oy —2uoy 0
Note that the dimension of the block is given by the number of rows that it

contains, not the number of columns.

Following a similar procedure starting from any recursion z(i)’j (k + 1) with
i=j <M (i< j< M), we obtain a block of form (4.27) (or (4.28)). The
important point is that all recursions in the block correspond to variables with
the same superscript as the initial seed variable (this property also ensures that

each row appears at most in one single block).

There are actually two other kinds of blocks. One of them follows the pattern

(shown below for a block with dimension 3)

[L=pos] [zn] O 0
D3 = 0 0 —uoy ... - (4.E.1)

02—,u04‘ ‘—,uaz‘ 0 0

There are M — 1 such blocks, corresponding to recursions zg™ (k + 1) (for 1 <

i < M — 1), with dimension M — i + 1 each.
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The pattern is similar to that of a block By (see Sec. 4.3.5), but instead of
an entry 1 on the main diagonal, a block Dk has an entry 1 — poy. The ones
in the upper super-diagonal in the middle rows follow the same pattern as for a

block BK

The last kind of block corresponds to recursions 2’ (k+1) for which the power
list Z contains a pair (1,p;) with p; > 0. There is a large number of such blocks,
with dimensions ranging from 2 to M — 1. We show below a dimension-3 block

as an example:

0f[1] 0 0 =24 0 0 0
Es=10 0 [1]0 0 —2u 0 0o ...l (4.E.2)

0 0 0 0 O 0—2u0p

It follows from Lemma 4.E.1 below that the column of & corresponding to the
first column of F5 has no entry equal to 1. This property guarantees that we
cannot augment Fj3 by introducing another row with a 1 in the first column.
Therefore, the main characteristic of a block E is the absence of an entry equal

to 1 or 1 — o, on the main diagonal.

Lemma 4.E.1. An auxiliary variable zZI’(k) whose power list contains the pair
(1,p1) with p; > 0 does not appear in any recursion z.;°(k + 1) with a coefficient
equal to 1 (i.e., a coefficient that is independent of the values of u and of o, for

anyp>0).

1,“?1
M-1, ppr_q

Proof: Assume that p; > 0 and that the variable zi(’j >(k) appears with

a coefficient equal to 1 in the recursion 27°(k + 1). From Algorithm 4.1, this

recursion is given by

2k +1) = 2%, (k) + Ow),
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1,“?1
M-1, ppr_1

sion 27°(k + 1) only if r =4, s = j, and if

J+1= ( Lp1 )
M-lppr_1

But, by definition, J + 1 contains the pair (1,0), which implies p; = 0, a contra-

Therefore, 2"/ ) (k) can appear with a coefficient equal to 1 in the recur-

diction.

4.F CHANGE OF VARIABLES

The condition ||®||, < 1 requires that the absolute row sum of rows with coeffi-
cient sets (4.26) be strictly less than one. For instance, assume that the i-th row
of ® has coefficient set (4.26) for some p satisfying 2 < p < 4(M — 1). Then the

condition ||®||, < 1 requires that

i (@),

= 0, + 2u0, + plop + 2p0ps 1 + - < 1.

The above conditions require that o, < 1 for 2 < p < 4(M — 1). This severe
constraint on the input sequence can be relaxed via a simple change of variables,

which we describe now. The idea is to split the step-size p into two parts,

K= faff (4.F.1)

and redefine the input and desired sequences as

[
[l

g(k) £ Ve y(k), 2 2 /e Tk, a(k) = \/lia a(k).
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These new definitions do not modify the LMS recursion, which is now written

as

W1 = Wk + U5y (ﬂ(k) — wf:ik) .
Although the input variables and the step-size are different, the weight estimates
are not modified by the change of variables.

The input moments are now given by
&, 2 E(a(k)?) = u2/%0,, (4.F.2)

and we can make 0, as small as we wish by choosing p, small enough. With
this change of variables, (4.30) is replaced by the problem. Find a similarity

transformation T such that

i = max Halbf,
st [T=18 (s )Tl looct f

where the minimization is performed over p, and py. This leads to (4.32).

4.G SIMILARITY TRANSFORMATIONS

Our goal is to make each absolute row sum of the transformed matrix less than
1 for sufficiently small . To achieve this, we must modify all the elements ¢; ;
that are equal to 1 so that they become dependent on p, which is done differently

depending on whether the 1 entry appears on the main diagonal or not.

A unit entry on the main diagonal appears in the first rows of blocks, as in
B, in (4.27) or Cp, ,, in (4.28), while off-diagonal 1s appear on the other rows of
these blocks, as well as in blocks D,, and E, (4.E.1)—(4.E.2).

We assume here that the change of variables of Sec. 4.F has been

performed, but to avoid excessive burden in the notation we write

op and p instead of 5, and py.

138



We explain first how to construct similarity transformations that replace the

diagonal 1s with 1 — 2u0s, using a dimension 3 block B3 as an example.

4.G.1 Transforming Diagonal Entries

The basic idea is to apply a sequence of elementary row and column operations,
to replace the undesirable 1 on the main diagonal with 1 — 2uos. We shall first
explain the basic construction, restricting our attention to the first 3 columns of

a block Bj. Latter we show the impact of the transformations on the full matrix.

4.G.1.1 Basic Transformations

Consider the first 3 columns of a dimension-3 block of the type (4.27),

1 —2u 0

Bs= |0 0 1

oy —2uoy 0
This kind of pattern appears in ® for M > 2. The first row of B3 corresponds
to the first coefficients in the recursion for z*(k + 1), with i = M — 2. We shall
present a sequence of similarity transformations that replaces the first row of Bj

with a row whose absolute sum is strictly less than 1.

The basic idea is to subtract 2y times the third row from the first row, so
that the (1,1) entry of Bj is replaced by 1 — 2uo,. This can be accomplished by
left-multiplying the block by the row operator

ﬁ 0 —@J

#2001 o
00 1

Note that [I]?; is a modification of the identity matrix, with the (i,j)-th entry
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substituted by «, and that its inverse is
o -1 —
([I]1]) = [I]i,j :
Left-multiplying Bs by [I];, 2# we obtain

1—2uoy —2u(1 —2uo3) 0
— A _ —
B (I Bs=| o 0 1

g —209 0

To make this a similarity transformation, we need to post-multiply Bgl) by [/ ]f’g
This is a column operation that adds 2u times the first column of Bﬁ,} to its third

column, resulting in

1—2uos —2pu(1 — 2p07) 2/1(1 — 2u02)
— A _ —
B S 3Bl = | 0 0 1

P} —2p0 2poy

Although these operations do replace the constant entry 1 on the diagonal of
B; by a quantity that decreases with u, the above matrix is still not useful for
stability analysis, since there is no region around g = 0 for which the absolute

sum of the first row is less than 1. Indeed, for u < 1/(203) we have
‘1 — 2,u02| + 4,u|1 —2u0s| = 14 2u(2 — 03) — 8u’os.

As we saw in Sec. 4.F the absolute sum of the third row requires o5 < 1, which
implies that (2 — 03) > 0. Therefore, the above row sum is larger than one for
< (2= 02)/(4p0).

We can obtain a row sum smaller than 1 by applying similarity transforma-
tions that eliminate the O(u) terms in the second and third columns of B§2).

The O(p) term in the (1,2) entry of Bgz) can be eliminated if we add 2u times
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the first column of B§2) to its second column, i.e., post-multiply B§2) by [I];, 26
(and also pre-multiply the resulting matrix by [I ]f’; to complete the similarity

transformation):

BY =mBPm = o o 1

(o)) 0 2/,00'2

With this transformation, we successfully eliminated the O(u) entries in (1, 2)

and (1, 3) positions of Bgz), and the absolute sum of the first row now becomes

1 —2uoy +4p® <1 for u<%.

4.G.1.2 Impact on the Full Matrix

To apply the above similarity transformations to the full matrix ®, augment the

elementary row and column operators so that they have the same dimension as

P ie.,

1 0 —2u10
01 0 |0
=100 1 |0
00 0 |1

We shall discuss how other elements of ® are modified by the row and column

operations, assuming (without loss of generality) that Bs is the leading block in

.

Let us first consider what happens to the other columns of B3. In fact, we
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have
1 —2u 0 —2u 0 O
Bs;= |0 0 1 0 —2u 0 ...|,
oy —2poy 0 —2poy 0 0

and after all the transformations of Sec. 4.G.1.1 are applied, we obtain

1—2uoy 0 —4p® —2u(1 —2p0y) 44> 0
B = 0 0 1 0 24 0

op) 0 2uo, —209 0 O

Therefore, even after the similarity transformations of Sec. 4.G.1.1, the ab-
solute sum of the first row of ® is still lower bounded by 1, because of entries
—2u(1 — 2uo,), as the one in the (1,4) position (in fact, there are several such
entries). They can also be eliminated by sequences of row and column operations.
Instead of continuing with our Bs example, we will describe these operations for

a generic length-M filter as an example.

We need to find transformations for each recursion 257 (k+1) with i < j < M
and ¢ = j < M. We will show that, not only the transformations for each
recursion do not interfere with one another in any way, but they are in fact all
very similar. Therefore, we will only describe in detail the operations that are

applied to zg" (k + 1).

We seek a similarity transformation ® = Tf’llCI)Tl,l, or, equivalently, a change

of variables Ty, = Tf’llI‘k that transforms the recursion
2" (k+1) = 29" (k) + O(u)
to

Z0" (k+1) = (1 - 2u05)7" (k) + O(1?).
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We will construct 7 ; via a sequence of simple similarity transformations .S,.
In the description below, after each transformation S,, is applied, we have a new

set, of variables
=gy, with " =T

Nevertheless, to avoid adding yet another index to our notation, we shall adopt
the following convention: if the variable 2% (k) is the I-th entry of Ty, we shall
refer to the [-th entry of all I‘Ec") always by 27 (k) (and similary, the recursion
described by the I-th row of every intermediate matrix will be referred to as
297 (k +1)). These conventions greatly simplify the description of the similarity

transformations.

Assume, without loss of generality, that the first row of ® corresponds to the
recursion zy" (k + 1). We shall describe now the full sequence of operations nec-
essary to transform this row, i.e., we shall present a sequence of transformations
such that the (1,1) entry of the transformed matrix is 1 — 2uo, and all other
entries of the first row are O(u?). The following recursions will come into play:

M-1

20" (k+1) = 257 (k) = 2up205(k) — 205 ) Zz’ﬁl)(k) +0(1*),  (4G.la)
=2

M—1
25k +1) = 2375 (k) — 2uz5(k) — 2 ) zl(”l,l ) (k) + O(12),
i=2 |22
M-1
211\/’11 1,2(k+1) = 022(}’1(]4) — 210227 5(k) — 203 Z z(’;],l)(k) +0(u?),
j=2 !

143



z@?’;)(ﬂ 1) = z%’ ) (k) + O(n),

Jj+1,1

(4.G.1c)

Zz’ji{ i)(k +1) = 0123 511,41 (k) + O(w),

M
M
where j =2...M — 1.

Algorithm 4.G.1. Assume that the variables are ordered such that the first row

of ® corresponds to zy" (k+1), the second to z(ll’lz) (k+1), etc, until the M-th row,

which corresponds to z(l 1\}1 1,2) (k+1). Assume also that the ﬁ;j 'th row corresponds

to z( )(k + 1), that the ﬁ jth corresponds to z(M i 1)(k +1) and so on. The
J,1

M-1,1
objective of the transformations is to modify the first row of ®.

Begin the transformations by eliminating the term

from (4.G.1a), which is accomplished by the following steps:

(1.1) Column operation. Add 2u col; to colB(M_l). This step zeros the —2u ele-

ment in the (1, 51 ) position of ®. After this transformation, the recur-

sion (4.A.6) for zy" (k + 1) becomes
2 (k+1) = 257 (k) — 2,uz1 (k) — 2u Z z. (k +0(1?). (4.G.2)

The only difference from (4.G.1a) is that the sum now goes only up to M —2,
instead of up to M — 1.

(1.2) Row operation. Subtract 2urow ,m-1) from rowy, to complete the similar-

B

ity transformation. Since zz’ﬂf_ll )(k + 1) contains only O(u) terms, only

M-1,1

the O(u?) terms in (4.G.2) are modified by this step (see last recursion
(4.G.1c)).
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These steps are equivalent to applying the transformation Sy_1 = [I ]1_2,6le_1) to
1M1

®:
-1
D (SJ(\})_I) @SJ(\})_I,

where the arrow is used to indicate that the same symbol is being used for the
original and for the transformed ®. The column operation (1.1) corresponds to
the right multiplication ®Sy_1, and the row operation (1.2) corresponds to the
left multiplication (S](\,l[)l)l (@S}QJ

The elimination of the next elements is more involved. The next step elimi-
nates

s (b

1
M-2,1

(2.1) Column operation. Add 2u coly to col 2. This step zeros the —2u ele-
1
ment in the (1, ﬂiM_m) position of . Now (4.G.2) reads

M-3

2t (k+1) = 25" (k) — 2u2y5(k) — 20 ) zz’;;)(k) LO(?).  (4.G.3)

j=2

(2.2) Row operation. To complete the similarity transformation, subtract 2u

Trow ,m-2) from rowy. Unlike what happened in the previous case, TOW ,(m—2)
1 1

has a 1 in the position ( §M72), ﬁéMﬁ)). The row operation therefore cre-

ates a new element —2u in the (1, ﬁéMﬁz)) position, so
M-3
20" (k1) = 20" (k) = 2n22(k) = 20 ) 2y (k) =
=2 ! (4.G.4)

— 2uzz’ﬂgz2 )(k) +O0(1?).

M 1
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(2.8) Follow steps (1.1)—(1.2) to eliminate this new element. Note that the new

row operation does not add another O(u) element to row;, and (4.G.4)

becomes
M-3
w0 (k1) = 25" (K) = 2at3 (k) = 2 3 20y (K) + OG2). (4.G.5)
j=2 G

The transformations in steps (2.1)-(2.2) correspond to the similarity transforma-

tion SM 5 = [I] -2 and step (2.3) corresponds to SM 5 = [I]iua(M*”'
12

The elimination of each one of the O(u) elements in the (1, ﬂ{j)) position
can therefore be accomplished with M — j similarity transformations. The first
M — j—1 transformations follow (2.1)-(2.2), and the last one follows (1.1)-(1.2).

After these transformations, the recursion (4.G.5) becomes

JHk4+1) =z (k) — 2,uzi’12(k) +O(u?). (4.G.6)
All similarity transformations are of the form S](\? =[I ]1 o=

The last element to be eliminated is the —2u in position (1, 2) (i.e., —2uz{ 5 (k)
in (4.G.6)). To zero this term, it is necessary to apply M — 2 transformations
(2.1)-(2.2), and one transformation (1.1)-(1.2). The only difference now is that

after 2prowys is subtracted from rowy, the final recursion is
207 (k+1) = (1 - 2p05) 7" (k) + O(1?), (4.G.7)

which s in the desired form. The similarity transformations have all the form

WO =13 for2<n< M.

1,n>

All these steps together correspond to the application of a similarity transfor-

mation to ®. The matrix describing the combined effect of all transformations
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for 25*(k + 1) is denoted by
T,y = WMDWM=2) | yy@OgM=2) - g) (4.G.8)
Therefore, after all these steps, @ is replaced with
P Ty 19Ty,
Although these steps are meant to modify the row of ® corresponding to
2o (k 4 1), the same basic idea can be used (almost with no modifications) to
modify the rows of ® corresponding to all other z?(k + 1). The column and

row operations that we used to define our similarity transformations have the

following important properties, that we state as a lemma.

Lemma 4.G.1. The similarity transformations used in Algorithm 4.G.1 are such

that

1. The row operations modify only the first row of ®.

2. Each column operation replaces a target column (say, col,) by col, +a col;.

Such operation is performed on col, only once.
3. The column operations modify only rows that describe recursions

z(lji,_l,p)(k +1).

Proof: The first two properties follow directly from the definitions of the row and
column operations. The third property follows from the remarks in Sec. 4.3.4,

and from property 2.

These results hold in general — the transformations for the block starting

with z57 (k + 1) will modify only rows relative to recursions zj\’,‘,jfl,p(k + 1). This
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observation implies that the transformations for a block will not interfere in any
way with the transformations for any other block. We state this result as another

lemma.

Lemma 4.G.2. Define Rf,’j as the set of rows modified or used to modify other
rows in the transformations for a block starting with 25’ (k +1). Then the inter-

section of Ry and Ry® is empty if r #1i or s # j.

This observation allows us to apply the transformations for all blocks B,
(4.27), Cpn (4.28) and D,, (4.E.1) independently — one set of transformations
will not interfere with the other. In particular, the transformations may be
applied in any desired order. However, the diagonal transformations used in
Sec. 4.G.2 below must be applied only after the transformations described in this

section.

4.G.1.3 Second Level of Transformations

After the above transformations are applied to ®, we can use a procedure similar
to Algorithm 4.G.1 to eliminate the O(u?) terms in the transformed recursion
20" (k 4+ 1) (O(u203) terms are not eliminated). This second level of transforma-

tions will put the matrix in the form described in (4.31).

These transformations follow the same basic idea as Algorithm 4.G.1 — the
elimination of an O(p?) term from row 7" requires a series of up to M row and
column operations, exactly as described in steps (1.1)—(2.2) of Algorithm 4.G.1.
In the process, the 1 —2u05 entry in the main diagonal in row Wé’l will be replaced

by 1 — 2uoy + ploy.
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The only significant difference between the second level of transformations and
the first one is that not all O(u?) terms can be eliminated. This is because the re-
cursion zy" (k+1) (after transformation) contains the terms p2(1— 2;&02)2%’{,2 ) (k),

3,2
for 2 < j < M — 1. Consider for example the term zéuj,l;M)fl(k). The recursions

M-1,2
of interest are:

20" (k+1) = (1= 2u02) 29" (k) + p?(1 ~ 2u02)z€4112’M)_1(k) +oe

M—1,2

205Nk + 1) = 0z M (K) + O(p)
(Mfl,z) ’
M-1,M-1

If we subtract pu? times column wé’l from column 7r( L3 ) to eliminate the

M-1,2
undesirable term in row ﬂé’l, the row operation that completes the similarity
transformations adds a term u202z§4,2_1’M ~'(k) to recursion z;" (k-+1). Therefore,

we only replaced an O(u?) term by an O(u%05) term.

However, almost all O(u?) terms in row my" will be of the form u?(1 —
2u02)z2’;l:f)(k), i.e., the power list contains an index with power 1. This fact
allows us to replace an O(u?) term with an O(u®) term. For example, consider
the elimination of the following term from zy" (k + 1):

2N (k+1) = (1 — 2u09) 20" (k) + 2p2(1 — QMUZ)zE’N{;l )(k) +...

M-1,1

M3 (k+1) = O,

M—l,l)

Therefore, the elimination of the undesired term in z;"* (k+1) will only add O(u?)

: 1,1
entries to my".

The application of a slight modification of Algorithm 4.G.1 to all O(u?) entries
of z(l)’l (k+1) whose power lists contain a pair (j,1) eliminates the great majority
of O(u?) entries in my™", which allows for a bound /i much less conservative than

what would be obtained by eliminating only O(u) terms.
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4.G.2 Transforming Off-Diagonal Entries

Even after applying all the above transformations to modify the recursion zé’j (k+
1), there still are several entries of ® equal to 1 in off-diagonal positions. These
entries can be replaced with u” for » € (0, 1) using diagonal transformations, as
we explain now. Again, we present the transformations using the zy"' (k+1) block

as an example:

20" (k+1) = (1 - 2u02)2" (k) + O(?)

Z(ll,,lz) (k+1)= 2(127,12)(]“) - 2:“3%’11,2)(]‘5) -

2,2

Z(lé,lz) (k+1) = 2(15,12)(]“) - Qyzz’ll’z)(k) -

3,2

a1,k +1) = 022" (k) + 20223 ) (k) + - + 2p02205,_y 5 (k) + ...

(4.G.9)

Assume, without loss of generality, that the vector I'y, is ordered such that

T

Ti=|z" (k) 209(k) 255(F) o 2G6009E) x o x|
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where X is any variable. Then the first elements of ® are

-1—2u02+u204 X X X ... X X X ]
0 0 1 x ... x x X
0 0 01 ... x x X
¢ = 0 0 0 0 1 X X ;
0 0 0 O 0 1 x
02 X X X X X X
X X X X X X X

where x stands for a possibly nonzero entry.

The 1 in ®’s (2,3) position can be replaced with u(Mi”T, by using the diag-
onal matrix D; = diag(1, 1, ,u(M12)T, 1, ...1). The parameter 7 > 0 will not be
chosen in advance. Instead, it will be used as an extra degree of freedom in the

maximization (4.32).

Applying the above diagonal transformation, we obtain the new matrix

D7'®D, =
(1 —2u0s + p20s X umx X X X T

0 0 um X X X
0 0 0 u_ﬁ u_ﬁx /fﬁx

= 0 0 0 0 1 X
0 0 0 0 0 1
o2 x uﬁx x X X
X x uﬁx X X X

Thus, although the (2,3) element was successfully replaced by ,u(Miz)T, the
element (3,4) is now ,u_(Miz)f. Now using D, = diag(1, 1, 1, ,u(ME2)T, 1, ..., 1),
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we obtain

Continuing this procedure, the result will be

1
1—2uos + p?os x pI=2)7 x X X X X
1
0 0 pMM=2)7 X X X X
1 _ 1 _ 1 _ 1
0 0 0 M(M—Z)‘r u (M=-2)7 % " (M-2)T % " (M=-2)7 %
2 2 2
0 0 0 0 I-‘_ (M—2)r ”* (M—2)7 ”7 (M-2)7
0 0 0 0 0 X X
0 0 0 0 0 1 X
1 2
D) X pM=2)7 5 (M=2)7 ¥ X X X
1 2
X X pM=2)7 g (M=2)7 % X X X

- 1 M—3 1
1 —2uos + ploy X pM=2)7 x pM=2)7 pT X X
1 M—3 1
0 0 pI—2)r pMM=2)7 T X
M—4 M-—3 _ 1
0 0 0 p =27 o TM=2)7 5 )T =27 i
M-—5 M—4 ___ 2
0 0 0 M(M—2)‘r X “(M—Z)‘r X u (M=2)7T %
1 2 _ M-4
0 0 0 pOT=27 pOT=2)7 5~ (M=2)7
1 __M-3
0 0 0 0 pM=2)7 p (M=2)7
1 1 M—3 1 1
uoTo2 porx  pM=2)7 p(M=2)7 x X poTX
1 1 M—3 I — 1
uoT X porx  pM=2)7T p(M=2)7 X I

This procedure must be repeated for all blocks By, Cp, n, D, and E,. The
column property in Sec. 4.3.3 (stating that there is at most one entry equal to 1
on each column) guarantees that the above method can be applied to substitute

all off-diagonal 1’s in & with powers of the step-size.

4.G.3 Final Coefficient Sets and Stability Bound

We can track the results of each transformation on the coefficient sets (4.26).

Although there will be more different coefficient sets than the 16M — 12 that
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we started with, an analysis of Algorithm 4.G.1 and Sec. 4.G.2 shows that the
transformed recursions of the largest blocks have the largest absolute row-sums
after all transformations are applied. Therefore, the coefficient sets that must be

considered for stability analysis are those of transformed recursions

2" (k+1), b (k+1), for1<i<M -1,

z(ljvlf_l,p)(k +1), forl1<p<4(M-1),

as well as the recursions

Z(J\J/Iw,{ll,,.)(k"‘l), fOI'OS’]"SZl(M_l)

The absolute row-sums relative to these rows are the ones listed in (4.33).

4. H SINGULAR PERTURBATIONS AND THE ODE
MODEL

We have seen in Chapter 3, Secs 3.1-3.3, that when the step-size is small (u ~ 0),
results from independence theory are good approximations for the mean-square

behavior of adaptive filters.

Another approach for the analysis of adaptive filters with slow adaptation
(small step-size) is the ODE (from ordinary differential equation) method, which
studies convergence with probability one. This method approximates the conver-
gence characteristics of an adaptive filter via a continuous-time model [BMP87,
KY97]. For example, the ODE approximation for E @, of LMS is a differential

equation of the form

a = Ra, (4.H.1)
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where R = Ex;xr. The ODE method states that, for sufficiently small step-size
(and under a number of conditions), the trajectory of @ will stay close to that

of a.

On the other hand, an approximation method that is commonly used in the
control literature is the singular perturbations method [KBB86, KKJ86]. This
method allows us to find approximations and conditions for stability of dynamical
systems, when a parameter approaches zero. For example, if a discrete-time linear

system can be put into the form

I + €A1,1 €A1’2
b1 = by, (4.H.2)

then (if € ~ 0 and under certain stability conditions), the vector by can be split
into slow and fast subsystems, and the trajectory of the slow subsystem can be

approximated by the continuous-time dynamical system

s = |:A1,1 + A1,2 (I - A2,2)_1A2,1} S. (4H3)

Although the theory of singular perturbations for discrete-time systems is not
as well developed as that for continuous-time systems, there are results in the
literature analyzing conditions on € and on the A, ; for which the original system

(4.H.2) is stable [SOK84, LL92, KA96].

The ODE method can be related to the singular perturbations method as
follows. Consider again the LMS algorithm with M = 2, with the input sequence
{azk} satisfying the same conditions as in Sec. 4.1.1. We can then derive a state-

space description for the entries of E wy, in the same way as in the derivation of
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® (from Eq. (4.10)), obtaining

E(wk+1’1) 1 O — M E( ~k,1)
E(W11,2) =10 1—poy| O E(@k2) | - (4.H.4)
E(~”‘72+1,1ﬂ’k+1,1) 02 0 ‘ —HO2 E(wi,lwk,l)
Let Az,g = [—1-40'2 ], and
E(w
A (1) 0 0 -1
O = E(u?kz) , A= A = A1 = [02 O} .

0—o 0
E(m%,l’l’[)k_,_l,l) 2

Now, applying the singular perturbations method to the above system, we ob-
tain an approximation for the evolution of the first two entries of ®; from the

continuous-time system below:

0 —09

which for sufficiently small p can be further approximated by O, = —05] O,,
which is the same model obtained from the ODE method (4.H.1).

In addition, if we apply the singular perturbations formula (4.H.3) to ®, we

obtain the slow subsystem (again for u & 0),
rs = _202rsa
which would be an ODE model for the entries of E @ w;, [for M = 2, T, has size
4].
With this connection, we can employ results from the theory of singular per-
turbations to study how good the approximations provided by the ODE method

are, and also to determine a range of step-sizes for which we can guarantee sta-

bility of an adaptive filter.
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CHAPTER 5

ENSEMBLE-AVERAGE LEARNING CURVES

Ensemble-average learning curves are commonly used to analyze and demonstrate
the performance of adaptive filters. They are obtained by averaging several er-
ror curves over repeated experiments and by plotting the resulting average curve.
Such averaged curves have been used to extract, among other things, information
about the rate of convergence of an adaptive filter, its steady-state error value, or
choices of step-sizes for faster or slower convergence. For infinitesimal step-sizes,
or under the independence conditions of Chapter 2, it is known that data ex-
tracted from such ensemble-average learning curves provide reasonably accurate
information about the real performance of an adaptive filter (see the discussion
in Chapters 2 and 3, and [WML76, ME83, WS85, Ber86, Mac95, SK95, Hay96,
KV96)).

In Chapter 4, however, we were interested in studying the performance of
adaptive schemes for larger step-sizes and without independence assumptions.
By larger step-sizes we do not mean step-sizes that are necessarily large, but
rather step-sizes that are not infinitesimally small. In the process of comparing
results obtained from ensemble-average learning curves with results predicted by
an exact theoretical analysis for such scenarios, we noticed a considerable dif-
ference between both cases, and the differences persisted no matter how many
more experiments we averaged. A first explanation was to blame the simulation

program and possible numerical errors. After careful study, however, we realized
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that the differences have an analytical explanation and that they do occur for
larger step-sizes. Even more importantly, this led us to observe some other in-
teresting phenomena regarding the behavior of ensemble-average learning curves
that may have gone unnoticed in the literature. More specifically, and among
other original results, we shall establish the following facts both by theory and by

simulation:

1. Ensemble-average learning curves actually exhibit two distinct rates of con-

vergence; one for the initial time instants and another for later time instants.

2. Ensemble-average learning curves tend to converge faster than predicted by

theory.

3. Ensemble-average learning curves can (and do) converge even when a mean-

square stability analysis predicts divergence.

4. The more experiments we average to construct an ensemble-average learning
curve, the more time it takes to observe the distinction between theory and
simulation. Nevertheless, (in the noiseless case) the difference always exists

and one should only simulate for a longer period of time to observe it.

5. Mean-square analysis may not be the most appropriate performance mea-
sure for larger step-sizes. A combination of mean-square and almost-sure

stability results seem to be more appropriate.

6. For filters with multiple taps, the behavior of ensemble-average learning
curves may be dependent on the initial condition. This dependency does

not exist for single tap filters.
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5.1 LEARNING CURVES

We first recall the definitions of learning curves and ensemble-average learning

curves. Recall that the MSE is defined as

and the mean-square deviation (MSD), by
E|Jw. — wgl*.
We assume in this section that:
M-1. The sequences {y(k), mk} are related via a linear model of the form
y(k) = zpw. +v(k)

for some unknown w,, and where v(k) is zero-mean with variance o2 and uncor-

related with xy,.

As we saw in Sec. 1.2, the LMS algorithm computes approximations to w,

via the recursion
Wy = Wy + ,ua:k(y(k) - mfwk)

The plot of the MSE as a function of the time instant k is known as the
learning curve of the (LMS) algorithm, and it is dependent on the step-size u.
In general, it is not a simple task to find analytical expressions for the learning
curve or for the steady-state MSE, except when the assumptions of independence
theory are used. Despite the fact that these assumptions are seldom satisfied
in practice, it is known that the learning curves obtained using independence
theory are good approximations for the true learning curves when the step-size

 is vanishingly small (see Chapter 3).
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5.1.1 Ensemble-Average Learning Curves

Unfortunately, however, there is no general result predicting how large will the
difference be between the actual learning curve for a particular application, and
the approximation obtained from independence theory, for a given value of the
step-size. For this reason, it is common practice to estimate the learning curve
by experimentation or by repeated simulations. More specifically, several inde-
pendent experiments (or simulations) are performed, say L of them. In each of
the experiments, the LMS algorithm is applied for N iterations, always start-
ing from the same initial condition and under the same statistical conditions for
the sequences {y(k)} and {:I:k} From each experiment i, a sample curve e (k),
1 < k < N, isobtained. After all L experiments are completed, an approximation

for the learning curve is computed by averaging as follows:

L
A 1 .
2 — i 2
Ee(k) NE(k)_EE eD(k)?, 1<k<N.

i=1

A

E(k) is referred to as an ensemble-average learning curve.

Although it is less common, we can also compute the plot of the MSD versus
time. We shall normally refer to this plot also as “the learning curve”, or as the
MSD learning curve, if we need to distinguish between the two plots for MSE

and MSD. The MSD ensemble-average learning curve is
1 X
bll2 ~ Dk = — 012
E ||| =~ D(k) = 7 ;_1 |lw,’||*, 1<k<N.

If the step-size u is sufficiently small, then an average of few tens of exper-
iments is enough to obtain experimental learning curves E'(k) that are close to
the one predicted by independence theory. This one in turn, as mentioned above,
approximates the actual learning curve Ee(k)? (i.e., in the absence of the in-

dependence assumptions) to first order in u. Thus ensemble-average learning
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curves provide reasonable approximations for the actual learning curve when u
is sufficiently small (we shall also provide an analytical justification for this fact

later in Thm. 5.3). But what about larger step-sizes?

First however, let us exemplify the behavior of the ensemble-average learning
curve for small step-sizes. Thus consider a length M = 10 LMS adaptive filter
operating with Gaussian inputs with covariance matrix E z,x} = I, step-size u =
0.08, and no noise. The learning curve for this case was computed theoretically

in [Rup93], and is given by
Ee(k)® = (1 — 2u + 120%)*|| o |*.

In Fig. 5.1 we plot this theoretical curve, in addition to an ensemble-average
learning curve that is obtained from the average of L = 100 simulations. Note
how both plots are close to each other, so much so that one is led to believe that

there is a single curve in the figure.

Notice, however, how towards the end of the plot both curves start to diverge
from each other (see Fig. 5.2). This phenomenon does occur even for small
step-sizes, and the divergence in fact becomes more pronounced for larger time

instants. We shall explain this observation analytically later in Sec. 5.3.5.

Now given the good agreement for sufficiently small step-sizes between the
ensemble-average learning curve and the actual learning curve, it is common in the
literature to use the average of a few independent repeated experiments to predict
or confirm theoretical results from simulation results (a few relatively recent
examples include [FW85, VVK94|, which use 10-20 independent experiments,
and [Rup93, S1093, TF88], which use 100 independent experiments).
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Figure 5.1: Learning curves computed by simulation and theoretically, with Gaus-

stan id inputs, M = 10, u = 0.08, and L = 100.

5.1.2 Objectives

As mentioned earlier in the introduction, the purpose of this chapter is to show,
by examples and also analytically that for larger step-sizes, it may be necessary
to perform a considerably larger number of experiments to correctly approximate
the average Ee(k)?. In other words, we claim that more care is needed while
interpreting ensemble-average learning curves. These curves can lead to erroneous
conclusions unless a large enough number of experiments are averaged (at times
of the order of tens of thousands or higher). We study this phenomenon and
provide a theoretical justification for its occurrence. In particular, we establish

the six facts listed in the introduction.

In the next section, we provide a few examples that justify the above claims.

In Sec. 5.3 we concentrate on the scalar LMS algorithm (i.e., we restrict ourselves
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Figure 5.2: Learning curves computed by simulation and theoretically, with Gaus-

stan id inputs, M = 10, u = 0.08, and L = 100.

to M = 1) with iid inputs and no noise. We show, analytically, that the scalar
LMS algorithm has two different rates of convergence for larger step-sizes. One
rate of convergence is obtained from standard mean-square (MS) analysis, and
describes well the behavior of the algorithm for the initial convergence period (k
small). The second rate of convergence, which we define and evaluate for several
different input distributions, becomes important for larger k. We prove that this
second rate of convergence is always faster than that obtained from MS analysis,
and that both rates are approximately the same when u ~ 0. We then show that

similar results still hold in the vector case (M > 1) in Sec. 5.4.
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5.2 SIMULATIONS AND MOTIVATION

The purpose of this section is to demonstrate by means of several simulations that
for larger step-sizes there exists a noticeable difference between learning curves
derived from MSE analysis and ensemble-average learning curves, even when the
latter are constructed by averaging over a large number of repeated experiments.
Later we shall show that this phenomenon in fact has an analytical justification
and that (for noiseless filters) it cannot be completely removed by indefinitely
increasing the number of repeated experiments. We shall also show analytically

that this phenomenon disappears for infinitesimally small step-sizes.

We start with a few examples. Consider again the adaptive LMS filter of
length M = 10 that was used to generate Fig. 5.1, with Gaussian input (i.e.,
the entries of «,, are Gaussian distributed, with zero mean and variance 1), and
Gaussian noise v(n) with variance o2 = 10~*. In this case, since the independence
assumptions are satisfied, it is possible to compute the learning curve E e(k)?

exactly, using the recursion (2.9) for C} = E @7,
ék+1 = ék — ,u(C’kR + Rék) + 2N2RCkR + /,LZRTI'(CV/@R) + uzogR,
and the expression

Ee(k)® = Tr(RCy).

In Fig. 5.3, we plot the resulting theoretical learning curve, Ee(k)?, as well
as ensemble-average learning curves computed with L = 10, L = 100, and
L = 10,000, all with step-size 4 = 0.16 (which is twice the value of the step-
size used to generate Fig. 5.1). Note how all simulation curves are now notice-
ably far (and, most of the time, below) the (lighter) theoretical curve, although

the simulations get closer to the theoretical curve as L is increased. Note also
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Figure 5.3: Learning curves computed by simulation and theoretically, with
Gaussian independent input vectors, Gaussian noise with o2 =10"*, M = 10,

pu=0.16, and L = 10, L = 100, and L = 10*.

that the simulation curves converge faster than the theoretical curve. This situ-
ation should be compared with Fig. 5.1, where an almost-perfect agreement was
obtained between theory and simulation.

When the independence assumptions do not hold, these effects still occur. In
the next example, the input vectors x;, are not iid, but have a delay-line structure,
ie.,

T

ze=la(k—M+1) ... a(k—1) a(k)

The results of Chapter 4 can be used to obtain, analytically, the learning curve
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Ee(k)? (using the matrix ® derived for M = 2 in Sec. 4.1, Eq. (4.10)). Starting
from a deterministic initial condition wy, the vector T'y (as defined in (4.9)) can

be easily computed, since
Ed2. = g2 E( ~ )2 — 2. E 22
Wyp,1 = Wo,1; Lo,1Wo,1) = Wo 1 BTq 1,

and similarly for the other entries of I'y. Having the initial condition I'y and the

state-space matrix ®, we can compute the MSE using the recursion
T\, = F1,,
and the relation

Ee(k)>’=10 10 0 0 1 0] T4

In Fig. 5.4 we plot this theoretical curve, as well as ensemble-average curves
for L = 100 to L = 10,000, with filter length M = 2, step-size u© = 8.3 and for
a(k) iid, uniformly distributed between —0.5 and 0.5. With this value of u, the
actual learning curve E e(k)? can be shown to diverge (and we observe in the fig-
ure that it indeed diverges). However, the simulations show the ensemble-average
curves E(k) converging (see Fig. 5.4 (a)) for various values of L! Notice how-
ever that for increasing L, the ensemble-average curve stays closer to the actual
learning curve for a longer period of time towards the beginning of the simulation
— still the curves separate afterwards with the actual curve diverging and the
ensemble-average curve converging (no matter how large L is). We shall explain

this fact analytically in Sec. 5.3.6.

These simulations show that the behavior of the ensemble-average curves may
be significantly different than that of the theoretical learning curves (e.g., con-

vergence can occur even when divergence by MSE analysis is expected; faster
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Figure 5.4: Learning curves computed by simulation and theoretically, with
tap-delayed input wvectors, M =2, u=28.3, and L =100, L =1,000, and
L = 10,000 (a); theoretical curve and L = 100 only (b); theoretical and L = 1000
only (c); theoretical and L = 10,000 only (d).

convergence can occur even when slower rates are predicted by MSE analysis,
and so on). These differences can lead to wrong conclusions when one attempts
to predict performance from simulation results. The interesting fact to stress is
that these differences may occur even for very large L.

In the next sections we explain the origin of these effects by focusing first on

the scalar LMS case, which serves as a good demonstration and helps highlight
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the main ideas.

5.3 THEORETICAL ANALYSISIN THE SCALAR CASE

A simple model is used in this section to explain the differences observed between
the simulations and theoretical results. More specifically, we study the scalar

LMS recursion with the following assumptions
I-1. The sequence {wk} 18 independent.
I-2. y(k) is correlated with xy, but is independent of all x; with j # k.

Z. The noise is identically zero (v(k) =0).

Thus assuming M = 1, we obtain a single-tap adaptive filter with an update

equation of the form
Wiy = wi + pee(k) ,  y(k) = zrw.,  e(k) = y(k) — zrwy (5.1)

where all variables {wy, xx, e(k)} are now scalar-valued. Recall that the weight

error vector is denoted by w; = w, — wy, which therefore satisfies the recursion

Wy = (1 — px})idy,  with initial condition .

5.3.1 Condition for Mean-Square Stability

We first determine conditions on the step-size u for the above one-tap filter to be
mean-square stable, i.e., for the variance of iy, E @3, to converge to zero. This

is a standard step in mean-square stability analysis.

We start by squaring both sides of the above LMS error equation to obtain

~ 2 .
2., = (1 pal) @} (52)
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This is a stochastic difference equation relating two positive quantities, 7} 41
and 2. The relation between both quantities is a random multiplicative factor,

which we shall denote by

a

u(k) = (1- umi)z.

Note that from our assumptions on {x;}, it follows that the {u(k)} are iid. To
simplify the notation further, we also denote

A .9

In our simplified notation, the recursion (5.2) becomes
Y1 = uw(k)Yr = You(1)u(2)...u(k), (5.3)

where the initial condition, Y = 11;3, is assumed deterministic.

As mentioned above, we want to determine conditions under which E Y} con-
verges to zero. For this purpose, we denote the variance and the fourth-order

moment of the regressor x; by
A A
oy =Ex} oy =Ex} .

From (5.3), and using the independence of the {u(¢)}, we then obtain

k+1

EYiy = (BEw)" Y = [1 - pow + 204" g, (5.4)

where we are denoting the iid nonnegative variables u(¢) generically by u (their

expected value is equal to 1 — uoy + p?oy).

From the above equation, we conclude that EY} will converge to 0 if, and

only if, u is such that the mean of w is strictly less than 1, which leads to

0 < poy/or < 2. (5.5)
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We will refer to the resulting rate of convergence of EY}, viz., Eu =1 — 2uos +

wroy, as the MS rate of convergence.

For ease of comparison with a later condition (see (5.10) further ahead), we

shall rewrite the requirement Eu < 1 in the equivalent form
In(Eu) <0. (5.6)

Observe further that the logarithm of the MS rate of convergence is equal to
ln(E u) (a result that we shall also invoke later — in the discussion following

(5.10)). We summarize the above conclusions in the following statement.

Theorem 5.1 (Mean-square stability). Consider the scalar LMS algorithm
(5.1) with stationary iid inputs {xy}. Assume also that the noise is identi-
cally zero. Then, Ew} tends to zero if, and only if, the step-size u is such that

In (Eu) <0 or, equivalently, (5.5) holds.

What we just did was the standard mean-square stability analysis using in-

dependence theory.

Consider now the square error e(k)? = x2db;. The behavior of Ee(k)? is the

same as that of E b}, since z? is stationary and independent of i} and
Ee(k)’ = 0y Ew} .

Therefore, Ee(k)? will converge when E 3 does, and the rates of convergence

will be the same.
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5.3.2 Behavior of a Sample Curve

Our experiments in Sec. 5.2 showed that there is a clear distinction between the
plots of EY}, and of the ensemble-average curve %Zle Yk(i). We explain this

fact in this section.

For this purpose, we now focus on the behavior of a typical (single) curve
Y) and show that, for large k, Y, decays (or increases) at a rate significantly
different than that of EY;. We obtain this result by studying conditions under
which a typical curve Yj converges to zero with probability one (or almost surely).
Later, we shall show how this effect manifests itself when several such curves are

averaged together to yield an ensemble-average curve.

We start by computing the logarithm of Y} in Eq. (5.3),

k—1
InY, =InY, +Zlnu(z’) ,

i=0
which shows that the difference InY; —In Y} is equal to the sum of £ independent
and identically distributed random variables (Inu(i)). We assume for now that
the variance of Inu(¢) is bounded (Thm. 5.3 gives conditions for this to hold).

Therefore, we can use the strong law of large numbers [Dur96] to conclude that

InY, as

: E(lnu(i) £ E(nu), (5.7)

where a.s. denotes almost-sure convergence. That is, for large &, (InY})/k will al-
most surely converge to a constant, Elnu. [We shall evaluate E(ln u) for different

input distributions in Sec. 5.3.4.]

We now need to translate the above result directly in terms of Y}, instead of
its logarithm. To do so, we must find how fast is the convergence of (ln Yk) /k

to its limit. We use a result from [Dur96, pp. 66 and 437] stating that, with
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probability one, it holds that

lim sup
k—o0

(lnY,c —InYy — kE(lnu)

=2 o1 (5.8)
k1/2(Inn k)" )

where o7, denotes the variance of Inu, which we assume to be finite (see Theo-

rem 5.3).

Relation (5.8) can be interpreted as follows. Denote by w the experiment
of choosing a regressor sequence {mk}lo;l For each experiment w, compute the
resulting sequence Yj(w) for all & > 1 (starting always from the same initial
condition Yp). Then the statement (5.7) that “(InY})/k converges to Eln(u)

”

a.s.” means that the set of experiments

InY;
Z= {w such that — l’;(“’) — Eln(u)}

has probability 1. Moreover, equation (5.8) implies that, with probability one,
there exists for each experiment a finite positive number K (w) (dependent on the

experiment) such that for all £ > K(w), the corresponding curve Yj(w) satisfies
InY;(w) = kE(lnu) 4+ In Yy + 6(k),
where the error 6(k) satisfies
1/2

10(k)| < \/ialnukl/z(lnlnk) :

We stress that K (w) depends on the experiment w.

Therefore, (5.7) and (5.8) imply that, with probability one, a typical curve
(k,Yy(w)) will eventually enter and stay inside the set

0= {(k, y(k)) . y(k) < YvoekElnue 2kln(lnk)alnu}' (59)

In other words, for k large enough, a typical curve Yj(w) will be upper bounded

by the curve YpekBlntey2kn(nklomu  The convergence of Yj(w) to the above set,
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however, is not uniform. That is, there is no finite K such that for almost all

experiments, (k, Yk(w)) € 0O for k > K,.

Now since Elnu does not depend on the time k, the first exponential in (5.9)

dominates the second when k is large, which implies that the upper bound
F(k) 2 YyekBlnugomuy/2kmnk) _y

if, and only if, E(Inu) < 0. We thus conclude that a typical curve Y} converges
to zero almost surely (or with probability one) if, and only if, the step-size u is

such that
Elnu <0 (5.10)

This leads to a different condition on p than the one derived for mean-square
stability in (5.6). Note also that for large k, when (k,Yk) is already close to
or inside O, the rate of convergence of a typical curve Y} is dictated primarily

kElnu  This implies that, for large k, the logarithm of the rate of

by the term e
convergence of Y = i} is given by Elnu (which should be contrasted with InE u
in the mean-square analysis case right after (5.6)). We shall refer to this second

rate as the a.s. rate of convergence. The following theorem has thus been proved.

Theorem 5.2 (Almost-sure convergence). Consider the scalar LMS algo-
rithm (5.1) with stationary id inputs {:I:k} Assume also that the noise is iden-
tically zero. Then, with probability one, there is a finite constant K (dependent
on the realization) such that (k, ’&Ji) stays inside the set © defined above for all
k > K. In particular, a typical curve ’&Ji converges to zero with probability one

if, and only if, Elnu < 0 (which is equivalent to Eln(1 — umi)Z < 0).
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There are related works in the literature that have also studied the almost-
sure stability of LMS (e.g., [BA81, BANS86, Sol97]), or even of continuous-time
systems (e.g., [Koz69, PE78|). None of these works, however, highlights the
distinctions that arise between mean-square stability and almost-sure stability in
the same level of generality that we do here. Reference [BAN8G], for example,
compares both notions of stability for 4 ~ 0, when they in fact agree, proving a
version of Theorem 5.3 further ahead. There are no prior results on how, more
generally, the two notions compare for non-infinitesimal values of u, and on how
these distinctions provide a natural explanation for the fact that LMS has two
distinct rates of convergence. There are also no prior results on how ensemble

average learning curves are affected by these two notions of stability.

5.3.3 Comparisons

Comparing the statements of Thms 5.1 and 5.2 we see that there is a fundamental
difference in the conditions required for convergence in both cases. The first
theorem shows that mean-square convergence requires the step-size u to be such
that InEu < 0, while the second theorem shows that almost-sure convergence
requires u to be such that Elnu < 0. The two conditions are not equivalent and,
in fact, one implies the other since, for any nonnegative random variable u for

which E« and Elnu both exist, it holds that
E(lnu) < ln(E u)

This result follows directly from Jensen’s inequality since the function (— In :1:)
is convex (e.g., [Dur96, p. 14] and [CT91]|). Therefore, values of u for which
almost-sure convergence occurs also guarantee mean-square convergence while
the converse is not true. A value for which InEw > 0 (and thus mean-square

divergence occurs) can still guarantee almost-sure convergence, or Elnu < 0.
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We shall elaborate more on these distinctions in the sequel and explain how
they can be used to explain the phenomena that we observed in the simulations
in Sec. 5.2. For now, however, we show that these distinctions disappear for in-
finitesimally small step-sizes (a fact that does not depend on specific input signal
distribution). The full proof is a bit elaborate and requires several auxiliary re-
sults that are given in Appendix 5.A. Here we summarize the main conclusion.
[We remark that the requirement on the probability density function in the state-
ment of the theorem is not restrictive and it does not rule out most well-known

distributions.]

Theorem 5.3 (Rate of convergence for small step-sizes). Let p(z) denote
the probability density function of the iid regressor sequence x,. Assume there

exist constants B < oo and 3 > 5 such that p(x) satisfies
1
p(z) < e for |z| > B.

Then the quantities E ln(l—,uwi)z, var (ln(l - ,uwi)Q) , and lnE(l—,uwz)2 exist,
are finite, and satisfy

Eln(1 - ,uwi)2 = —2uEx} + o(u),

InE(1- umi)z = —2uEx} + o(u),
where o() is a function satisfying

lim@ =0.

pu—0 M

The theorem therefore shows that EInu and InEw are approximately the
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same when p is infinitesimally small since it implies that
Elnu = —2uos +o(u), InEu=—2uocs+o(u) .
This explains why learning curves and ensemble-average learning curves tend to

agree reasonably well for such small step-sizes.

5.3.4 Some Examples

We now provide a few examples showing that for larger step-sizes, the difference
between Elnu and In Eu can be considerably large. In particular, the difference

can be large around the step-size that achieves fastest convergence.

Uniform input sequence

Here we assume that x; is a uniform random variable, with values in the
interval [—a, a]. For this input distribution we have o, = a?/3 and o4 = a*/5,
so that

2

2 o at
ImnEu = mE(1 - pxl)" =In (1—2u§+u23)-

We can also evaluate Elnu as a function of ua? theoretically and obtain (the
formulas below were obtained using MAPLE [Red93] to compute the integral
[2 Linzda)

)

In(1— ,ua2)2 + ﬁﬁarctanh(a\/ﬁ) —4, if pa®<1,
Elnu = <

In(1-— ,uaz)2 + ﬁﬁarccoth(a\/ﬁ) —4, if pa?>1.

\

Fig. 5.5 compares the plots of Elnu (the continuous line in the figure) and of
ln(E u) Note that both plots are close together for small ua?® (as predicted by

Thm. 5.3), but they become significantly different as ua? increases. In particular,
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they are quite different at the minima of each plot (which correspond to the fastest
rates of convergence from the MS and almost-sure convergence points of view).
In the ranges of ua? for which the curves are significantly different, the rate of
convergence of a typical curve Y, will be significantly different than the rate of

convergence of EY}, (for large k).

With this result we can explain why the ensemble-average curves computed
for small step-sizes are close to the “theoretical” predictions using E ﬁ)i, and why
these plots are so different for larger step-sizes. For sufficiently small step-sizes,
the rates of convergence of both E 43 and of i} are, with probability one, very
close, so we expect that an average of a few simulations will produce a reasonable
approximation for E ﬁ)i For larger step-sizes, and for large k, however, the rate
of convergence of wj} is significantly different (and faster) than that predicted
by Eq. (5.4). Thus we should expect to need a larger number of simulations to
obtain a good approximation for E’&)i This latter point will be better clarified

by the variance analysis that we provide in Sec. 5.3.6.

Another interesting observation is that E In u is negative well beyond the point
where ln(E u) becomes positive. This implies that there is a range of step-sizes
for which a typical curve Y} converges to zero with probability one, but EY}
diverges. This explains the simulations in Fig. 5.4. This is not a paradox. Since
the convergence is not uniform, there is a small (but nonzero) probability that
a sample curve Y} will exist such that it assumes very large values for a long

interval of time before converging to zero.

For an example of these affirmations, refer to Fig. 5.6, in which we used
puo? = 5.5, a choice of step-size for which EY} diverges with rate 3.383". On
the other hand, our results show that a sample curve Y} should converge almost-

surely at the rate 0.8605*. In the figure we plot 2 simulations of Y} (without
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Figure 5.5: Graphs of EIn(1 — ,ua:i)z (continuous line) and InE(1 — ,ua:i)2 (bro-

ken line).

averaging), in addition to the plot of 0.8605*Y;. Although the two simulations
start growing, both plots eventually start to converge with the rate predicted by

our almost sure analysis.

Gaussian inputs

Assume now that x; is Gaussian with zero mean and unit variance, so that

0y =1 and 04 = 3. Then
EY; = (1-2u+3u%) ;.

We computed E ln(l — ,uw%)2 numerically (using Maple from the symbolic toolbox
in Matlab [Red93]), obtaining the results shown in Fig. 5.7. Note again, how
InEu and Elnu are approximately equal for small 4. An interesting fact that
appears here is that the value of 1 that achieves fastest MS convergence is signif-

icantly smaller than the step-size that achieves fastest almost-sure convergence.
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Figure 5.6: Two plots of Y; (not averaged) for ua® = 5.5. Also plotted is the

almost-sure rate of convergence 0.8605%Yj.

In distributions with heavier tails (such as the exponential), this difference is even

more pronounced.

5.3.5 Differences Between Theory and Simulation

The above results can thus be used to understand the differences between theo-
retical and simulated learning curves for large k and for larger step-sizes. Indeed,
let {wl}zL:1 be L independent experiments, with the corresponding sample curves
{Yi(w;)}. We know from Thm. 5.2 that for each curve there exists an integer
K (wy) such that Y;(w;) will remain inside the set © for all ¥ > K (w;). In partic-
ular, if the step-size is such that Eln(l — ,uwz)2 < 0, then this means that, with

probability one, Yj(w;) will be converging to zero for all £ > K(w;).

Now let ¥} = %Zle Yy (w;) be the ensemble-averaged learning curve. Since
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Figure 5.7: Elnu (continuous line) and InEu (broken line) for Gaussian input

with unit variance.

(k,Yi(w;)) stays inside © for n > K(w;), (k, Yk) will also stay inside © for k >
K = sup K(w;). This means that eventually (for large enough k), all ensemble-
averaged learning curves will stay far away from the average curve EY}. This is
because the actual average curve EY; and typical sample curves Y}, will converge

at different rates for large k (one rate of convergence is dictated by In Ewu while

the other is dictated by Elnu).

Thus we can say that the almost-sure analysis allows us to clarify what hap-
pens when we fix L (the number of repeated experiments) and increase k (the
time variable). Indeed, in this situation, the ensemble-average curve tends to
be significantly different from the true average curve for increasing £ due to the

difference in the convergence rates.

On the other hand, the more simulations we average, the larger we expect K

179



to be, so that the difference between the ensemble-average curve and the true
average will be significant only for increasingly large k. That is, the more we
average, the longer it takes for us to see the difference between the ensemble-
average curve and the true-average curve. We shall explain this fact more clearly
in Sec. 5.3.6 by means of a variance analysis. We summarize these conclusions in

the following statement for ease of reference.

Theorem 5.4 (Almost-sure analysis). Consider the scalar LMS algorithm
(5.1) with stationary iid inputs {mk} Assume that the noise is identically zero
and that the distribution of u is such that Elnu < InEwu (i.e., strict inequality

holds). Then the following conclusions hold:

1. If we fix L, then for large enough k, the ensemble-average curve will be
noticeably different from the true-average curve due to different rates of

CONveETgence.

2. The more we average (i.e., the larger the value of L), the longer it takes
for the difference between the ensemble-average curve and the true-average

curve to be noticed.

5.3.6 Variance Analysis

The almost-sure convergence analysis of the previous sections establishes that
for large enough time k, there always exists a difference between the ensemble-
average curve and the true-average curve, and that this difference is explained by

the fact that the convergence rates of both curves are distinct. In view of this, we
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shall say that the almost-sure analysis helps us explain the distinction between

both curves for large time instants k.

If we however reexamine the curves of Figs. 5.3 and 5.4, we see that for small
k (that is, close to the beginning of the curves), there is usually a good match
between the learning curve and the ensemble-average curve. Put in another
way, we notice that the rates of convergence of the true learning curve and the
ensemble-average curve tend to be identical for initial time instants. Only for
later time instants, the rates of convergence become different as predicted by the

almost-sure analysis.

To explain this initial effect, we rely on a different argument that employs
the Chebyshev’s inequality. It will allow us to clarify what happens for smaller
time instants. In particular, the analysis will show that a sample curve Y, “stays
close” to the average E Y}, for small & (but not necessarily so for large k, as argued
before). How small & must be so that Y} is close to EY; depends on the value
of the step-size and on the distribution of ;. The analysis will also allow us to
clarify what happens when we fix the time instant k& and increase the number of

experiments L.

We start by evaluating the variance of Y}, var Y}, rather than its mean (as in

Sec. 5.3.1). This is because we shall study the evolution of the following ratio

vvary;
plk) & Yo (5.11)
k

which we stress is a function of the time instant k; that is, with each k we associate
a value p(k). We claim that for values of k for which p(k) < 1, the average value
E Y, will be a good approximation for the values of the sample curve, Y}, at these

time instants. To see this, assume that p(k) = 0.05 for a particular value of k.
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Using Chebyshev’s inequality [Dur96, p. 15], we obtain
1 k)2 (EY)?
P{\Yk ~EY;| > —Ey;c} < M =0.01.
2 0.25(EY;)
This means that we have a 99% probability that Y, will be in the interval

[0.5EY;, 1L5EY;].

Now, when we form ensemble-average learning curves, we average several

sample curves Y; to obtain

L
R 1 ;
D(n) = EE v
=1

Assuming that we use L independent experiments, then the expected value of

D(k) is still equal to EY;,. The ratio p(k) that is associated with the curves

A

{EY}, D(k)} will thus be given by

" var D(k)
where the variance of D(k) is equal to
A Y,
var D(k) = vaz kL

This implies that

var D(k
p(k) = EYk( ) _ ’iy%). (5.12)

That is, the process of constructing ensemble-average curves reduces the value

of p(k). Therefore, if we choose L large enough, the ensemble-average learning
curve should be a good approximation for E Yy, at those time instants where p'(k)

is sufficiently small.!

1 Although a small p(k) implies that ¥, ~ EY; and D(k) ~ EY}, a large p(k) does not imply
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Thus a small p(k) is desirable to conclude that Y; or D(k) is close to E Yj.
However, it turns out that the ratio p(k) increases with k (and thus D(k) ap-
proximates E Y} less effectively for larger k, which is consistent with the results

of our almost-sure analysis). To see this, we evaluate E Y7,
EY; = (E uz)k Yy = (1 — 4pos + 6p°0s — 4p’o6 + ,u408)kY62,
where og 2 Ez$ and o 2 E 23 are assumed finite. Define

T4 2Eu?= (1 — dpoy + 6p’oy — 4plog + ,u408) and 7o £ (1 — 2uoy + u204).

(5.13)
With these definitions, p(k) is given by
"k _ g2k ok
p(k) 47“"’ 2 rT4k -1 (5.14)
2 2

Now since
0<varYy =EY? — (EYi)? = (Eu?)" Y? — (Bu)™ Y2 = r}¥2 — r2*V2,

we conclude that r4 > r2 (with equality only if x; is a constant with probability

one). Therefore, except for this trivial case, p(k) is strictly increasing, and

T
lim p(k) = lim # = +00.

k—o0 k—o0 Ty

We have thus proved the following theorem.

that the difference |V, — EY;| or |D(k) — EY}| should be large with a significant probability
(but it does hint that this may be the case). For example, take a random variable y satisfying

_J10 with probability 10~*
Y1102 with probability 0.9999.

In this case Ey? = 0.0101 and Ey = 0.0110, and thus p = 9.1. Despite the large value of p,
|y — Ey| <1072 = 0.1Ey in 99.99% of the realizations.
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Theorem 5.5 (Variance of Y}). Assume o and ry defined above are finite, and
that the initial condition wq to the scalar LMS algorithm (5.1) is deterministic.
Then the ratio p(k) between the standard deviation of Yy, and EY}, is either O for

all k, or is strictly increasing with k, and tends to infinity as k tends to infinity.

&

Note that from our assumption that Yj is deterministic, we obtain p(0) = 0.
In general (for step-sizes for which Y; converges in the MS sense), p(k) remains
small for for some time, which implies (via Chebyshev’s inequality) that Y} is well
approximated by E Y}, when £k is small. We give below examples of the behavior

of p(k) for two different input distributions: binary and Gaussian xy.

Binary inputs

We first give a simple example for which p(k) = 0. Assume that

+1, with probability 0.5,
L —

-1, w.p. 0.5.

Under this condition, u(k) = (1 — p)? is a constant, and thus Y; = EY;. In this

trivial case, we have o9 = 01/2 = 0(1;/3 = a§/4, and p(k) = 0 for all k.

Gaussian inputs

Let x; be Gaussian with zero mean and unit variance. Now we have
oy =1, o4 = 3, og = 15, and og = 105.

We plot the value of p(k) for several values of i in the range 0 < p < 2/3 = 205/04
in Fig. 5.8. Note how p(n) grows increasingly fast as p increases. Note also that

the rate of increase of p(k) is very small for u = 0. This fact provides another

184



explanation for the reason why D(k) approximates E ||iy]||? reasonably well when

the step-size is sufficiently small.

n=0.25

L L L L L L L L L
2 4 6 8 10 12 14 16 18 20

k
Figure 5.8: p(k), computed for u = 0.001, 0.01, 0.1, 0.25, and 0.4.

On the other hand, for larger step-sizes, p(k) grows very rapidly. Fig. 5.9
shows p(k) for u = 0.33 (which is slightly smaller than the step-size that gives
fastest convergence of EY} in this case). We can see from the figure that, if we
want to use Chebyshev’s bound to guarantee that P {|Y10 —EYy| > 05E Ym} <
0.01, we need to average approximately L = 34,000 experiments. For larger

values of u, p(k) grows even faster.

Two rates of convergence

Let us consider again the differences between theory and simulation. Assume
that we fix the time instant £ and compare the values of EY}, and D(k) at that

particular time instant. That is, we compare the value of the learning curve with
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Figure 5.9: Ed; (dark curve) and p(k) (light curve), computed for u = 0.33.

the value of the ensemble-average curve for different values of L.

We know from the expression for p'(k) that the larger the value of L, the
smaller the value of p'(k). Hence, the more we average, the closer will the value
of D(k) be to EY;. That is, the closer will be both curves at that time instant
k. This again confirms an earlier conclusion in Theorem 5.4, viz., that the more

we average, the longer it takes for us to see the differences between both curves.

Another major conclusion that follows from the almost-sure and variance
analyses is that the LMS recursion exhibits two different rates of convergence.
At first, for small k, a sample curve Y} is close to EY) and therefore converges
at a rate that is determined by Elnwu. For larger k, the sample curve Y, will

converge at a rate that is determined by InE .
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5.4 THEORETICAL ANALYSIS IN THE VECTOR CASE

In this section we extend the ideas presented above to larger filter lengths. It
turns out that the behavior of the LMS algorithm for filter lengths M > 1 is
richer than what we saw in the scalar case, and is (except when the step-size is
vanishingly small) very dependent on the actual input distribution. Therefore,
the examples shown in this section cannot be exhaustive, i.e., the examples do
not show all possible kinds of behavior — but they do illustrate the phenomena

we are interested in.

As before, we shall provide mean-square, almost-sure, and variance analyses.
We start with the latter and explain how to compute the variance of ||li;]|?

(generalizing the results of Sec. 5.3.6) in the vector case.

5.4.1 Variance Analysis

We continue to assume that the input sequence {:Bk € RM } is iid and that the
noise is identically zero (v(k) = 0). The individual entries of each regressor vector

x, however are not assumed to be independent.

In this section we are interested in evaluating the ratio p(k) when M > 1,

and which we define as

var (||wg?)

p(k) = Bl (5.15)

This calculation requires that we evaluate both the mean and the variance of
the quantity ||@wg||?>. The value of E ||w;||? can be evaluated using the Kronecker
product method described in Chapter 2. We now concentrate in the evaluation

of var(||wy||?).

In the following we will often use repeated Kronecker products, asin AQ AR A.
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We shall denote such “Kronecker powers” as A®? 2 A®A, and similarly for k£ > 2.

We start the computation of var (||@y]|?) by noting that
var (|@4]) = Bll@nl* - (E @) (5.16)
and that, as shown in Appendix 5.B, we can rewrite E ||w;]||* as
E|[d||* = ETr ((ﬁ;kﬁ;{)m) .

The following recursion for vec (('&;k'&)f)m) is established in Appendix 5.C.

Theorem 5.6 (Recursion for variance calculation). The expected value

can be computed from the recursion
Evec ((wk+1m}§+l)®2> _ E((I _ mﬁ)“) Evec ((wkmg)m)

2 \Ivaec<(ﬂ;kﬁ,g)®2>_ (5.17)

The above recursion allows us to evaluate E ||i;]|?, which in turn can be used
in (5.16) to evaluate var (||wy||?). Thus, in principle, we know how to evaluate
the ratio p(k) in the vector case. A drawback of this method is that the matrix
U lies in RM**M*  and it becomes difficult to solve the recursion of Theorem 5.6
explicitly for filter lengths larger than M = 6. If the entries of x; are mutually
independent, several elements of ¥ vanish, and sparse matrix techniques can be

used to simplify the problem.
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In any case, our recursions allow us to evaluate p(k) (as defined in (5.15)).
An example with Gaussian inputs and M = 2 is shown in Fig, 5.10 with the
curves for both p(k) and E ||@||* with R = I and p = 0.25. The value of 4 is
chosen to be close to the value that achieves fastest convergence of E ||wy]||? in
this case. Notice that, as in the scalar case, the simulation shows p(k) growing
with k. It also shows that p(k) assumes relatively small values at the beginning of
the simulation so that there will be good agreement between the actual learning
curve and the ensemble-average learning curve for small k. Figure 5.12 further

ahead confirms this effect for filters of length M = 100.

L L L L L L L L L
5 10 15 20 25 30 35 40 45 50

k

Figure 5.10: Ew?: (dark curve) and p(k) (light curve), computed for M = 2,
pw=20.25 and R=1.
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5.4.2 Almost-Sure Convergence: Solution for a Simplified Model

As we mentioned in the scalar case, the variance analysis explains reasonably well
the initial behavior of the ensemble-average learning curve but it cannot predict
the behavior for large k. For that we need an almost-sure convergence analysis
similar to what we did in Sec. 5.3.2. We start by considering a simplified model
here that will show that the effects we observed before still exist in the vector
case. It will also show that some new effects arise, especially the sensitivity of
the behavior of the ensemble-average learning curve to the direction of the initial
condition. In Sec. 5.4.3, we shall present a method of analysis that applies to
more general models and input distributions.

(®)

So let el represent the i-th basis vector, i.e., e}

;. = 11if ¢ = j and zero

otherwise, and assume that the input sequence {a:k} is of the form
xy = r(k)ss, (5.18)

where r(k) is a random variable with zero mean. The vector s; is independent

of r(k) and satisfies
s, = e with probability p;.

In other words, x; may assume only one out of M orthogonal directions. Note
that the entries of x, are dependent in this case. As we did before, we assume

that the noise is identically zero.
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With these definitions, the weight vector wy; is given by

k

’lbk+1 = H(I — /,LQLL%;F) '&)0 =
i=0

1., [1 —p r(i)zs;fre(l)}

— wy.
| [1 — 1 r(z’)%?e(M)]
Using this relation, we can compute ||wy||? and e(k)? as follows.
M k-1 2
@ = Y [T [1 - wrloPste®) (5.19)
I=1 i=0
r 2
r(k)*wg | s [1 — i r(z’)2s?e(1)} ,  with probability p,
e(k)? = < : : (5.20)

2
r(k)? w3 o [Ti [1 —u r(i)%?e“‘“] , with probability py;.

\

Mean-square analysis

Let E7(i)? = 09, and Er(i)* = 04. Since all s; and (i) are independent and

E s7el) = p;, the MSD and MSE are given by

M k
E ||| = Z<1 — 2uoap; + ua4p,) @y ), (5.21)
=1
M k
Ee(k)? = o, Zpl (1 — 2uosp; + ,ua4pl> wg,,. (5.22)

1=1
These relations express the MSD and the MSE in terms of exponential terms that

depend on the factors (1 — 2uosp; + posp;), which are equal to

. 2
(1= 2p0op; + poapr) = E[1—pr(i)’sfeV]” .
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Therefore, the MS convergence of all the modes will require that p be such that
InE [1-p r(i)2siTe(l)}2 < 0, (5.23)

or, equivalently, InE [1 — 2pjuoy + pju?os | <0 forall1 <1< M.

Almost-sure analysis

Consider now one of the products in (5.19), i.e.,

k-1 2
A . N
p = H [1 — r(z)2s;7re(l)} Wy, -
i=0
Since this product has the same form as (5.2) in the scalar case, we can use our

results of Sec. 5.3.2 to analyze its behavior. Evaluating the logarithm of P, we

obtain
k-1 2
InP, = Zln [1 — i r(i)zs;-re(l)} +Ina},,
=0

and, as before,

2

P o i
kN Y [1 — r(i)2siTe(l)] =p Eln [1 —p T(i)ﬂ :

k

Following the discussion in Sec. 5.3.2, we conclude that almost-sure convergence

requires (in contrast to (5.23)),
Eln[l-p r(i)2s?e(l)}2 < 0, (5.24)

or, equivalently, E ln(l —u 7"(1')2)2 < 0, so that each term of (5.19) will eventually

(for large k) converge to zero at a rate that is determined by

/\l — P Eln(lfu 7'(1')2)2

b

as opposed to the MS rate of (1—2,uazpl+u204pl) given by (5.21). The distinction

between conditions (5.23) and (5.24) highlights again the same phenomenon that
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occurred in the scalar case, viz., for large k, the rates of convergence of the true
learning curve and the ensemble-average learning curve will be distinct, with the

latter decaying faster.

Sensitivity to the initial condition

A new feature of the vector case is that the behavior of ||w||? is now depen-
dent on the direction of the initial condition wy. Indeed, assume for example
that all the probabilities p; are equal, i.e., p, = 1/M, and that all the entries of
the vector W, are also equal. To further simplify the discussion, normalize W, so
that ||@o|| = 1, that is, we choose Wy ; = +1/+/M. In this situation, the norm

of the weight error vector becomes

M k-1

@l = 3 S TT[1 - wr@2sted] (5.25)

I=1 i=0
where the distribution of each of the terms in the sum is exactly the same. This
means that ||i;||? is in fact an average of M (not independent) scalar learning

curves, each described by a term of the form

k-1

2
Qry = H [1 — M 7"(2')23?6(!)} Jogs Gog=1.
i=0

That is,

M
- 1 .
|[dg||* = i > Gk
=1

Therefore, we should expect the variance of ||wy||? to be smaller than that of

each term in the sum (as we saw in (5.12) and in Sec. 5.3.5).

On the other hand, if (for example) Wy ; = 1 and Wy 2 = --- = Wy, i = 0,
then
k—1 2
lael* = ]| [1 — r(i)zs;?re(l)} . (5.26)
i=0
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Since there is no averaging effect in the computation of the norm anymore, we
should see exactly the same kind of behavior as for the scalar LMS algorithm.
For other values of the initial condition w,, we have an averaging effect between

the extremes of (5.25) and (5.26).

In Fig. 5.11 we plot the curves EIn(1—pu 7?)? and In E(1— p r?)? for a variable
r? that is distributed as a X2 variable with 100 degrees of freedom. This is exactly
the distribution of ||y||? if the entries of the random vector y € IR'% are Gaussian
independent variables with unit variance [Cra46, p. 233]. The probability density

function of a X2 random variable z with M degrees of freedom is

p(z) = m(z)g\l_le_zﬂa (5.27)

where I'(-) is the Gamma function. For a variable » with this distribution, we
have 0o =Er? = M and 04 = Er* = M2 + 2M. Assuming that py = py = --- =
pm = 1/M, we conclude from (5.23) that

InE(1 — ur?)? = ln(l —2u+ (M + 2),u2>.

Summarizing, the above discussion shows that an LMS filter with length
M > 1 and with input satisfying (5.18) will behave in a manner similar to that
of a scalar LMS filter for which x; has the same probability distribution as r(n),

but with two main differences:

1. The rate of convergence will now be smaller (depending on the values of

the probabilities p;).

2. A single realization of the error ||wy||?> will tend to be close to its mean
E ||wy|* for a longer time, because of the averaging performed when com-

puting the norm (5.25).
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Figure 5.11: Graphs of EIn(1 — p 7“2)2 (continuous line) and InE(1 — 7“2)2 (bro-
ken line), for X? distribution with 100 degrees of freedom.

Fig. 5.12 illustrates the above results for a filter with 100 taps. In the first
figure, all entries of the initial condition @, are equal, while only the first entry
Wo,1 in the initial condition for Fig. 5.12(b) was nonzero. Both figures show
ensemble-average learning curves computed with L = 1,000. Note how the first
simulation stays close to E e(k)? for a longer time, as we predicted above. Note,
though, that in both simulations the ensemble-average learning curves eventually
tend to decrease with the (fastest) rate predicted by almost-sure analysis (which,
in this case, is equal to 0.9646, while the (slowest) rate predicted by MS analysis
is 0.9905). In the simulations, r?(k) was distributed as a X2 variable with 100

degrees of freedom.
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Figure 5.12: E‘(k)2 computed with L = 1000, M = 100 and u = 0.0042. The input
sequence satisfies (5.18), and r? is a X? random variable with mean 100 and 100
degrees of freedom. (a) All entries of the initial condition Wy are equal. (b) Only
the first entry of the initial condition wq is nonzero. The upper smooth curve
is Ee(k)? computed theoretically, and the lower curve is the rate of convergence

predicted by a.s. convergence analysis.
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5.4.3 Almost-Sure Convergence: A Solution for General Models

The analysis in the previous section assumed a special regression sequence {:ck}
Although restrictive, the resulting simplified model showed that the effects we
observed in the scalar case still occur in the vector case. We now provide an
analysis that applies to general regression vectors x; and which allows us to
further highlight the distinction that exists between the true learning curve and

an ensemble-average learning curve.

Thus using the LMS error equation we obtain

k—1
=0

where we defined the state-transition matrix ®;. In the simplified model prior to

(5.19), the matrix ®; was assumed diagonal, which led to (5.19). Now we get
[ |* = g Dy, Beio.

The rate of convergence of ||wy||* will therefore be dependent on the eigenvalues
of ®I'®;. For the simple model (5.18) of the previous section, we were able
to determine the properties of each individual eigenvalue of ®1®;. In order to
extend the analysis to more general input distributions, we study in this section
the evolution of the determinant of (®7 ®y), i.e., we now study the product of

the eigenvalues of ®f ®, and compare this product with det E(®f ®}), since

E |[w]|> = Wy E(®f k) o.

Mean-square analysis

The computation of det (E ®f®;) can be performed in the case of iid input

regressors {@y } by using our recursion for vec(Cy) (2.28). Indeed,

det (E q>£¢k) =detE (I — pzoxy ) ... (I — pay_1zr_q) (I — peg_r@i_;) ... (I - pmomg)].
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On the other hand, from (2.28) we obtain

_ - T ~
Ck =E WrWw, =E (I — /ka_lwg,l) (I— uwowg)Co(I— u:z:():cg) (I — ka—lmffﬂ]-

This recursion can be solved using Kronecker products, as we showed in (2.28).
We can use this same result to compute det (E <I>k<I>f) as follows. Let Fj be
obtained from the above recursion, but with Cy replaced by the identity matrix.
Since {a:k} is stationary and iid, the order of the matrices in the product is

irrelevant, and E ®,®{ = E ®] ®;. Therefore, we have
det (E <I>{<I>k> = det F}, (5.28)
where vec(F},) satisfies
vec(Fy) = | — u(R@ IM) - u(IM ® R) + 2B (:ck_la:f,l ® mk_lm{,l)] vec(Fj_1),

with initial condition Fy = I.

We will shortly present an example where the computation of det (E @{@k)

simplifies, and a simple formula for its rate of convergence can be obtained.

Almost-sure determinant analysis

The determinant of &, satisfies

k—1 k—1
det ¢, = H [det([ — uwiw H 1 - u||-’B1||
i=1 =0

where we used the fact that the matrix I — pz;z] has M — 1 eigenvalues at 1

and one eigenvalue at 1 — u||z;||%2. We then obtain
det (@} @)) = H (1 — pll:]?)?
i=0

which has the same form as a scalar LMS algorithm with input sequence {||x]|},

so that

%lndet (®,®7) =% Eln (1 — pllai]?)” .
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Therefore, all of our previous results can be directly applied to this case. In
particular, the rate of convergence (or divergence) of det ®I®, for large k is

almost surely given by

P (s’

which in general will be different than the rate obtained from (5.28).

To explicitly find the a.s. rate of convergence, it is necessary to know the
distribution of ||x||?, which depends on the distribution of x;, itself. We consider

a few special cases below.

For example, let {mk} be iid and such that the entries of each vector are
mutually independent and Gaussian with unit variance. We saw in the previous
section that in this case, ||zx||* is distributed as a X2 with M degrees of freedom
(5.27). In this case, the computation of det E ®] ®, simplifies considerably, as

follows.

E(I - pzxl)’ = (1 —2p+ (M + 2)u2> I,

Since this is a multiple of the identity, det E (@;{@k) reduces to

det (E®T®) = (1 —2u+ (M +2)u2) ™"
This is similar to the expression that we obtained for the simplified model of
Sec. 5.4.2, Fig. 5.11, except that the factor (1 — 2u + (M + 2)u?) is now raised
to the power M. This means that for M = 100, the plots of Fig. 5.11 (with
the vertical scale multiplied by 100) also apply to this example. Note that this
example and that of Sec. 5.4.2 are in fact very different — in this section, x; may
take any direction in IR™ | unlike what happened in the previous example. It only

happens that the determinants have the same properties in both situations.
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As another example for the computation of E(1 — p||z;||?)?, assume that the
entries of x; have the same (non-Gaussian) distribution and are independent. In
this situation, we can use the Central Limit Theorem [Dur96, p. 112] to conclude

that for large M the distribution of ||z||? will be approximately Gaussian, with

2

mean Mo, and variance M(O’z74 — 02,2) + M2aw’2,

where 0,2 and o, 4 are respec-
tively the variance and the fourth moment of each entry of ;. This is true as

long as both 0,2 and o, 4 are finite.

5.5 CONTRIBUTIONS OF THIS CHAPTER

We have shown that there are situations in which the behavior of the LMS errors
is significantly different than that of their averages. These situations arise when
one uses larger step-sizes (i.e., non-infinitesimal) to obtain faster convergence.
Our analysis and our simulations show that in some cases, it may be necessary to
average a significantly large number of simulations to obtain a good approxima-
tion to the mean-square behavior of an adaptive filter. In particular, one must

be careful when analyzing ensemble-average learning curves.

Looking at the same results from another perspective, we might conclude
that, for larger step-sizes, the average performance alone is not sufficient for

design purposes.

We have proven our claims analytically, and studied the behavior of the scalar
LMS algorithm in detail. For the vector case, we provided a detailed analysis of
the variance of ||w;||?, and an almost-sure analysis for a particular model of the

input sequence x; and for the determinant of the state-transition matrix ®y.

Although our analysis was performed only for the LMS algorithm, one should

expect to observe similar behavior in several other gradient-based algorithms,
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such as the normalized LMS [Ber86], signed LMS [Ewe94], leaky LMS [MA97],
CMA, [God80], etc.

There are related works in the literature that have also studied the almost-sure
stability of LMS (e.g., [BA81, BANS86, So0l97]), or even of continuous-time systems
(e.g., [Koz69, PE78|). These works, however, tend to assume that almost-sure
stability implies reasonable algorithm performance (see, in particular, the recent
reference [Sol97]). We have shown in this chapter that this is not the case. An
almost-sure stable filter might have very poor performance when it is not also
mean-square stable — since we have shown that, for small time, the ensemble-
average learning curves tend to stay reasonably close to the (mean-square) theo-
retical learning curve, an almost-sure stable, but mean-square unstable algorithm
would likely have its error diverging to a large value before starting to converge

(see Fig. 5.6 and Sec. 5.3.6).

None of the cited works highlights the relation between almost-sure and mean-
square rates of convergence with actual, observed ensemble-average learning cur-
ves (the one reference that compares mean-square stability and almost-sure sta-
bility, [BANS86], does so only to show that they agree for u ~ 0). Prior to the
papers on which this chapter is based, [NS98b, NS99a], there were no results
on how, more generally, the notions of mean-square and almost-sure stability
compare for non-infinitesimal values of u, and on how their differences provide
a natural explanation for the fact that LMS has two distinct rates of conver-
gence. In particular, our variance analysis in Secs. 5.3.6 and 5.4.1 to explain the

appearance of the two rates of convergence is original.
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APPENDICES FOR CHAPTER 5

5.A PROOF OF THEOREM 5.3

In this appendix we prove the statement of Thm. 5.3. We do so by showing that
both Eln(l — umi)2 and lnE(l — uwi)z are differentiable with respect to u at

@ = 0, and that both derivatives are equal at that point.

The derivative of the second function evaluates to

d 09
—In 1—u02+,u204 = - = —205 .
d,LL ( ) 4=0 1-— Hos + ,UZO'4 4=0

The evaluation of the other derivative is more involved, and will be obtained in
several steps in the lemmas below. The first lemma proves that E ln(l — ,u:v2)2 is

well defined for all p > 0.

Lemma 5.A.1. Under the conditions of Thm. 5.3, the expected value

Eln(1 - u:c2)2 = /_00 In(1-— ,uxz)zp(a:) dz

[e 9}

exists and is finite for all u > 0.

Proof: Let § be a positive constant such that 1/,/u+¢ > B, and split the above

integral as below

R ) )
Eln(1 - ;w:2)2 = / v In(1- um2)2p(a:) dz + /ﬁ In(1- ua:2)2p(x) dz +

oo ﬁ—&
+/ In(1-— uw2)2p(x) dz 2L+ L+ L.
Tmto

We can find an upper bound for the middle term using the assumption that
sup, p(z) < oo, as follows

1
Vit
I, <
1
v

++6
L
dz < 2supp(:c)/ !
z 0

In(1— ,uxz)zp(x) In(1-— ,u:z:2)2‘ dz.
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Note that ln(l - ,ux2)2 is non-positive if 0 < z < \/%, and positive otherwise.
Therefore, the absolute value in the above integral reduces to

=146
L
2sup p(z) / ’
z 0

2

dz = —2supp(x) /\/Zln(l — uw2)2dx +
z 0

+28upp(:v)/ In(1-— uw2)2dx.
Py

ln(l — ,u:c2)2

TN

Since

and

1 2
lim (z— —) ln(l — ,ua:) =0,
2 7 ( VH vH

it follows that I, is finite.

Consider I3 now. Using the fact that 1/,/u + 0 > B and the lemma’s hy-

o0
dz </
=16

Vi

potheses, we have

o0
I3 < /
=146

VB

ln(l — ,u:c2)2

dz.
B

In(1-— /m:2)2p(:v)

Since ln(l — uxz)z < z for all positive z and 3 > 5, the above integral is finite.

The last term, I, can be bounded in a similar manner.

With a small modification, the same arguments can be used to prove that

var (E ln(l — u:c2)2) is finite.
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Having proved that Eln(l — u:c2)2 exists, we now show that this function is

differentiable at u = 0. Unfortunately, we cannot simply apply the formula

%0 © 9ln(1 — pa?)”
%/_ ln(l—ﬂx2)2p(m)dfv=/_ 9in auw) p(z)de,

because ln(l—uwi)2 is not a bounded function and its derivative is not integrable,
except at u = 0 [Rud76, pp. 236-239]. We need to compute the derivative of
E ln(l - ,uazi)2 directly from the definition, that is, we shall show that

. S In(1— ,u:v2)2p(x) dz /°°

H=0 p —eo

(—22”)p(z)dz = 0.

The computation of the above limit is carried out in the three lemmas below.

The first two results show that we can avoid the singular points at z = - by

Wi
restricting the integration limits to —p '/ and p~'/%.

Lemma 5.A.2. Assume that the conditions of Thm. 5.3 hold, and that u satisfies

1 1
p < min { 10 232} (5.A.1)

Then there exists a finite constant C such that

u—1/8

/oo 1n(1—uw2)2p(w)dx—/ In(1 — pa?®)’p(z) de

o0 _p-1/8

8
8,

Proof: Using (5.A.1) we can upper bound the above difference as

—u-1/8 0
/ In(1— ,ua:Z)Zp(x) dz + / In(1— ux2)2p(a:) dz| <
—c0 u—1/8
o0 In(1 — 22
< / (1= p2®) )
pu—1/8 .’L"B
Performing the change of variables y = |/ x, we obtain
*© |In(l — pz ln 1—
2/ ( B,u ) dz = 2u_ / dy <
u1/8 T 3/8

111(1 —y )2
yP

g-1 | % |In0.75] o0
<2u 2 3 dy +
us/8 Yy 0.5

dy].
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Using an argument similar to that of the previous lemma, we can show that the

last integral is finite, i.e.,

/‘OO
0.5

The other integral evaluates to

05 |1n0.75 2[1n0.75
/ | | dy = | | (u—g(ﬂ—l) _ 2ﬂ—1> 2 03B 1y
w

ln(l — y2)2

3 dy2011<00.
Yy

3/8 yﬂ ,6 -1
Inequality (5.A.2) follows from these two results, and from the fact that

,u%<,u§foru<1.

Lemma 5.A.3. The inequality below is satisfied under the conditions of the pre-

vious lemma,

—-1/8

‘_2/0o ;I:2p(a:)dw+/“ 20%p(z) dz

00 /8

B8-3
< Cou 8,

where Cy is a finite constant.

Proof: From (5.A.1), and since 3 > 5, we have

-1/8

o0 9 B 9 (o] .’E2 4 g—s3
2|— zp(z)dz + zp(z)dz| <4 —Sda|=———pus
P /8 u1/8 T -3
¢
Up to now, we have shown that
< [In(1 — uz?)’ s [In(1 — pz?)?
[P EEE e pwyas <| [ (PO I gt a4
o 7 . n
m
B-3
+(Cr1+Co)u's .
(5.A.3)
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2
n _ 2
Although M + 22% converges to zero as u — 0, in order to bound the
above integral we need to find how the convergence depends on x. This is done

in the next lemma.

Lemma 5.A.4. The following inequality holds for all x and sufficiently small p:

In(1— pa?)’ 222
P 0 NP SO (5.A.4)
K =1
He
Proof: First note that
In(1— pa?)’ 1 — pa®) "
(L= 1Y) ey [u | 6545
1% e~

We find a bound for this function by studying the convergence of (1 —a/n)" to

e %asn— oo.

We begin our analysis by noting that the sequence {(1 + %)n}:ozo is strictly
increasing and upper bounded by 1 +1+271+272 4+ ... + 271 This implies

that the inequality below holds for m > n

1\™ 1\" 1 1
0<(1+—=) —(14=) <=+ +-—
m n on om~—1

Taking this inequality to the limit as m — oo and dividing the result by e, we

have

ln
(1+12) o1 1

1> — .
e on—lg

(5.A.6)

Next, translate this inequality for the case (1 — 1/n)", as follows. Consider

1 m
lim <1 + —) = e,
m—r—00 m

and perform the change of variables t = —m — 1 to obtain
1\™ 1\ ! 1\* 1
1+—) =(1-— =(1+=) (1+=2).
(+5) =(-m1) - (+5) (+3)
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Applying (5.A.6) to this relation, we obtain for m < —1

1+ )™
N (e

1
>(1-2"2)(1—- ——| >1,
m+1 e ( ) m+1
where the last inequality is true for sufficiently large |m|.

Performing the change of variables m = —n/a (for some a > 0), we obtain

1-2)e
1+ﬂ11>( e") > 1.

Finally, raise these inequalities to the power —a and take the logarithm to obtain

0>ln[@] >—aln|:1—i-n1 ]
e @ 3—1

We can find an approximation for the logarithm on the right-hand side as

follows. Let ¢ be a small positive number, and expand In(1+¢) in a Taylor series
around ¢ = 0 to find

2 3
and thus

0>1n[@] >—na :
e? z—1

Applying this inequality to (5.A.5) with @ = 2z? and n = 2/, we obtain (5.A.4).

%

With this result we can bound the remaining integral in (5.A.3) as below.
Assume that %% < 0.5, so that
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It then follows from Lemma 5.A.4 that

1 2 .
i/s [ In(1 — pa? 75 Qg2
/M <M+2m2>p(x)dx <supp(:1:)/" #dm<
__1 T
L1/8

u S e 1
< 8sup p(z)p
T

Substituting this result in (5.A.3), we conclude that

o0

d o0
a4 In(1-— ua:2)2p(a:) dz = —2/ ’p(z)dx = —20,,
HJ_—x —o0

which is our desired result.

5.B AN AUXILIARY RESULT

The following lemma is used in Sec. 5.4.

Lemma 5.B.1. Let u € RM be a column vector. Then

ul/* = Tr (wu”)®*,

Proof: Note that

! = (72" = () () = (Yot ) T,

On the other hand, from the definition of Kronecker product we have

wuu?  wusuu” . wjupyuu”
. . . wusuu?  wiuu’ ... wuyuu”
(uu ) =uu QuUu = ,
wmuyuul wuyuu? ... wiuuT
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and thus

¢
5.C PROOF OF LEMMA 5.6
Using the LMS recursion with v(k) = 0, we can compute @y 1@s
'&JkHﬁ)fH = (I — ,ua:kw;‘f)'tbkﬂyf(l — ,ua:ka:?;),
and therefore
22
W1 Wiy @ W1 Wiy = | (I — pepx})wpwr (I — pzpzr)| . (5.C.1)

This expression can be simplified using another property of Kronecker prod-

ucts. For any matrices A, B, C, and D, it holds that [HJ94, p. 244]
(A® B)(C® D) = (AC) ® (BD). (5.C.2)
Apply this property to (5.C.1) with
A=B= (I — pzyxy), C = D = wwy, (I — pzpay ),

to obtain

®2 ®2 2

(Wp1y,,) = (I —pxpay)” |Wry, (I — pxyey)

Applying (5.C.2) again, now with

A=B=da@w’, C =D = (I — pzpzy),
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we obtain

(ﬁ)kﬂ'&)fﬂ)m = (I — umwzf)m ('&Jktbf)@z (I — ,ua:kw;f)m

We can now apply (2.22) and take expected values to obtain the desired result.
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CHAPTER 6

THE DRIFT PROBLEM AND
FINITE-PRECISION EFFECTS

In most of our prior discussions, we were concerned with how small the steady-
state MSE of LMS can be. When finite-precision arithmetic is used, however,
a (theoretically) mean-square stable algorithm can have poor performance and
even diverge. A useful method of analysis that frees us from concerns about input
correlation, and which allows us to study the boundedness or not of the weight
estimates, regardless of independence conditions, is the deterministic method of

analysis.

In this framework, one essentially studies the stability of an adaptive filter
in a worst-case scenario. The results tend of course to be conservative, and
the analysis only allows for bounded input signals. Still, the method is capable
of handling difficult scenarios, such as finite-precision implementations. In this
chapter we shall use it to resolve the aforementioned drift problem of LMS and
to propose a new algorithm, called circular leaky, which avoids the drawbacks of

the classical leakage-based solution (as mentioned in Sec. 2.3).

In particular, we shall show that this new algorithm provides uniformly boun-
ded weight estimates, even if the input-sequence is not persistently exciting (as
does the leaky LMS algorithm), but at a reduced computational cost, as com-

pared to leaky LMS. Also, unlike leaky LMS, the estimates computed by the new
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algorithm are not biased (this last result is proved using the averaging theorems
of Chapter 3). Table 6.1 summarizes the properties of the three different algo-
rithms mentioned above, and also the properties of a modification of the so-called
switching-o algorithm used in adaptive control [IS96]. In the complexity column,
we list approximate values for the number of multiplications (M), additions (A),

multiply-and-accumulate (MA), and if-then (IF) commands necessary for each

algorithm.
Algorithm Drift Biased Complexity
Problem | when R >0 | MA M A|IF
LMS YES NO 2M 1 0|0
Leaky LMS NO YES 2M | M+1|0)| 0
Switching-o NO NO SM | M+2 |2 |3
Circular Leaky NO NO 2M 3 2| 3

Table 6.1: Comparison of the various adaptive algorithms.

In summary, the original contributions in this chapter include the following:

A deterministic analysis of a floating-point implementation of LMS.

e The derivation of a new algorithm, circular-leaky, that prevents drift with-
out the introduction of bias, and with a computational cost smaller than

that of leaky LMS.

e A stochastic analysis of a modification of the switching-o algorithm (used

in the adaptive control literature).

e Deterministic and stochastic analyses of both circular leaky and switching-

o, when implemented in finite-precision arithmetic.
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6.1 THE DRIFT PROBLEM

The fact that the LMS algorithm can produce unbounded weight estimates in
some situations is described in several works including, for example, [SLJ86,
GMWS82, Hay96, IK84]. Reference [SLJ86] studies the drift problem in a deter-
ministic infinite-precision setting, while references [Cio87, CW85] consider finite
precision effects. Reference [IK84| provides an analysis in the adaptive control

context.

We shall provide here a few examples of drift in order to better motivate the
discussion in later sections and in order to highlight the problems that we address
in this chapter. We consider both cases of infinite precision and finite-precision

arithmetic for reasons explained below.

6.1.1 The Drift Problem in Infinite-Precision Arithmetic

We illustrate the drift problem of LMS as follows. Consider the following con-

trived (deterministic) example. Let the regressors be scalar (M = 1) and given

by x(k) = \/W Assume also that the step-size p is 1, that the noise sequence is
v(k) = 104, and that the “true” weight vector is w, = 0. It then follows from
the model (6.2) and from the LMS recursion (1.6) that

1

1
E+1 VE+1

Solving this time-variant linear equation, we find that for a zero initial condition

woy,

4 k 9 1—4
107 Z\/_>/\/Xd)\:%\/%, for k > 1,
0

which implies that w; — oo as k — oo.
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This example shows that the weight estimates computed by the LMS algo-
rithm can grow slowly to very large values, even when the noise is small. Even
with zero noise, unbounded growth of the estimates can happen due to finite-
precision arithmetic errors (see [Cio87, CW85] and also the example below).
Such unbounded growth of the LMS estimates may happen if two conditions

are satisfied:

1. The noise or the finite-precision arithmetic errors have nonzero mean;

2. The covariance matrix of the input sequence {azk} is not uniformly positive

definite (i.e., there is no p > 0 such that Ry > pI for all k).

As shown in [GMW82, CW85], these situations do arise in practice. For ex-
ample, applications such as adaptive equalization with fractionally-spaced equal-
izers do not have inputs with uniformly positive-definite covariance matrices (see

Sec. 2.2).

6.1.2 The Drift Problem in Fixed-Point Arithmetic

The example in this section shows how finite-precision errors can also cause drift.
For this purpose, we assume that fixed-point arithmetic is used and employ the
symbol fx[a] to denote the fixed-point representation of a real number a. A

fixed-point number is of the form
+0.b1bs .. .bp,

where b; € {0, 1}. Note that this representation allows only for numbers that

are less than 1 in magnitude:

la| < 1.
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Therefore, additions and subtractions may cause overflow, if the result lies outside
the above range. Note also that the multiplication of two fixed-point number

never causes overflow.

We denote by e the machine precision, i.e., the largest absolute difference
between a real number a and its fixed-point representation, namely |fx[a] —a‘ <e.
For simplicity, we assume that all variables are stored with B bits plus sign, and

that rounding is used (this implies that ¢ = 275-1).

Finite-precision errors can result in nonzero mean variables in a number of

ways. Consider, for example, a random variable a with distribution

0.5+ 277, with probability 0.5 — 277,
—0.54 277, with probability 0.5 + 277.
The expected value of a is Ea = 0. Assume, however, that a is quantized to
fixed-point, with B = 6 bits plus sign (so that ¢ = 277). If rounding is used, the
quantized variable will have the distribution®

0.5+ 275 with probability 0.5 — 277,
fx[a] =

—0.5, with probability 0.5 + 277 .

The mean of fx[a] is —2713.

Another situation where finite-precision errors introduce nonzero mean vari-
ables is discussed in [CW85]. This reference shows that the rounding error of a
product § = fx[a - b] — ab may not have zero mean. The nonzero mean is caused
by a non-symmetric implementation of the rounding function in arithmetic units

that use two’s complement arithmetic.

!The result depends on exactly how the rounding function is implemented. For example,
—0.5 4+ 277 might be rounded to —0.5 + 2% in some machines.
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For example, assume that we are using B = 2, and that the ezact result of a

multiplication is, for example, a; = 1/2 + 1/16, i.e.,

a; = 0.10[01] (in binary).

Then, rounding the result to B = 2 bits plus sign simply discards (in this case)
the last two bits, yielding

fx[al] = 0.10.

This is the closest fixed-point number to 1/8 + 1/16.

On the other hand, if as = 1/2+ 1/8, i.e.,

az = 0.10[10] (in binary),

there are two equally close fixed-point numbers to as, viz., 1/2 and 1/2 + 1/4.
Which one is chosen depends on the implementation. We assume here that

1/2+1/4 is chosen, i.e.,
fx[as] = 0.11.

Similarly, a negative number a3 = —1/2 — 1/8 has two closest fixed-point repre-
sentations, —1/2 and —1/2 — 1/4. In some implementations (normally ones that
use two’s complement arithmetic), the easier choice to implement in this case

would be to choose fx[as] = —1/2. Therefore, we have
fx[1/2 +1/8] — (1/2 + 1/8) = +1/8,

and

fx[-1/2 — 1/8] — (—1/2 — 1/8) = +1/8.
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As we see, the rounding error of a positive number is positive, and the round-
) )
ing error of the corresponding negative number is also positive. This causes the

error
0 = fx[a.b] — a.b

to have a small, but nonzero mean. As explained in [CW85]|, although this prob-
lem may be avoided by proper design of the rounding functions, the solution
increases a little the complexity of the arithmetic unit, and there are still several

arithmetic processors that do have this problem.

Thus, a zero-mean variable may become nonzero-mean after quantization or
after a fixed-point multiplication. This small nonzero mean might cause a slow
drift of the LMS estimates, causing the algorithm to overflow. We illustrate this
effect by simulating an M = 2 LMS filter whose input regressors satisfy (the

values shown below are chosen such that the weight drift effect is amplified)

¢ T
[0.5 _0_5] , with probability 0.5,

T =

T
- [0_5 _0.5} , with probability 0.5.

\

The noise is uniformly distributed with variance o2 = 1/3 x 1073, the step-size is
T

@ = 0.15, and the true weight vector is w, = [\/0,2 _\/0_2] . The arithmetic

is again performed with B = 6 bits plus sign.

The weight estimates of the LMS recursion in finite precision are denoted by
zy and they are computed via (the rounding function is implemented as described

in [CW85]):

241 = Zpg + fX[,U,:l!kfX[e(k)]] .
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Figure 6.1 plots the values of ||z||co. We see that overflow occurs at approxi-
mately k£ = 250 (the simulations in this section were computed using the random

number generator from [PTV94]).

o o

12kl o0

Figure 6.1: Effect of small nonzero mean finite-precision error with the LMS

algorithm. The plot shows ||zk||co for the M = 2 example described in the text.

6.2 OBJECTIVES

We saw in Sec. 2.1, Thms. 2.2 and 2.3 that, under certain independence assump-
tions, the LMS algorithm converges to steady-state values for the MSE and MSD.
In this chapter, however, we are interested in studying the performance of LMS
without any such assumptions. In particular, we would like to know if LMS or
some variation thereof can always guarantee bounded estimates even in a worst-
case scenario and in the presence of finite-precision effects. For this purpose, we

shall see that:

i) LMS guarantees bounded weight estimates as long as the regressors {wk}
satisfy a certain PE condition. This result is well-known [IK84, SLJ86,

SK95|, and the PE condition is the natural equivalent of the requirement
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R > 0 we had before in Assumption R-1 in the stochastic context. We
shall, however, derive a bound for the worst-case rate of convergence of

LMS (providing a different proof for another known result [WM79]).

ii) In finite-precision (when floating-point arithmetic is used), on the other
hand, we show that the notion of PE regressors needs to be modified (see
(6.16)) to require the regressors to be sufficiently PE in order to counter
the effects of rounding errors. This expands results in [WMT79], which con-

sidered only fixed-point arithmetic.

iii) When the PE assumptions do not hold, leaky LMS can still guarantee
bounded estimates at the cost of bias and increased computations. This is

also well-known.
iv) A new variant of LMS will be developed in Sec. 6.5.3 that will

a) guarantee bounded estimates regardless of PE assumptions.
b) not result in biased estimates.

c) have the same effective cost as LMS.

We discuss all these issues in the sequel, starting with item i).

6.3 LMS IN INFINITE-PRECISION ARITHMETIC

We show in this section that LMS computes bounded estimates (i.e., drift does
not occur) if a so-called persistence of excitation condition is satisfied. We shall
also compute a worst-case bound for the rate of convergence of |||, providing
a new proof for a result first published in [WM79]. In the next section, we also

extend these results to finite-precision arithmetic.
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In the deterministic setting, it is assumed that the scalar y(k) and the length-

M vector x;, are related through?
y(k) = = w, +v(k), (6.2)
All variables are assumed to be bounded, i.e.,

D-1. There exist constants B,, B, such that

B, = sup x} x} < 00, B, = sup |v(k)| < occ. (6.3)
k>0 k>0

The requirement of bounded {x,v(k)} is a standard one in the literature
whenever finite-precision arithmetic effects are being studied, although it is often
implicit in the assumptions. For example, the assumption that all variables are
suitably scaled so that overflow never occurs in fact requires that all variables be
bounded (see Appendix 2.2.B and the references [Cio87], [BB96a], [CL84], and
[Ale87] for example).

6.3.1 Persistence of Excitation

The analog of the requirement R > 0 in the deterministic setting is the persistence
of excitation (PE) condition . The condition is the following (compare with R-1

in Sec. 1.1).

Definition 2 (Persistence of excitation). The bounded sequence {x} is said
to be persistently exciting (PE) if there exist constants N and a(N) such that the
following relation is true for every ko > 0:

ko+N—1
0<a(N)= 1nf )\mm ( Z ,umk.’r:k) (6.4)

k=ko

2 Although we use the symbol w, here, this is not necessarily the Wiener solution anymore
(see the remark at the end of Sec. 1.1). Indeed, in most of this chapter, it is not assumed
that @, and v(k) are uncorrelated (which of course would be the case if w, were the Wiener
solution).
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where Amin(A) is the smallest eigenvalue of the matriz A.

That is, the regressor sequence is persistently exciting if there exists a window
of length N such that the above sum results positive definite for all values of

ko > 0.

Note that for a given PE sequence, many choices for N and a are possible.
In particular, if Ny is one choice, then any N > Nj is also a valid choice. The
resulting a will generally be different for different N’s, hence, a is a function of

N, and we write a(N).

6.3.2 Exponential Stability

Assume that the noise in (6.2) is identically zero, i.e., v(k) = 0. Then, it is
well-known that the origin @ = 0 of the error equation below is an exponentially

stable equilibrium point [SK95, pp. 142-144].
W1 = (I - ,ua:km;‘f)'ka, with initial condition . (6.5)

In the next lemma we provide a proof of this fact, as well as a bound for the
worst-case rate of convergence. This bound depends on the notion of level of

ezcitation, defined now.

Definition 3 (Level of excitation). For every P such that a(P) > 0, define
A 2—uB, a(P)

1P e e (6.6)

The level of excitation of a PE sequence {wk} satisfying uB, < 2 s defined by

A
Y% = sup y(P). (6.7)
a(P)>0
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If sequence {mk} 1s not PE, we define vy = 0.

We will show in Lemma 6.1 that the rate of convergence for LMS is no worse

(slower) than
In(1— Py(P))
P :

That is, v(P) allows us to compute the worst-case rate of convergence for LMS.
For floating-point arithmetic implementations, we will show (in Theorem 6.1
further ahead) that the machine precision must be compared with v, to determine
if a sequence {@;} will result in a guaranteed-stable LMS filter. In other words,
we will show in Thm. 6.1 that, the smaller v, is, the more precise the floating-

point computations must be for LMS to remain stable (this is a new result).

Note that there may not be a value of N such that y(N) = -y. Nevertheless,
for every 6 > 0 there is a finite N such that 7y — 6 < v(IN) < 7o (which follows

directly from the definition of sup).

Lemma 6.1. Assume that the noise is identically zero, that the sequence {wk}

is bounded as in (6.3) with uB, < 2 and that it is also PE with level
Yo > 0. (68)

Let N > 0 be such that 0 < y(N) < 79. Under these conditions the following

inequality holds
[orsn® < (1= Ny())[|@x] . (6.9)

Hence, the origin @ = 0 in (6.5) is exponentially stable, and the worst-case rate

of convergence s

i log | 1-N~(N)
T
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If the noise sequence is monzero, but bounded as in Assumption D-1, then
under the conditions of this lemma the weight-error vector wy, s also bounded

sup ||| < oo.
£>0

Proof: See Appendix 6.B.

Compare the condition uB, < 2 with the bound (4.32) from Chapter 4 and
Fig. 4.2. Although the problems considered here and in Chapter 4 are essentially
different (one is stochastic and the other deterministic), Lemma 6.1 hints that a
tight bound for the behavior of py.x should eventually be inversely proportional
to the filter length M, since (in the notation of Chapter 4) if

T
rr=|ak—M+1) ak—M+2) ... a(k)|
and |a(k)| < A < oo for all k, then B, < M A?, and the condition uB, < 2 for

(deterministic) stability becomes

2

K< arar

Note, though, that Lemma 6.1 does not apply to important unbounded input

sequences (such as Gaussian-distributed sequences).

6.4 LMS IN FINITE-PRECISION ARITHMETIC

This section studies the stability of the finite-precision LMS. The effects of a
non-zero noise sequence {v(k)} will also be considered. We present results only

for floating-point arithmetic; results for fixed-point (which are in fact simpler)
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will be presented in Sec. 6.5.2, when we discuss leakage-based algorithms, and

were also discussed in [WM79] for the special case of LMS.
A floating-point number is a quantity of the form [GL89, p. 61]
+0.b1by ... by x 2°

where b; € {O, 1}, and t is the number of bits in the representation. The quantity
b = 0.b1by...b; is the mantissa, and e,, < e < ey, is the exponent of the floating-
point number (e, and ey, are integers, normally e,,, < 0 and ey > 0). In general,
the representation allows only either b; # 0, or all b, = 0. Of course, not all real

numbers can be represented in the above form.

Floating point additions, subtractions, and multiplications are (usually) per-

formed with accuracy ¢ 2 27t ie.,
fi(zoy) = (zoy)(1+9), (6.10)

where |§| < € and o denotes +, —, or x. This is true for floating point processors
that adhere to the IEEE standards. The symbol § will generally denote quantities

that are bounded by multiples of the machine precision.

Quantization errors in rounding x; and y(k) to floating-point will not be
considered in the analysis below; the dynamics of the algorithm is the primary
concern. These additional quantization disturbances can be included in the anal-
ysis and their effect would be essentially to increase by one small multiple of ¢

the lower bound requirement on +yy; see (6.16) further ahead.

In floating-point, exact quantities should be replaced by computed quantities.
The computed weight estimate will be denoted by z;. Hence, the computed error
e(k) would be given by fl(y(k) — ¥ z;). It is known from rounding error analyses

that ([GL89, pp. 63-64] and also [Ste73, Wil63]):

fl(xf z1) = &l 2, + 6. ||| || 2], (6.11)

224



where |6;| < 1.01Me (if Me < 0.01). That is, the rounding error in the inner
product computation «; z; is dependent on the norms of the vectors & and 2.

Using (6.11) it follows that
(y(k) — @f 2) = (y(k) = @f 2+ &l flz] ) (1 + 83),

where |d,| < . Define é(k) 2 y(k) — =¥ 2z} to denote the infinite precision value
of the error when zj, is used (this is similar to e(k) in infinite-precision, with zj

replacing wy). Then
(y(k) — @ zx) = (k) + re(k) + &y (1 + &)l |l 2. (6.12)

Define the weight error vector 2, = w,— 2. It measures how far the computed

weight estimate is from w,. The computed estimates z; are propagated via:

2 = (21 + pa (y(k) — 27 24) ). (6.13)

which is the floating-point version of the LMS recursion (1.6). Using again stan-

dard rounding error results, the finite-precision error equation becomes:

Zpi1 = [I — uwkw;‘cr] Zp — pxegu(k) —

— diag(01,) zx — diag(6y) pé (k)i — diag(ds,) ull el || 2|2, (6.14)

where diag(d; ;) are M x M diagonal matrices with elements §; ;, [ =0... M —1,
and ‘51,1‘ <e¢g é (51, |52,l‘ < 4.04¢ é 02 and ‘53,l| < 1.02Me é 53.

In infinite-precision this equation would have been

The goal of the current analysis is to derive conditions under which, in finite
precision, the sequence {ék} in (6.14) is bounded, and to show that in steady-

state, ||Z¢||? will be bounded by a weighted sum of B2 and . These results are
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useful since they provide conditions that guarantee a stable performance of LMS

even in finite precision.

It will follow as a result of this analysis that the PE definition (6.4) will need
to be strengthened so as to require that the regressor sequence be sufficiently PE.
This is because in floating-point arithmetic, it is not enough to require a(NN) to be
positive. It has to be sufficiently away from zero by an amount that depends on
¢, the machine precision (see (6.16)). The derivations to establish these facts are

relatively lengthy, for this reason the derivations will be deferred to Appendix 6.C.

Theorem 6.1 (Floating-point stability of LMS). If the sequence {wk} 18

PE with a level of excitation 7y satisfying

Yo > &2, (6.16)

then for any N > M, such that y(N) € (&, 7o), ||Z&]|* will be bounded by the

equation below if k s large.

(36 +&) llwal + (51 + &) +1+ &) uB.B3

~ 2 < C ’
I1Zll” < YN) = p(1+&) =&

(6.17)

where the & are constants dependent on ¢, M and uB,. The constant C 1is
computed in Appendix 6.C, and is equal to N for large uB,, and approximately 1
if uNB, < 1. The positive number p is small enough so that y(N) > &+p(1+&).

The worst-case rate of convergence for floating-point implementations of LMS
18:

. 1— Ny(N)+¢
AFp EY iy (v)>¢2  a—

(6.18)
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For small € and moderate values of M, the & are approzimately

& < (2+81pBy)e &< (6.1+418+21uB,M)e & < (1+1.1uBM)e

&< (1+11pB,M)e & < (5.1+4.1uB, +1.18M)e & < (9.08 + 1.1uB,M)e

Proof: See Appendix 6.C.

Expression (6.17) essentially says that for large enough k, ||2Z||* tends to a
ball whose radius is approximately determined by

0(e)

Constant

(llw.|?* + pB.B}) + 4B, B2.

Condition (6.16) says that the weight error vector sequence {Zj } will be bounded
if the regressor sequence excites all directions in IR with a level larger than a

multiple of the machine precision ¢.

Relation (6.17) is a worst-case bound. It is not intended to be a tight bound
on the performance of the floating-point LMS.3 Its usefulness is to show that the
estimate errors {219} obtained through FP LMS form a bounded sequence if the
PE condition (6.16) is satisfied. It also shows that if the unit round-off ¢ and
the step-size u are reduced, the steady-state error can be made as small as one
wishes. Finally, it shows that if ¢ is kept constant, the step-sizes can be reduced

only as long as 7o > & (recall that o depends linearly on the step-sizes).

The analysis for the LMS algorithm implemented in fixed-point arithmetic is
simpler, and will be presented in parallel with our discussion of the drift problem

and of leakage-based algorithms in the next sections. Reference [WM79] analyzes

3From now on, a floating-point (fixed-point) implementation of an algorithm will be referred
to by using the prefix “FP” (“FX”) — for example, “FP LMS”, “FP leaky LMS”, (“FX LMS”,
“FX leaky LMS”) etc. For the theoretical, infinite-precision versions, the prefix “IP” is used.
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fixed-point implementations of the LMS algorithm (the reference claims that their
results hold for an implementation mixing floating and fixed-point arithmetic,
but the error model in [WM79] does not include some important features of the
floating-point LMS error equation, including the error proportional to ||zk| in

(6.12)).

6.5 LEAKAGE-BASED ALGORITHMS

When the above persistence of excitation conditions (6.8) and (6.16) are not
satisfied, the LMS algorithm can become unstable (as we saw in Sec. 6.1). The
leaky LMS algorithm was proposed in the early seventies to avoid this problem
[Zah73, CMT75, GMW82]. Leaky LMS, however, introduces a bias problem that
was also described and analyzed in these references, as well as in [MA97] and

others (see Sec 2.3).

6.5.1 Solution of Drift Problem by Leakage

The leakage term in (6.19) below prevents unbounded growth of the weight vec-

tors from occurring:
why = (1 — pag)wh, + pare' (k), (6.19)

where we use the symbol €'(k) to indicate that the output error is computed using

the leaky LMS estimate w?.

In the first of our examples (Sec. 6.1.1), using leakage we obtain the following
recursion for the error vector

. U . 1074
'wch: (1—,uao—k—+1> w§c+ua0w*—,u\/m.

This recursion results in a bounded sequence {@}} if 0 < u < 2/(ap + 1). More
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generally, the following fact can be established for leaky LMS (see [SLJ86] —
this known result also follows from a simple modification of our stability proof

for switching-o in Thm. 6.4).

Lemma 6.2 (BIBS Stability of Leaky LMS). Consider the leaky LMS algo-
rithm (6.19) in infinite-precision arithmetic. If u < 2/(ao + Bg), then ||w!]]

remains bounded if the noise sequence {v(k)} s bounded.

In other words, under the condition u < 2/(ap + B;), the leaky LMS algo-
rithm is bounded-input bounded-state ( BIBS)-stable, where we treat the weight
estimates as the state and the noise sequence v(k) as the input. This result can
be extended to finite-precision arithmetic, as will follow from the arguments we

provide in Sec. 6.7. The lemma below is a new result.

Lemma 6.3 (Fixed-point Stability of Leaky LMS). The leaky LMS algo-
rithm implemented in fized-point arithmetic quarantees that the sequence {'wfk}

18 bounded if
11— pag — pBy| < |1 — pog| < 1.
and if {v(k)} is bounded.

Proof: This result follows from the proof of Thm. 6.4 further ahead.
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6.5.2 The Bias Problem of Leaky LMS

Although the leaky LMS algorithm solves the weight-drift problem, it leads to
biased estimates, as we saw in Sec. 2.3. Indeed, if the step-size and leakage

parameters are properly chosen we obtain, assuming now stochastic variables,

lim Ed@} = ag(aol + R) 'w.. (6.20)

k—o00

That is, the average weight error Eﬂ)fIc computed by the leaky LMS algorithm
will not converge to zero, even in ideal conditions (positive-definite R, zero noise,

and no quantization errors) — recall the discussion in Sec. 2.3.

The conventional solution to the bias problem in (6.19) has been to use a very
small ay. However, this choice has its drawbacks. A value of ag too small might
not be capable of countering the effects of finite-precision arithmetic. In addition,
even a small oy might create a significant bias, as shown in the simulation in
Figure 6.2. The lighter curve is the plot of the squared error e'(k)? (not its
average), computed by the leaky LMS algorithm for the same environment as
in Fig. 6.1 (same w, and noise and input statistics). The step-size is again
p = 0.15, and the leakage parameter is poy = 27%. Note that this is the second
smallest value that could be chosen for uag, corresponding to twice the value of

the least-significant bit (1 LSB = 277 in this example).

The darker curve is a plot of the squared error computed by the LMS algo-
rithm, e(k)?. Almost all the time, e(k)? is smaller than e’(k)?, but there are spikes
when overflow occurs. [This kind of sudden worsening of the performance is what
turns the LMS filter unusable for some applications.] Comparing the results for
LMS and leaky LMS, we note that although the latter avoids overflow, the level
of the error is significantly increased. In addition, recall from Table 6.1 that

leaky LMS has a computational cost higher than that of LMS. More examples
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are provided in Sec. 6.8.

0.35 T
R — Leaky LMS
_— LMS
0.3 *
0.25 i
el(k)? ozr ]
and
0.15
ec(k)z

0.1

0.05

Figure 6.2: Comparison of the squared errors e(k)? (LMS) and e'(k)* (leaky LMS)
for the M = 2 example of Fig. 6.1. The darker curve with the spikes corresponds

to LMS. No average was performed.

6.5.3 A New Leakage-Based Algorithm

The above examples and discussion motivate us to pursue other ways to solve the
bias and drift problems of LMS and leaky LMS without compromising the perfor-
mance of the adaptive algorithm. We do so by introducing a new leakage-based
algorithm, which we shall call circular-leaky, and also by studying the perfor-

mance of a modified switching-o algorithm (6.24).
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Circular-leaky. In this new algorithm, we employ a nonlinear and time-variant

leakage term o, (k, -) instead of the constant factor ¢y in leaky LMS (6.19). We
denote the resulting weight vector estimate by w§ and its taps (or entries) by
wy ;, for y =1,..., M. There are two modifications with respect to leaky LMS
in this new variant. First, leakage is applied to a single tap at each iteration;
and secondly, leakage is applied only if the tap magnitude exceeds a pre-specified

level, say C'.

More specifically, at time k we first compute e¢(k) = y(k) — ¥ w¢, and then

check whether |wf ;| > Ci, where
k2 (k mod M).

If the condition is true, we compute an intermediate estimate, w$, that is identical

to wy, except for a leakage term that is applied to its k—th entry, as shown below

( T

Wi .- (1—,uac(k, w]cc’]—c))w;’l—c cee We | o if|w£’k|>01,

8
a0

Il
LN

wy, otherwise.

Note that at most one entry of w is modified in the computation of @ (the value
of the leakage term a.(k, wf ;) is defined further ahead). Once the intermediate

estimate w{, has been computed, we proceed with an LMS-type update, namely
wi_, = wy, + pege(k). (6.21)

We can describe the algorithm more compactly as follows. Let ez denote the k-th

basis vector (i.e., ef ; =1, ez ; = 0 for j # k). Then the new algorithm takes the
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form:
wi,, = (I — pae(k, w,cc’,—c)e,;e%) wj, + pxget(k) . (6.22)

The function a.(k, -) is defined as follows. Let ag, C;, and Cy > C; be positive
constants, and define D = (Cy — C1)/2. Then*

o if |w,‘i,—c‘ >,

Co—|we - 2
ao—%(%) 1f01+D§|UJ;;E‘<02,
aclk ufp) =y (6.23)
%( k,kD 1) 1f01<"w2’];‘<01+D,

{ 0 otherwise.

In words, starting from k = 0, we examine the magnitude of the top entry of

wg and check in which interval it lies,
(0,Cl, (C1,C1 + D), [C1+ D, Cy), (Cy, 00).

The interval tells us the value of the leakage, a., that we should apply to this tap

entry. In this way we create w§ and then w{ via (6.21).

Next, we examine the magnitude of the second entry of w$, determine in
which interval it lies, and find the appropriate a.. We then generate @{ and w$
via (6.21).

Next, we examine the magnitude of the third entry of w$, determine a., w3,

and w$§. We continue in this fashion by examining in each iteration k£ a single

“Tt is possible to simplify this definition and use a discontinuous a.(k, w§ ;) — see Sec. 6.9
and also [NS96].
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entry of w§, and by moving circularly from one entry to another as the iterations

progress.

The time dependency of o, comes from the fact that a different entry of wyf,
is checked at each time instant. To simplify the notation, we will not explicitly
indicate this time dependency in the remainder of the chapter, and will thus write
ac(wy ¢) instead of ac(k, wy ;). In Fig. 6.3 we plot a.(-) for C1 = 0.5, C> = 0.7,
and ag = 0.1. Later in the chapter (see, e.g., Eq. (6.31)) we show how {u, ag, C1}
should be chosen. For now, note only that C; must satisfy C; > ||w.||« in order
to guarantee that the leakage term a.(-) is zero when the estimate wy, is close to

w,. In the following we assume that a bound Wy, > ||w.||« is available.

Figure 6.3: Function a.(-) with C; = 0.5, C3 = 0.7, and ap = 0.1.

Modified switching-o algorithm. In this algorithm, the leakage factor is ap-

plied to all taps whenever ||w3|| is too large (|| - || represents the Euclidean norm),
wiy = (1 pag(wy))wi + pege’ (k), (6.24)

where the function og(wj) is defined as follows. Let g, Si, and S2 > S; be
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positive constants, and define E = (Sy — S1)/2. Then
(

Cao (Slwil? ,
ap— 2L (2 if $1 + B < ||w; || < S,

2
ap [ llwgll=51
2 E

0 otherwise.

(6.25)
if 51 < H’QDZH < S+ E,

\

As was the case for circular-leaky, the constant S is chosen so that leakage is off
when wy, is close to w, (i.e., we assume that a bound Wy > ||w,|| is available,
and choose S; > W5). A variant of this algorithm is well-known in the adaptive
control literature [IT86], where the leakage function ag(wj) is not smooth as

above, but has a discontinuous (abrupt) transition between 0 and ap.

Table 6.2 summarizes the different ways in which leakage is introduced in each

algorithm.
Algorithm Leakage applied if Leakage term
Leaky LMS always applied pogwh,
Circular-leaky |w2E| > (C} o (w,cc ,—c)e,;egwg
Modified switching-o ||w2” > 5 po (wi ) wi

Table 6.2: Differences in the leakage terms among the algorithms.

The purpose of the discussion in the sequel is twofold:

i) To establish that the modified switching-o and circular-leaky algorithms
solve the drift problem even under the more demanding environment of a
finite-precision implementation. In particular, we determine conditions on

the leakage parameters so that rounding effects will not contribute to drift.
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ii) To establish that both algorithms also compute asymptotically unbiased

estimates when the regressor covariance matrix is positive-definite (R > 0).

We employ two tools in our analysis. The first tool is a stochastic aver-
aging analysis (see Sec 3.3), which will be used in Sec. 6.6 to establish point
ii) above, namely that the modified switching-o and circular-leaky algorithms
compute asymptotically unbiased estimates. The second tool is based on a (de-
terministic) Lyapunov stability analysis, which will be used in Sec. 6.7 to show

that both algorithms avoid unbounded growth of the weight error vector.

6.6 STOCHASTIC PERFORMANCE ANALYSIS

In this section we show that the estimates provided by circular-leaky and switch-
ing-o algorithms are unbiased. In fact, we establish a stronger conclusion, namely
that this property holds even when using fixed-point arithmetic with rounding.
These results are established by relying on averaging methods, which we reviewed

in Sec. 3.3.

We assume in this section that {y(k),mk} are jointly stationary stochastic
sequences, with Ez;zi = R > 0 and {mk} uniform-mixing and bounded, i.e.,

we assume that:

M-1. The sequences {y(k), .’L‘k} are related via a linear model of the form
y(k) = x; w, + v(k)

for some unknown w., and where v(k) is zero-mean with variance o2, and un-

correlated with xy, i.e.,

Ev(k)z, = 0.
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IS-1. The random sequences {mk} and {y(k)} are jointly stationary.
R-1. The matrix R is invertible.

UM-1. The sequence {:Bk} is uniform mizing with mizing function p(n).
B-1. The sequence {:l:k} satisfies

2
sup ||zx||* < B, < =, with probability 1.
k>0 H

Note that this last assumption is a stochastic version of (6.3).

6.6.1 Circular-Leaky Algorithm

We will analyze here a fixed-point implementation of the circular-leaky algorithm.
As in Sec. 6.4, we need to distinguish between the infinite-precision and the finite
precision versions of the update laws. For this reason, we shall denote the weight
error vector in fixed-point by 2§ (and reserve w§ for the infinite-precision case).
Using Eq. (6.D.5) from Appendix 6.D, we can show that 2 satisfies the following

recursion

Zpa = (I — poe(z, ;)exe; — uwkwf> 25, + pao(2, pexegws — paiv(k) — o
(6.26)

where the variable 4}, accounts for all finite-precision errors and satisfies

A (m +<1+um>||wk||+1<ac¢o>)e, (6.27)
E§6;T = X¢+ p*oi MR+ 1(a. # 0)osezer (6.28)

S < (24 @+l e, (6.29)

where 1(a, # 0) = 1 if o, # 0 and zero otherwise,

Se=o0,(I +R),
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and z; ; = w, ; — % j with k = (k mod M).

To use Theorem 3.4, we need to prove that the fixed-point circular-leaky
error equation (6.26) and its averaged counterparts satisfy the conditions (i)—(iii)
given in the statement of the theorem. Averaging the error equation (6.26) over
the input @, the noise v(k), and the finite-precision errors 8%, we obtain the

recursion®

sav sav_

2 = (I — poe(w, § — 2% ereq — pR) 2y + pao(w, ; — Zi%)ezei w.. (6.30)

It is shown in Thm 6.2 below that this recursion satisfies conditions (i)-(iii) for

values of u and oy that satisfy

1
w (1 + —> ap < 2 — pAmax(R) , (6.31)
where 7, > 0 is a constant that satisfies C; > (1 + 7.)||w.||w- The partially

averaged system is further given by
zZio = (I = pR)Z}Y — pxyo(k) — 0y

This is in fact the same partially averaged recursion that would result for the
LMS algorithm in fixed-point arithmetic. Therefore, in steady-state, the circular-
leaky algorithm will behave like the LMS algorithm. In particular, circular-leaky
computes asymptotically unbiased estimates, since the estimates computed by
LMS have this property. The value of the steady-state error lim;_, E e(k)? can
then be obtained from Appendix 2.B in Chapter 2. We state the results below,

with the necessary conditions.

Theorem 6.2 (Steady-state performance of circular-leaky). Assume that

xzi b, {v(k)}, and {85} are stationary, have zero mean, and satisfy E xyxl =
k k

5To simplify the notation, in this section we will drop the superscript ¢ from the averaged
variables.
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R > 0. Assume further that {’U(k)} 18 itd and independent of {wk}, and that
this last sequence is uniform-mizing (i.e., it satisfies Assumption UM-1). Then,
if the step-size p is small enough and condition (6.31) holds, the circular-leaky

estimates zj§, are asymptotically unbiased, and in steady-state we have

2
. - u 1) B
Jim B |1 Zel|* ~ 3 (07 + Moy) M + —2;1 Tt (I+R). (6.32)

Tr Tr(o2(I
lim Eec(l-c)2 o~ 03 + M(Jg + 02) ;R) i (07(I + R))

k—o00 2 ’

(6.33)

where 03 = 2728 /12 for a fized-point implementation with B bits plus sign (as

shown in Appendiz 6.D).

Proof: The argument is lengthy. In order to apply Theorem 3.4, we need first to
show that the fixed-point circular-leaky error equation (6.26), and its averaged
counterparts, satisfy the conditions (i)—(iii) given in the statement of Thm. 3.4.
Dropping the superscript ¢ from the averaged variables for ease of notation, the

averaged error equation becomes (cf. (6.30))

= av

Zp, = (I — poe(w, f — Z,‘;Z’E)e,;e% — ,uR) zZy + poe(w, f — Z,‘c’f’,—c)e,;e%w*. (6.34)

Conditions (ii) and (iii) follow from the above recursion and from the definition

of a(+). In fact,

faw(Z¢) = —RZ2Y — o, (w*,,-c — Z,‘jf’,—c)e,—cegzgv + a, (w*,,-c — ZZT’I—C)e,ge%w*.
From the definition of a.(-), we obtain
(
2 (e=41)  ifCy<a<Ci+ D,
dac(a)
Jda

=9-2(&22) fC1+D<a<C,

0 otherwise,
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and thus, the gradient of f,, is

fJe
— _ zc T ¢ zc T
Vifw=—-R—ac(w, ;- Zk,k)ekeic ~ gge  ZkeS (6.35)
k,k
We now compute V3 f:
oo
_ T _ =C _ T ¢ ~c T
Vif = —zpz), — ac(w*,k — sz—c)ekeE — Wzke,—c.
k,k

Condition (iii) follows from this relation and the fact that both a.(-) and its

derivative are continuous and bounded functions.

We still need to check condition (i) before we can use Theorem 3.4, i.e., we
need to prove that the origin 2;° = 0 is an exponentially stable equilibrium point
of (6.30). Note first that 0 is an equilibrium point of (6.30) since, by definition,
a.(w, 5 0) = 0. To prove that it is exponentially stable, we shall proceed by
showing that [|Z5%, || < v||z%"|| for all £ > 0 and for some y < 1.°

Before we evaluate the norm of 277, we need to relate the term poc(w, ; —

T

F Wy in (6.34) to 2. We do so by relating w, to 2 as follows.

Zip)ere
Let the constant 7. > 0 be such that C; satisfies
Cr = (1+ne)[[wsll- (6.36)

Recall that the leakage term is nonzero if and only if |w, ;—27"| > Ci. Therefore,

if w, - 20% > 0, ac(w, ; — 27%) # 0 implies that

Cr = (1+ne)l|lwilleo < w5 — 2%

— | sav —
- ‘Zk,]} - ‘w*,k"

and thus o, # 0 implies that |27 | > (1 + n.)||w.|le (if 22 and w, j have the

~a
K,

same sign). Repeating the argument for w, j - Zi% < 0, we conclude that

lw, 5l < 72120, ifw, ;-2 >0
a(w, = ) A0 = T TTeoRET R (6.37)
wo gl < o175l ifw, g F <O

6This is a Lyapunov argument, where our choice for a Lyapunov function is V (2*?) = ||z**|.
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This allows us to express w, , as €,2;"; for some € in the interval —ﬁ <€ < nl
) ) c c

Using this result in (6.30), we obtain
2y = (1= p(1+ e)ae(w, j — 5% )exef — uR) 25

Introduce the coefficient matrix A(ex) = I — u(1 + ex)ae(-)ezer — pR. We now

k
show that A(ex) is uniformly contractive, i.e., ||A(ex)|| < v < 1 for all k& (note

that, since A is symmetric, ||A|| = |Amax(A4)| and we can thus show instead that

the eigenvalues of A(ey) are uniformly upper bounded by 1).

So let y be a vector with unit norm, and compute
Yy Aler)y =y (I — uR)y — p(1 + ex)ae(-)(y" ex)”.
If a, =0, A(ex) = I — pR, and |A(A)| < 1 if and only if
pAmin(R) > 0, and PAmax(R) < 2,

which are the usual conditions for the mean-square stability of LMS. On the other

hand, if a, = payp, for some 0 < p < 1, we have

1
1 — pAmax(R) — up (1 + 77_> ao < yTAler)y <

C

1
<1 — pAmin(R) — pp (1 - ) Qq -

Therefore, |A\[A(e)]| < 1 if

1
min 1- )
U (R)—{-u( 1+77c)a0>0

and

L (1 + i) o < 2 — pAmax(R). (6.38)

Ne
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The first of these conditions is always satisfied since, by assumption, 1. > 0 and
Amin(R) > 0. The second condition provides an upper bound on «y, as a function

of our choices for 4 and 7. (or C;). In this case, we obtain

4] <max {1~ 1 |

147

1
u<1+n—>ao+uAmax(R)—1}é’y<1.

C

It then follows that

1Zkall < [[ACer) | 121 < Iz,

and thus 2§’ = 0 is an exponentially stable equilibrium point of (6.30).

With this result, we can apply Theorem 3.4 and conclude that the steady-state

of circular-leaky can be obtained from the partially averaged recursion
zZio = ([ = pR)Z}Y — payo(k) — 0y (6.39)

The covariance of 27 is

Ze S B EYNT = (- pR)ZE™ (I - pR) + p202R + o3(I + R + pMo3R).
Solving this recursion for small u, we obtain

7pav __ E 2 2 i 2 -1

ZP = 2(00+M0d)f+ 2“0(1 (I—I—R )

. S
Theorem 3.4 says that the true covariance matrix, Z¢ = E 2£2¢7, converges to

the same steady-state as Z," if the step-size is sufficiently small.

For the MSE, we use the fact from Thm. 3.4 that

supE |25 — 22*||* — 0, (6.40)
k>0
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as 4 — 0. The computation of the MSE will be performed in several steps: first,

note that
e(k) = o} 25 + v(k),
and from the independence of {v(k)} and {x;}, we obtain

Ee(k)? = E (x325) + o2 (6.41)

To compute E (22$)?, we show that (in steady-state) this expectation is equal
to E (x4%;)°, where 2, is the weight error obtained from the LMS algorithm with
the same input and noise sequences.

This is shown as follows: notice that the above recursion for 2", obtained for

circular-leaky, is the same partially-averaged recursion that would be obtained

for LMS. Therefore, Theorem 3.4 also implies that
supE [|2;, — 227|]*> — 0,
k>0

as u — 0, where now 2, is the weight error computed by LMS. From this relation

and (6.40), we conclude that

supE ||z, — 25> — 0,
k>0

as u — 0.
Next, note that
( T~c)2 _ ( T~pav)2 _ T [zczeT _ zpavypav T <

S ‘ ~p¢w~pavTHBx.

ZZZET _ ziavzzavTH ”:Bk“z S )

In addition,

‘ giglccT _ EiavézavTH —
_ H(Zc _ Zpa'u) (Zc _ Zpa'u)T _ zpav (Zc _ Zpa'u)T _ (Zc _ Zpa'u) Zpav TH <
- k k k k k k k k k k —

< llz% — 2717 + 20257 12 - 25
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Since @y, and v(k) are bounded, ||25*|| is also a bounded sequence for small

p. This fact and the general inequality for random variables (E a)? < E a?, imply
that
. T~c\2 T~ 2
Jm sup B |(2720)" - (a72)°] <o,
as g — 0. Similar arguments show that

e B[ - @ta] <o

We conclude that, for small p and in steady-state,
E(zl2) ~ B(al52)’
kE?k) =~ k) -

We can repeat this argument, replacing 2z} with 2, to conclude that, in

steady-state,
E(273;)" ~ B(2f ™)’ ~ E(2]2)". (6.42)

The quantity on the right-hand side is the value obtained from the LMS
algorithm. We can use an argument from the proof of Thm. 3.5 in [Sol89] to

obtain the MSE formula in (6.33), as follows.
Let the covariance of 2, be Z; 2g Zkéf We know from the above arguments
that this covariance reaches a steady-state, so we can write

Tr(Zw) = lim {Tr (E [(I — parey) 2125, (I — perey)]) +

k—o0

+ p2o2E ||lzi|® + Tr (S + p*o3MR) },

where we already ignored the cross-terms. Expanding the first term in the right-

hand side, we obtain

lim E (#2)" =

{u (03 + Mo}) T(R) + 5T <zg>}

DO | =
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Combining this result with (6.41) and (6.42), we obtain the MSE formula

(6.33) in the statement of the theorem.

This theorem shows that circular-leaky has essentially the same good per-
formance as LMS if R > 0 and condition (6.31) is satisfied. Therefore, the
parameters ag, i, and 7, must be chosen so that (6.31) holds. We provide design

examples in Secs. 6.8 and 6.9.

6.6.2 The Modified Switching-oc Algorithm

A similar result is developed here for the modified switching-o algorithm. The
conditions for Theorem 6.3 below are less restrictive than for circular-leaky (com-
pare the condition for circular-leaky, (6.31), with the condition S; > ||w.|| for
switching-o). [The finite-precision error equation for switching-o is given in Ap-

pendix 6.D.]

Theorem 6.3 (Performance of switching—c). Assume that {zy}, {v(k)},
and {52} are stationary, have zero mean, and satisfy Exixi = R > 0. Assume
further that {v(k)} 18 11d and independent of {mk}, and that Assumption UM-1
holds. Then, if the step-size p is small enough and Sy > ||w.||, the switching-o

estimates zj, are asymptotically unbiased, and in steady-state we have

: - 1 o5 -
klggoEszHQ%E(ag—kaﬁ)M-i-ﬁTr(I—f-R .

Tr Tr(o2(I
lim Ee®(k)? = 02 + u(o? + o3) (R) 4 (65(I + R)) -

Proof: As we did for Theorem 6.2, we need to check conditions (i)—(iii) from

Theorem 3.4. Conditions (ii) and (iii) can be checked as before, but a stronger
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result can be obtained if we modify the argument for checking condition (i).

, we now work with the

Indeed, instead of working with the averaged error 2§’

averaged version of zj, namely
2t = ((1 = as(28))] — pR) zf’ + pRw,. (6.44)

Condition (i) is equivalent to proving that w, is an exponentially-stable equilib-
rium point for (6.44).

We show in Appendix 6.E that there exists a K such that ||2§"|| < S; for all
k > K. Therefore, for large k, the leakage term remains equal to zero (o,(2¢") =
0) and the averaged recursion (6.44) becomes

2%, = (I — pR)2zf + pRw,,

from which we conclude that z{* — w, exponentially fast if p satisfies 0 <
uA(R) < 2. Having verified that condition (i) is satisfied, we can then apply

Theorem 3.4 to obtain (6.43), just as we did for circular-leaky in Theorem 6.2.

o

6.7 DETERMINISTIC STABILITY ANALYSIS

Having shown that the circular-leaky and switching-o algorithms do not introduce
bias, we now prove that they also avoid drift for any bounded input and noise
sequences (provided that the step-size is small enough). We analyze switching-o

first (the stability proof for circular-leaky is considerably more involved).

Theorem 6.4 (Stability of switching-o). If u satisfies
|1 — pap — pBy| < |1 — poy| < 1, (6.45)

then the fized-point switching-o algorithm is bounded-input bounded-state stable

with the v(k) as input and z; as the state).
k
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Proof: From Appendix 6.D, the fixed-point recursion for the switching-o algo-

rithm is
Zh = ((1 — pas ()T — ,u:r,w:f) z5 + pxpe; w, + pxgo(k) + 5. (6.46)

Our goal is to show that the sequence {||zi||}l°;0 is bounded. The first task in
the proof is to find a ball B (centered at the origin), outside of which the norm

||z || is strictly decreasing, i.e.,
125l = llzkll <O if 23 ¢ B.

We do not need to find the smallest ball satisfying the above property to prove
that {||z,5c||}Z°:0 is bounded, we only need to find one such ball. With this in
mind, our argument is simplified if we restrict ourselves to balls B, with radii

r > Ss, so that a(2) = ap for any z ¢ B,.

Assume then that zj satisfies ||z3|| > S» at some instant k. Taking norms of

both sides of (6.46), and using (6.45) to upper bound || [(1 — pag)l — pzix] ]|

bl

we obtain the inequality
1Z541ll < [1 = peolllzk]| + pBallw.|| +
+ p\/ BpUmax + ((2 + pag) + u\/Bgc) vV Me,

where we also used (6.3) to bound v(k) and @, and the bound for ||d;|| from

(6.47)

Appendix 6.D. Subtracting ||z}|| from both sides of (6.47), we obtain

232l = 1231l < —paol2g]| + sBallw. || + g/ Bavemax + ((2 + nao) + ux/Bac)\/MS-
From this inequality, and from our assumption that ||z|| > Ss, it follows that
lzll <[22l if

uBz||ws|| + pvBzVmax + ((2 + pao) + usz) vV Me

Moo

(6.48)

28] > 2 £ max { Ss,
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We therefore can choose B = {z: ||z|| < Q}. To complete our argument, note

the following:

1. We may have ||z5,,|| > ||z5]| only if 25 € B. However, ||z5,,| cannot
be arbitrarily large. In fact, using the switching-o recursion (6.46) we can
evaluate the worst-case ||2;_,|| (the bound below is not tight):

sup 321 < -4 Bl + v B s + (2 ) + /B ) VI
z3eB

n

(6.49)

2. If 22 is not inside B at a particular time instant n (i.e., |[z5] > ), then
|z541ll < ||25]|- Repeating this argument, we conclude that either ||z}|| <

||z5|| for all k > n, or there exists a time (say, V) such that z5, 5 € B.

The result of the theorem follows from these two observations.
&

The stability analysis of the circular-leaky algorithm is similar in spirit to
that for switching—o. However, the fact that leakage is applied (or not) to only
one tap at each time instant in a pre-specified circular order requires a closer
study to prove stability. This is because it can happen that ||2{|| is large, but
the tap that is being checked by ac(-) at time k (i.e., 2 ¢) is small, so that no
leakage is applied. One then needs to verify that such possibilities do not cause
instability. To account for this scenario, we need to look at the variation of

the norm of 2§ after M time-steps, i.e., we compare |25, || with [|z||. The

reassuring conclusion is that circular-leaky is also stable — see Appendix 6.F.

Theorem 6.5 (Stability of circular leaky). If u satisfies

_ pron (2 — pa)

MB 1 .

|1 — pag — pBe| <1  and \/1
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then the fized-point circular-leaky algorithm is bounded-input bounded-state stable.

¢

6.8 SIMULATION RESULTS

We now present several simulation results. We first apply the circular-leaky
algorithm to the example of drift shown in Fig. 6.1. In that example, we had u =
0.15, ||w.||e = 0.44, and pAmez(R) = 0.075. As in Sec. 6.1.1, we implemented

the algorithms in fixed-point with 7 bits plus sign.

To choose the parameters for the circular-leaky algorithm, we need a bound
on ||w,.||eo- Assume that the bound ||w,||s < 0.55 is given. Choosing puag = 0.1,
(6.31) requires that 7. > 0.055 and thus we need C; > 0.58. We chose C; = 0.60
and Cy = 0.61. The results are shown in Fig. 6.4, where we plotted ||zj||o for
circular-leaky, LMS, and for leaky LMS with puag = 0.0156 (note that for fixed-
point numbers with 7 bits plus sign, this value of uaq is only the second smallest
representable number). Since in this example the input distribution does not
satisfy R > 0, the LMS algorithm overflows, as we saw in Sec. 6.1.1. Circular-
leaky prevents the overflow, keeping the estimates at a safe level. The squared
error curves e'(k)? and e°(k)? are presented in Fig. 6.5, where we see that the

error level is significantly smaller for circular-leaky than for leaky LMS.

In Fig. 6.6 we plot the ensemble-averaged learning curves computed by the
same algorithms, when R = diag(0.25, 0.25) (since the step-size is small in
this example, we averaged the curves over 100 experiments). Note that the
performance of the leaky LMS algorithm is considerably worse, even though we

have used the second smallest value for pay.
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Figure 6.4: Application of the LMS, leaky LMS and circular-leaky algorithms to

the example of Fig. 6.1.

We now present two examples to highlight the robustness of circular-leaky.
In the first one we used M = 10 and again u = 0.15, poy = 0.1, C; = 0.60,
C, = 0.61, and ||lw,||cc = 0.44. The input sequence has covariance matrix with
9 zero eigenvalues, and one eigenvalue equal to 2.5. We also artificially added
1 LSB (i.e., one least-significant bit, in this case equal to 1/128) to every entry
of z; at every time step, in order to make the task of circular-leaky and leaky
LMS more challenging. In Fig. 6.7 we plotted ||z|/c for LMS and circular-leaky.
The discontinuities in the LMS plot correspond to points where overflow occurs;

circular-leaky avoids overflow even in this demanding environment.

The last example has M = 100, and was implemented with 11 bits plus sign.

The input and true weight were

T
w, = [0.06 —0.06 0.06... —0.06]
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Figure 6.5: Squared error curves for leaky LMS and circular-leaky in the same

example as in Fig. 6.1.

and

T

Ty = |05 F0.5 £05 ---F0.5
The input correlation matrix had 99 zero eigenvalues and one eigenvalue equal to
25. The other parameters were p = 0.01, pop = 0.1, 02 =1/3 x 1073, C; = 0.21,
and Cy = 0.22. The plots of ||zg||ec (LMS) and ||2§||c (circular-leaky) are shown
in Fig. 6.8.

6.9 FILTER DESIGN

In order to choose the design parameters for the circular-leaky algorithm (6.22),
a bound W, > ||w,||e is necessary. This norm could be obtained from approx-

imations for the statistics of the signals involved. For example, if we know that

251



0.12

Leaky LMS
_— Circular—leaky

I I I I I
(0] 100 200 300 400 500 600

Figure 6.6: Learning curves (e(k)? averaged over 100 runs) for LMS, leaky LMS
and circular-leaky, with R = diag(0.25, 0.25).

the true covariance R = Exxl and cross-correlation p = E y(k)z;, are inside

balls
R=R+4R, p=p+dp,
with ||0R||co < Mg, ||0P]lco < 7p, @ bound for ||w,||s could be computed from

lwlle = | B~'P]l, = H (R+om) @+ "”)H

o0

The matrix inversion lemma of Appendix 2.A.2 can be applied to obtain

e < |

R'p— RMI+6R)6RR 'p+ R—lapH + O(nrmy).
Assuming that nr < 1 so that (I +6R)™! ~ I, we obtain

.l < | 2

7] e [ e
o0 (e} (e}
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Figure 6.7: ||2g||co for LMS and circular-leaky, with M = 10, pay = 0.1 and
C, =0.60, Cy = 0.61.

Assuming that a bound for ||w,||» is available, the design is made in the
following way. Begin by choosing adequate values for p and o satisfying 0 <
pog < 1, and use (6.31) to find the smallest possible 7.. The parameter C is then
chosen from C; > (1 4 n.)Wy. If the resulting C; is too large, we can reduce o

or p or both to allow for a smaller 7. in (6.31), and repeat the above procedure.

This procedure guarantees that circular-leaky is unbiased if the step-size used
is small enough (unfortunately, as always with the use of averaging results, we

cannot tell how small must u be).

Although it is not a necessary condition, (6.31) is not excessively conservative.
We also proved that circular-leaky is stable if condition (6.50) is satisfied. This
condition however is conservative, the filter may be stable even if the condition

is not satisfied.
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Figure 6.8: ||zg||oo for LMS and circular-leaky, with M = 100, pap = 0.1. Only

one out of every 20 samples is plotted.

6.10 CONTRIBUTIONS OF THIS CHAPTER

The main result in this chapter is the introduction of a new variant of LMS
that prevents the occurrence of the drift phenomenon, but avoids the higher
computational cost and the bias introduced by leaky LMS (which is the standard

solution to drift). This chapter follows the presentation in [NS99c].

A standing open issue in the adaptive filtering literature (as seen in the quote
from [Set93] in Sec. 1.4), has been the need for a precise analysis of the leaky
LMS algorithm (i.e., an analysis that does not require the independence assump-
tions). Although we did not address this problem here, we argued that it becomes
virtually meaningless since our new algorithm outperforms leaky LMS, and our

analysis does not require independence of the input sequence {wk}
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A new stochastic analysis, and a new deterministic analysis for fixed-point
implementations of a modified version of the switching-o algorithm were also
provided in this chapter. Switching-o is an algorithm used in the adaptive con-
trol literature [IK84, IT86, IS96] to avoid drift without the introduction of bias,
although this last fact was only proved for deterministic square-sumable (¢3) noise
sequences before. Finite-precision implementations of the algorithm were also not

available until the results presented here and in [NS96, NS99c].

In addition, we also extended the deterministic analysis of LMS, providing a

stability analysis for floating-point implementations.

There is a vast literature for the deterministic analysis of the LMS algorithm,
mainly for infinite-precision arithmetic. Most results are concerned with the
drift phenomenon, and study in detail when and how it can occur [IK84, SLJ86,
IT86, WS90, RBJ91, SK95, Rup95]. A deterministic analysis of finite-precision
implementations of LMS appeared in [WM79]. This paper assumes that the
computations are done in a combination of fixed and floating-point, but some
important features of the floating-point model, as the error proportional to ||z||
in (6.12), are missing. Moreover, [WM79] does not provide bounds for the errors

based on the machine precision, as we do in Theorem 6.1.

A point that deserves further investigation is the choice of the leakage function
a.(-). Our choice of a differentiable a.(-) was motivated by the fact that the
averaging results of Theorem 3.4 are not applicable to discontinuous f(k, ).
The stability results of Sec. 6.7, however, are still valid if instead of (6.23), we

choose a hard-limiting «., say one of the form
ag if |a| > Cy,
ac(a) =

This is of course a much simpler function to implement than (6.23) — see [NS96].
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The stability theorem (Thm. 6.5) needs almost no modification to allow for
this different definition of a,. Unfortunately, the situation is not as simple for the
stochastic averaging analysis. It is possible to perform an entirely deterministic
analysis and show that, if the input sequence {wk} is sufficiently PE and the
noise v(k) and machine precision ¢ are sufficiently small, then a, = 0 for large
k, and the circular-leaky algorithm with the above function a.(-) will perform as
the LMS algorithm [NS96|. Nevertheless, the conditions for the machine precision
and step-size that arise from this analysis are not easily computable (and must
be recomputed for each different input sequence). Therefore, they do not provide

design conditions for the choice of the filter parameters (ag, C1, and pu).
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APPENDICES FOR CHAPTER 6

6. A YOUNG’S INEQUALITY

The following simple version of Young’s inequality [Mit70] is used in Sec. 6.4. For
any a, b€ IR and p > 0,

1
a-b < pa2—|—;b2. (6.A.1)

6.B PROOF OF LEMMA 6.1

First note that from pB, < 2, and using the fact that a < uNB,, it can be
shown that Ny < 1. The following proof derives an expression for the rate of
convergence of LMS. In particular, (6.B.3) is a new result.

Define ®(3, j) to be the state transition matrix of the linear system (6.5):

i—1

(i, j) = H(I — pm)zaal), @(j,5) =1, (6.B.1)

Then w; = ®(i, k)wy, for i > k. It can be verified that

i3 — i3 = —p() (@7 2:)° (2 — p(i)al @) < —p() (@] 2:)*(2 — pBa).

Add this inequality over N steps,

k+N—-1
~ ~ . ~ 2
[ nl* = [[]* < —(2— uBy) > (@) (@] =)
i=k
N (6.B.2)
= —(2—pB)wy | > (i, k)"l w:®(i, k)| ;.
i=k

Assume that the sequence {@;} is bounded as in (6.3) with uB, < 2 and is
PE with level 79 > 0. Let N < oo be such that 0 < y(N) < 7o (the sup in (6.7)
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may not be achieved for a finite N). Note that even if the sup is not achieved by
a finite N, by choosing N large enough, v(N) can be as close to -y as necessary.

We show in Lemma 6.B.1 below that

k+N-1 a(N)

T S NT T : - =12

w O(i, k) x] x;P(i, k)| Wy > |wg||* VEk>0. (6.B.3)

ap> (1+uV/NB,)’
Using this result, it follows that
~ ~ (2 — uBg)a =12 S 02
[@rnl” = 1@l < - [ @k]|* = —Nyllw|*, (6.B.4)
(1+ ,u\/NBm)2

which is the desired result. &

Lemma 6.B.1. Inequality (6.B.3) holds under the conditions of Lemma 6.1.

Proof: Define
k+N-1
o 2 N p(i)®(i, k) xixl B (i, k).
i—k

The idea is to find a lower bound for Ay, (@{cv ) Let o be a unit norm vector and

define
k+N-1
A
, aTd)a = E c; = C%.

i
i=k

e ‘ u(i)x! ®(i, k)

Upper bounds for ‘\/,u(z')mfa‘ ,i==k...k+ N —1 can be obtained, using the

expansion of ®(i, k),

‘\/,u(i)ac;fra‘ < ‘\/,u(i)w;fr@(i, k)a‘ +
+ ‘(\/,u(i),u(i — D]z 1) (Vu(i — Dzl (i — 1, k)a) + ...
+ (Vu(i)uw?mk) (\/ﬁmfa)‘ < ¢+ uB, (c,-,l + ...+ ck).
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Define d; £ 3", ¢j, k < j < k+ N — 1. From the PE condition, v(N) > 0, and

the inequalities above,

(N < Y (Valala) < Y (o +uBady)’ =

i=k i=k
k+N-—1 k+N—1 (G'B'E’)

=C*+2uB, Y cadi+p’B; Y di.
i=k i=k

To evaluate this last quantity, note that the d; can be written as (recall that

dy = 0)

Cg 0 0 1
A1 0 .
C, C
_ k k+1 é Dk].,
dr4N—1
[ Ck Cr1 Cryn-1] |1]
where
T
12 [1 1 1}
T
Define also ¢, = [Ck+1 Chya ** Ck—t—N—l} , then
E+N—1
3" eidi = F Dy < [[eklooll Dillll 0 < VNC?,
i=k
and
E+N—1

Y d& =1"DiDil < || Dyl 115, = NC?,
i=k

where the fact that ||ckllo < ||ckl]]z = C was used. From these bounds and

(6.B.5), it follows that

a(N) < C*(1+2uB,V'N + ;i?B2N).
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Since «a is any unit-norm vector, this implies that a(N) < )\min(@ff ) < (1+
pV/'N B,)?C?, from which (6.B.3) follows.

With the exponential stability, it follows that the algorithm is also bounded-
input bounded-state stable (BIBS), where here the noise v(k) is the “input”,
and the weight-error vector @y, is the state (this fact, that exponential stability

implies bounded-input bounded-output stability, is a standard result — see, for

example, [Kha96, pp. 269-270]).

6.C PROOF OF THEOREM 6.1

To prove that the sequence {Zk} in (6.14) is bounded, introduce the Lyapunov
function V (-, )

k+N—-1

Vikay) = ) |27 (6.C.1)
i=k

In the definition of V, Eiii is the weight error vector that would be obtained if we
use the infinite precision LMS algorithm without noise with the initial condition

(at time k) 2;° = Z;. That is, 2/ is obtained from the recursion
i

20 = (I — p()zx]) 2 with initial condition 2}¥ = 2,.  (6.C.2)

Next, some properties of V' are derived. These properties are obtained by
considering the noise-free IP LMS algorithm error vectors wy. Later these prop-
erties are used to analyze the FP noisy case. Let then w; = Z;, and continue

with the noise-free IP LMS algorithm for time £ + 1,k + 2,...:

Wi = (I — u(z)ww?)fvh with initial condition @y = Zj. (6.C.3)
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In this case, V(k+1, @p1) =V (k, k) = || @xw||* || @x||*. Hence, from Lemma
6.1, the one-step difference of the function V' is bounded by the same quantity as
on the right-hand side of (6.B.4).

V(k+1,wp11) — V(k,wp) < —Noyllawg|*. (6.C.4)
The second property is obvious from the definition:
w3 < V (K, @y). (6.C.5)

A sharper bound can be found if 2uB, < 1. In this case, from (6.5) it follows
that

[sall® > (1= 2uBy )|,

Using this bound recursively in the definition of V,

1- (1 - QIUBz)N
2uB,

[ @e]® < V (K, s). (6.C.6)

Define B such that V(k, ;) > B||w|?, with B given by (6.C.5) or (6.C.6),

depending on the values of N and uB,.

An upper bound for V is found as follows. Under the assumption uB, < 2
in (6.3), the matrices (I — ,u(k)mk.’r:f) have 2-norm bounded by 1, so for all
6,720,127, [[2(@J)ll2 <1 (see (6.B.1)), and

V(k, ) < N|gl3- (6.C.7)

The last inequality is used to bound the FP error terms. Let y,, y, be any two
M-vectors. Define {ﬁ)ﬁ} as the sequence obtained by applying recursion (6.C.3)
with initial condition wy = y;, for I = 1,2. Thus, the difference between V' (k, y,)
and V(k, y,) is

k+N—-1

> (Il - @)

=1

|V(k,y1) - V(ka?h)‘ =

261



Using again the assumption uB, < 2, |@}|| < ||y,|| Vi > k, so

V1) = VR, )] < [N (Il = llyall?)

< N(|lyall + Nyl lly: — yall-
(6.C.8)

Now these properties are extended to the FP, noisy case. Remark that the
first term on the RHS of LMS’s error equation (6.14) is exactly ;% as given by
(6.C.2). That is,

Zpi1 = 2£i1 — p(k)zpv(k) — diag(él,l)zk - diag(52,l)ﬂ(k)é(k)”3k -

— diag(ds.0) u(k)l|zx]ll| ze |,

(6.C.9)

Assume that the regressor sequence { u(k)a:k} is PE with level 75 > 0 and
satisfies uB, < 2. Again, one can choose a finite N such that y(N) is as close to

7vo as desired. In this case, (6.C.8) and (6.C.9) can be used to obtain
V(k+1,2e1) — Vi(k, 2,) <V(k+1,255,) — V(k, 2) +

+|V(k+1,2541) - V(E+1,25)| <

< =N + N (sl + DEE) 1Zasn — 225

where the difference V (k, 21 ,) — V (k, 2) was bounded using (6.C.4). The norms

in the above inequality can be evaluated as follows:

1250 = || (7 - ntmeen) 2] < 124,

1Zkall < [+ 80+ (82 + 85 k) ]l +

+ (1 + 82) p(k) sl [v(R)] + (61 + spu() e ]|”) |wl],

and

1251 — 20 < 61+ (82 + b) k) |12 124 +

+ (1+ &) (k) [l || [v(K)| + (61 + (k)| ||*) [l
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Using these relations,

(sl + NZE L) 2k — 2] < Ba(1+ B0)l1Z4 2 +
o+ 64(1+ ) (k)| 12l [0(k)] + +6ds | 2 ]| +
(14 &)1+ (k) |l 12ell [0(8)| + (1 + )02 (R) | [P (k) +
8 (1+ 8B ]| + 265(1 + )kl || ol [0(k)] + 6],
(6.C.10)
where 04 = 61 + uB; (02 + 63) and d5 = 67 + uB,0s.

Applying Young’s inequality (see Appendix 6.A) to the cross-terms in (6.C.10)

and regrouping,
V(k+1,Z1) = V(b Z) < -N(y = p(1+&) = &) 122 +
+N (%&; + 54) |lwl|]® + N (%(1 +&)+1+ 56) pBv? (k).
(6.C.11)

The factor p is used to bound the cross-terms containing ||Z|| in (6.C.10) and
will be chosen shortly. The expressions for the & can (with some patience) be
computed from the definitions for the §;. The approximations below assume that
the mantissa of a floating-point number is stored with at least 5 bits, so that

£ < 3.125 x 1072

&1 < 2.1e +9.4uB,e + 3.2uB,Me + 1.1> B2 M?<?

& < 6.3¢ + 5.1uBye + 2.6uB, Me + 1.1* B2 M?c?
& < lde + 1.5uB,Me + 11> B2M?e® €4 < 1.2¢ + 1.5uB,Me + 1.14* B2 M?¢?
&5 < 53¢+ 5.1uBe +1.4uB, Me &6 < 10e + 1.5uB,Me

The positive scalar p must be chosen so that the coefficient of ||Z¢||* in (6.C.11)

is strictly negative. It can be seen that this is possible if v > &. If this condition
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is satisfied, then the one step difference V(k+1, Zj1) — V(k, Z;) will be negative
whenever

o (Rt &) ol + (51 + &) + 1+ &) nBuva
- v=p(l+&) - & '

Using this fact, the results follow directly from standard Lyapunov stability

121 > Vo (6.C.12)

results [Kha96, Ch. 3] and the properties of V listed above. Recall that V' (k, Z;,) <
N||z.]|?, so V(k+1, 2;41) will be strictly smaller than V (k, Z;) whenever V (k, Z;)
is larger than NV4. This implies that for large k, 2z, will stay in the region F
defined by

FA {zk L V(k, 2) < NVO}.

The region F is defined in terms of V. To obtain a description in terms of
||Zx||, invoke the relation B||z;||> < V(k, 2;). Using this relation, one can show
that F is contained in the ball

ga {zk L |2 < %VO}.

We then conclude that for large k, Z; will stay inside G, which is exactly the

bound given in the text if C = .

6.D FINITE-PRECISION UPDATE LAWS

We assume, as explained in Sec. 6.1.2, that all algorithms are implemented using
fixed-point arithmetic, where all variables are stored with B bits plus sign, and
that rounding is used (with ¢ = 27271). We also assume that x; and y(k) repre-
sent already quantized variables (i.e., there are exact fixed-point representations

for y(k) and xy).
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In fixed-point arithmetic, additions are performed without error if the vari-
ables are scaled so that overflow does not occur. On the other hand, there is an
error when performing a multiplication, say fx[ab] = ab + 6§, where |§| < . One
usually assumes that ¢ is a random variable with uniform distribution and zero

. . . 2 2—2B
mean (so that its variance is o7 = -

), and that ¢ is independent of both a and
b. It is also common to assume that errors in two different operations are inde-
pendent. Note that none of these assumptions is exactly true — in particular,
there are systems in which E§, though small, is nonzero (see the discussion in

Sec. 6.1.2).

To differentiate between the infinite and finite-precision versions of the var-
ious algorithms, the weight estimates computed by the fixed-point algorithms
are denoted by zj (for LMS), 2§ (for circular-leaky), and zj (for switching-o).

Similarly, the weight error vectors are 2y, 2}, and Zj.

Circular-leaky. In fixed-point, the update law of circular-leaky is given by

2z = fx [ (I — poc(z, ,;)e,—ce%)zi] + fx [,uazk fx[ec(k)]} : (6.D.1)

where e°(k) = zIx;. We now expand the terms fx[-] in (6.D.1), starting with

eo (k) £ fx[e¢(k)]. Following [Wil63], we obtain
e5y(k) = (=] = Ly + (k)
where the error n(k) satisfies”
In(k)] < Me, E7(k)*
Similarly, define the error &, by

&, 2 txluayed (k)] — el (k).

7If the multiplications are computed in double precision, and only the final result is rounded
to B bits, then |n(k)| < ¢ and o} = 03
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Expanding the left-hand side, we obtain
ey (4)] = B ey ()| = (uey(h) + ) + €
where
&l <e, B¢ = o3,

€61 < VMe, E&," =il
from which we conclude that
A
1€l <V Me + ¢l E§€p = ¢ = 05(] + R).

The last term we need to evaluate is fx[(I — pocezel )z§]. If (2, 5) =0, 2§
is not modified, and there is no error. On the other hand, if |z,°C ,—c| > (4, we have
fx[(I — pacereq)zs| = (I — ppagereq )z + ((k)eg,

where |((k)| <&, E¢(k)* = 03, and
1, if |2, 7| > Ca,
p =
M%Ofx [,uac(zk’,-c)} s if 01 < |zk,l_c| < 02.
In general, it can be shown that p satisfies 0 < p < 1 + 3e. However, it turns
out that the error incurred in computing p does not affect our analysis in an

important way, so in the following we will assume that this error is zero.

The combination of all finite-precision errors is denoted by 4%, i.e.,
5, £ &+ C(R)ex + un(k).
From our assumptions, it follows that d7, satisfies
6 < (VAT + 0+ wViDlenl + 10 £0))e,  (6D2)
E&;0;" = ¢+ poiR+ 1(a. # 0)ojese; (6.D.3)

50,0 < (2+ a +u>||mk||oo)e, 6D.4)
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where 1(a, # 0) = 1 if a, # 0 and zero otherwise. Also, the last equation

provides bounds for the individual elements of é%.

With these definitions, we can write the finite-precision update law for circular

leaky as

2z = 2k + pwget (k) — pacege; 2y + 05, (6.D.5)

Modified Switching-o. The update law for the switching-o algorithm is ob-

tained by following a similar procedure. The result is
Ziq = ((1 — pas(zp) — ,umk:nr‘kr) 25 + pxpi w, + pxpo(k) + 65 (6.D.6)
The only difference is in the term §;, which satisfies

182l < (m+<1+um>nwkn+1<a3¢0>m)e,
E810.T = Se+uolR+1(as £ 0)02 |

03,1 < <1+(1+u)||wk||oo+1(as750)>a.

6.E AVERAGED SYSTEM FOR SWITCHING-o

We need to show that in steady-state, the averaged variable z;’* has norm less
than Si, so that the leakage term remains equal to zero. To do so, we compare

the averaged recursion (6.44) with the averaged LMS recursion
zity = (I — uR) 2y + pRw,.
Note that, if ‘/\(I - ,uR)‘ < 1, this recursion satisfies

lim 2}’ = w,. (6.E.1)

k—o00
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On the other hand, expanding 23" ,, we obtain

k

k k
zy = [ wRlzg"+> [ [I - nR]pRw..

i=0 i=0 j=i+1
Since the first term in the above relation tends to zero, (6.E.1) implies that
ko k
dim (Z IT - uR]) uR =1,
i=0 j=i+1
and therefore the relation below holds for any vector y with unit norm
ko k
. T _ _
kli)rroloy (Z H I ,uR]) uRy = 1. (6.E.2)
=0 j=i+1
We will now rewrite this expression in a more adequate form. Let RY? be a
symmetric square-root factor of R (i.e., (R1/2)2 = R, (Rl/Z)T = RY?). We can
rewrite each term in the above sum as below.
k k
( I] - uR}) uR = pRY? ( 1] - ,uR]) R'/?, (6.E.3)
j=i+1 j=i+1

which follows from

(I — uR)R = (R — pR?) = (R?RY? — uR'?RR?) = RY*(I — uR)R'/?

and
(I — pR)RY? = (RY? — uR?R) = RY*(I — uR).

From (6.E.3) and (6.E.2), we obtain

k k k
. T p1/2 o 1/2, A T . _
kILIEOuZy R ( H [I ,uR]) R y—,uZy By =1, (6.E.4)
=0 j=itl i=0

where we have defined the matrices B;. Assuming that 0 < uR < I, all the B;

are positive-definite, and thus all the terms in the above sum are positive. We

shall use this result soon.
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Returning to the switching-o algorithm, we have

k k k
zpf = 110 = pe)T = uR] 25 + > [] [(1 — pe)I - uR]pRw..

i=0 i=0 j=i+1

If -1 <1— pay— A(R) <1, the term in zj“’ will tend to zero, and therefore

k k
lim z;;% = lim > [] [(1 - )] — pR|uRw,. (6.E.5)

1=0 j=i+1

Taking norms on both sides, we obtain

ko k
1zl <> 11 [0 = eI = pRIuR|| lw.].
i=0 j=i+1

We will now use (6.E.4) to show that the above matrix norm is no greater than

one, from which we can conclude that ||2{°|| < ||w.|| < S; for large enough k.

Similarly to what we did in (6.E.3), we can write

H [(1 — pos)I — pR|pR = pRY? ( H (1= pa)I - uR]) RY?,

j=itl j=it1
Assume that 1 — puApax(R) > 0 and choose aqg such that

|1 — pog — pXi(R)| <1 —pA(R) <1, thatis, 0< ap<2—2uAmax(R).

(6.E.6)

If this condition is satisfied, then for all k&,

k
~B; < pRY? [ ] [ = pa)I - uR}) R'? < B,.
j=i+1

Let y be a unit-norm vector. From the above relations we conclude that

y' By >

py" RY? ( IT (@ = pa)I - uR}) R'?y

j=i+1
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Therefore, we have the bound

[c SRENe o]

> 1] [ = peo)I — uRpR

i=0 j=i+1

ZM’!!TRl/z ( H [(1 — lwts)] — HR}> R1/2y

j=it1

= Imax

<
llyll=1

o0

< max TBiy=1.
—”y”_l;y Y

This relation and (6.E.5) imply that there is a K such that, for all £ > K|
. s,av| -
lim 2] < . < S,

completing our proof.

6.F PROOF OF THEOREM 6.5

The variable 2§, can be shown to satisfy

k+M—1

c T T c
Zhtm = H (I — pacerer — HTIx; >zk +
1=k

k+M—1 r+M—1

+ Z H (I — pacerel — ,ua:m:f) <u$zw;‘r’w* — pxiv(i) — 55)] :
ik

I=i
(6.F.1)
Given that ag and p satisfy |1 — poag — uB;| < 1, we find that all matrices
in the expression for 2z, above are contractive (i.e., have 2-induced norms less

than or equal to 1). It follows that the second term in (6.F.1) is bounded by

k+M—1 !k—I—M—l

Z H (I — pacered — ,u:rmf) (uwzwfw* — pa;v (i) — 6:)] <

i=k =
< M[quHw*H + v/ #ByUmax + ||5f||]-

(6.F.2)
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We also need to bound the norm of the first term of (6.F.1). Define
A =1- uace;e;, B; = px;x!,
and note that ||B;|| < puB,. In addition, if |1 — pay — uB,| < 1 we have

|[Ai — Bil| < 1. (6.F.3)

With these definitions, the product we want to bound is

k+M—-1 k+M-1 k+M—-1 [k+M-1 i—1
i=k i=k i=k j=i+1 =k

Consider the second term. From (6.F.3), its norm is bounded by

kM1 [htM-1 i1 kM1
Z [ H (A; — Bj)| B; H(Al -B)|| < Z | Bill < MuB,.
i—k L j=it1 1=k ik

To approximate the first term, note that el e; = 0if 0 < i — j| < M, thus

k+M—-1 k+M—-1

H Ai=1- Z e;e;T.
i=k i=k

Now let zf ,, denote the entry of zj, that has the largest absolute value (|2} ,,| =

12%lloo)- Let k-+I be such that k + [ = m and assume for now that a.(z5;,,) = o,

so that
k+M-1 k+M-1
[I- Z (25 ;) eze] | 2 :'zi— Z ae(2 ) et 7| <
i=k i=k
- 41/2
M
< DA it-a)fzi. < (6F4)
i=1
_i;ém |

< \/1 - W B (6.F.5)

Putting all these results together, we obtain

k+M—1 0(2 — i)
11 (A,-—Bi>zz < [\/1—%+Mu3z 1z5.  (6.F.6)
i=k
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Assume that ag > B, such that

2 —

We still need to show that if ||2§]| is large enough, then |2f,; | > C; and

c — : c — oI _c :
(2§ 41m) = 0. The expression for 2¢,, .. = €25, is

k+1-1

Zpiim = €m H (I — pocere] — ,ua:l:clT> zy +
1=k
k-+i—1 Tk+i—1
+ e’ Z l H (I — uacege;{ - ,u:nj:n;fp> (uw,w?w* — px;v(i) — 5f>] ,
i=k L j=i

Note that e e; = 0 for k <4 < k+[—1, and so, using again the decomposition

of H(Az — B,-), we conclude that

2t ml = 125 ml — MpuBol| 25|l — M (1Bo|lw.]| + v/ #Bavmax + [|6°]]) > C2 if

12lloo = 2k, m| > C2 + M Ba|| 2| +
+M (,quH'w*H + \/ 4Bz Umax + (\/M + (14 pvVM)||z|| + 1> e) :

Since ||2$]] < VM ||2§|co, it follows from the above inequality that the leakage
term will be equal to o at time k + [ (where k + 1 = m) if

Vi ((12 + M (uBallw.l| + ViBs vamax + (FM + (14 VA0 + 1)5) R
= Qf.

Z5 >
12511 > T

If the above condition holds, using (6.F.6) and (6.F.2) we conclude that the norm
|25, az|l will be smaller than ||z§]| if

Bl + VB v+ (VAT + (1w WD) +1) e
|1Z5] > max{ Q§, M =03

1—4/1— uao(2]\;uao) 4+ uMB,

Therefore, ||z will be strictly smaller than ||2¢|| if [|2¢|| > Q5. From this
k+M k k 2

point we can use an argument similar to that of Theorem 6.4 to show that the

sequence {||zfc||}zozo is bounded.
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CHAPTER 7

SUGGESTIONS FOR FUTURE RESEARCH

This dissertation studied several aspects of the performance of adaptive filters
without slow adaptation approximations. As we saw in the earlier chapters, the
methods of analysis and design tend to be considerably more complex and more

demanding in this case.

Despite the encouraging progress that has been made in this work, there are
of course a variety of open issues that deserve further investigation and a closer

study. We list below some suggestions for further work in this area.

Chapter 3

1. Computing the MSE for NLMS.

We did not provide an expression for the MSE of the normalized LMS
algorithm in Sec. 3.4 because there is no simple relation between E e(k)?
and the the averaged normalized error, E (™ (k)2, and because Theorem 3.4
only evaluates the MSD. Although Theorem 3.5 computes the MSE, its
proof is specific for LMS. An extension of Theorem 3.4 to compute the

MSE for NLMS and even other update laws would be useful.
Chapter 4

1. Improving the stability bound (4.32).

273



A tighter bound for the largest eigenvalue of the state-space matrix & would
allow us to compute the step-size that provides the fastest convergence rate

(in the mean-square sense), since
convergence rate of dominant mode = p(®),

where p(®) is the spectral radius of ®. A good approximation for p(®) thus

gives an approximation for the dominant mode of the linear system
Ly =0T
that describes the mean-square behavior of LMS.

An improved bound could be sought, for example, by applying a third set
of similarity transformations to ®, in order to eliminate the O(u?) terms in

the recursions for some seed variables.

. Extending the state-space analysis to more general input and noise statistics.

We assumed that the sequence {a:k} is the ouput of a tap-delay line with
independent inputs, and that the noise sequence {v(k)} is independent of
{@} (this last assumption holds in the case of Gaussian inputs and noise).
Relaxing these assumptions would require the study of even larger matrices
than treated in Chapter 4. Nevertheless, techniques similar to the ones
employed here can still be used — the matrix ® will still have considerable

structure.

. Exploring the relation between singular perturbation and averaging/ ODE

methods.

Singular perturbation techniques are widely used in control applications,
mostly for continuous-time applications (discrete-time singular perturba-

tion theory is not as well developed). We can show (for filter order M = 2
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see Appendix 4.H), that the averaged systems obtained from the ODE
method corresponds to the slow subsystem (in the language of singular
perturbation theory) of the state-space system (4.H.4) described in Ap-
pendix. 4.H.

The state-space linear system (4.8) used in Chapter 4 to describe the second-
order statistics of wy in LMS can also be studied using singular perturbation
methods. Pursuing this connection may lead to new and simpler stability
conditions for adaptive algorithms, and to estimates on the error incurred

in the approximations.

4. Extending the state-space stability analysis to other adaptive algorithms.

Presently, the stability analysis described in this chapter applies only to the
LMS algorithm, but the procedure is general enough and can be applied in

other contexts.
Chapter 5

1. Ezxtending the learning-curves analysis to other adaptive algorithms.

The results of Chapter 5 apply directly only to the LMS algorithm and
to the NLMS algorithm (by using the change of variables that was pro-
posed in Chapter 2). Nevertheless, phenomena similar to those described
in Chapter 5 should be present in most, if not all, gradient-based adaptive

algorithms.

2. Ezxtending the learning-curves analysis to non-independent input sequences.

Results presented in [BA81] discuss methods (using the Ergodic Theorem)
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that might help to extend the results of Chapter 5 to more general input

sequences.

3. Ezxploring the differences between almost-sure and mean-square analyses

In several situations where fast convergence is of interest, the interplay
between mean-square and almost-sure convergence and performance results
should be considered. In fact, in applications for which the initial condition
wy is good, almost-sure rates of convergence should play no role (since
they are manifested only for large time instants k). On the other hand, in
situations where the initial condition may be far from the Wiener solution,
the faster almost-sure rate of convergence should be important and taken

into account for the design of the filter.
Chapter 6

1. Allowing for a discontinuous o, in the update (6.22) for circular leaky.

The leakage function a.(-) described in Chapter 6 (Eq. (6.23)) was chosen
to be differentiable, so that results from averaging theory in the literature
could be applied. However, simulations showed that a simpler, discontin-
uous update equation would lead to a simpler algorithm with essentially
the same properties. We studied this function in [NS96] in a deterministic

setting. A stochastic analysis would be desirable as well.

2. Different leakage strategies.

The circular-leaky algorithm, although less costly, has more stringent sta-

bility conditions than the switching-o algorithm. An algorithm that is more
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robust than circular-leaky, and yet not as costly as switching-o (depend-
ing on the implementation) was proposed in [NS96]. Its performance was
analyzed in that reference from a purely deterministic point of view. A

stochastic analysis would also be of interest.

Feedback analysis

An alternative approach to the analysis of adaptive filters in terms of a
feedback structure with a lossless feedforward path, was recently proposed in

[SR96, RS96], and later extended to stochastic analysis in [Mai98, MS99, YS].

Using the feedback structure, references [MS99, YS] show that several steady-
state performance results (old and new) can be obtained with considerable less

effort than existing derivations.

It is therefore desirable to investigate the implication of this new approach to
the study of both the stability and performance of adaptive filters for both slow

and non-slow adaptations.

Robust estimation schemes

A new family of estimation problems was recently proposed and solved in
[CGGI8, SNC98]. This approach accounts for errors not only in the observed
vector (y(k) in the notation used in this dissertation), but also in the data used
for identification (xy). Several different cost functions have been proposed, and
applications in areas such as image restoration, regularization, and robust control
[SNC98, NS99b, SN99] have been successfully pursued. A preliminary adaptive
version was developed in [SGN97, SGC97|. Its behavior, however, is still not
fully understood. Moreover, the analyses so far have been entirely deterministic
and stochastic analyses would be desirable as well, in addition to new adaptive

variants.
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