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Abstract

This paper addresses adaptive filtering for sparse identification. Proportionate affine projection algorithms (PA-

PAs) are known to be efficient techniques for this purpose. We show that the PAPA performance may improve with

an increase in the projection order M (for example, such as M = 512), which, however, also results in an increased

complexity; the complexity is in general O(M2N) or at least O(MN) operations per sample, where N is the

filter length. We show that PAPAs are equivalent to specific sliding-window recursive least squares (SRLS) adaptive

algorithms with time-varying and tap-varying diagonal loading (SRLS-VDLs). We then propose an approximation to

the SRLS-VDLs based on dichotomous coordinate descent (DCD) iterations with a complexity of O(NuN), which

does not depend on M ; it depends on the number of DCD iterations Nu, which as we show can be significantly

smaller than M , thus allowing a low-complexity implementation of PAPA adaptive filters.

Index Terms

Adaptive filter, affine projection, diagonal loading, dichotomous coordinate descent, DCD, PAPA, RLS, sliding

window, sparse identification

I. INTRODUCTION

Compared to the classical least squares (LS) identification algorithms, the algorithms exploiting system sparsity

can achieve a better performance. Various techniques have been proposed in the literature for adaptive sparse

identification, especially in application to echo cancelation [1]–[6]. The proportionate affine projection algorithms

(PAPAs) [7] are considered as good candidates for this application [4]. In the PAPA family, significant attention is

paid to the improved PAPA (IPAPA) and its multiple modifications (see [8]–[15] and references therein). In general,

the complexity of sparse adaptive algorithms is higher than that of their LS counterparts. Therefore, reduction of

the complexity is an important issue.
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The complexity of PAPA adaptive filters of length N and projection order M is in general O(M2N), but it can

be reduced down to O(MN) operations per sample for specific weight matrices [4]. Typically, the value M is

suggested to be chosen from 2 to 8 to keep the complexity low. Further increase in M results in significant increase

of the algorithm complexity. The contributions of this paper are:

• we show through examples that increasing the PAPA projection order M to higher values (e.g., such as M =

512) than usually proposed in the literature may result in significantly improved identification performance;

• we show that PAPA adaptive filters are equivalent to specific sliding-window recursive least squares (SRLS)

adaptive filters with time-varying and tap-varying diagonal loading, which we call SRLS-VDL algorithms;

• we show that the SRLS-VDL algorithms can be approximately implemented with a complexity of O(NuN),

where Nu ¿ M , i.e., we propose a low-cost approximate implementation of PAPA adaptive filters with a

complexity independent of the projection order; we call corresponding techniques SRLS-VDL-DCD algorithms.

The parameter Nu is the number of dichotomous coordinate descent (DCD) iterations used at each time instant

for the approximation. The DCD algorithm is a low-complexity iterative technique for solving systems of linear

equations without multiplications or divisions [16], [17]. Thus, the proposed implementation of PAPA adaptive

filters makes it possible to take advantage of the improved performance achieved with higher projection order M ,

and at the same time reduces the complexity compared even to that of standard PAPA implementations using a low

order M .

DCD iterations have previously been applied to the PAPA family of algorithms to implement the memory improved

PAPA (MIPAPA) adaptive filter [9], [10], [12], which in particular has allowed an efficient FPGA implementation

of the adaptive filter [18]. The MIPAPA adaptive filter achieves a significant reduction in complexity compared

to the improved PAPA (IPAPA) adaptive filter (e.g., see Fig. 9 and Fig. 11) via a specific choice of the weight

matrix [8]. Further reduction in complexity is achieved by using DCD iterations to solve an M × M system of

linear equations (instead of a direct matrix inversion) at each time step. However, these linear systems are different

at each time instant, and there is no simple method for using the solution at one instant to provide a good initial

condition (warm start) for the next. Since every linear system must be solved from scratch, a relatively large number

of DCD iterations (of the order of M ) is necessary in the MIPAPA (or other PAPA) adaptive filters. The approach

proposed here obtains a large reduction in complexity in comparison with the above approach, because the system

of linear equations that must be solved at each time instant in the proposed algorithm, although being a large N×N

system, can be cast in an iterative form with a good warm start, resulting in good performance with a relatively

small number of DCD iterations Nu, e.g., Nu = 16 or even smaller.

Note that there were several attempts in the literature to give new interpretations to PAPA adaptive filters, resulting

in novel useful adaptive filters. In [19], it is shown a relation between PAPAs and Kalman filters. In [20], a relation
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is shown between proportionate adaptive filters and the basis pursuit. Here, we show another useful relation, now

between PAPA and SRLS recursions, that also results in new efficient adaptive filters.

The paper is organized as follows. In Section II, we introduce the signal model, PAPA and SRLS adaptive

filters, and analyse their complexities. Section III describes a relation between PAPA and SRLS adaptive filters and

introduces the SRLS-VDL adaptive algorithm. Section IV presents the SRLS-VDL-DCD adaptive algorithm, which

is a low-cost implementation of the SRLS-VDL algorithm. Section V presents a comparison of the performance and

complexity of the proposed and known adaptive algorithms. Finally, Section VI draws conclusions. The Appendix

contains the derivation of the SRLS-VDL-DCD algorithm.

Notation: We use capital and small bold fonts to denote matrices and vectors, respectively; e.g., X is a matrix

and x is a vector. Elements of a vector q are denoted as qi; (·)T denotes the transpose of a matrix; IN is an N ×N

identity matrix; 0N,K denotes an N ×K matrix with all-zero entries.

II. SIGNAL MODEL, PAPA AND SRLS ADAPTIVE FILTERS

The signal model corresponding to the identification scenario is described by the relationship

d(n) = hT (n)x(n) + ν(n), (1)

where d(n) is the noisy output of the system to be identified, ν(n) is a zero-mean Gaussian random noise with

variance σ2, and the vector x(n) = [x(n) x(n − 1) . . . x(n − N + 1)]T represents the input to the system with

unknown impulse response h(n) of length N . We are interested in scenarios where the vector h(n) to be identified

is sparse.

A. PAPA adaptive filters

We denote X(n) = [x(n), . . . ,x(n−M + 1)]T and d(n) = [d(n), . . . , d(n−M + 1)]T as the M ×N matrix of

the regressor data and M × 1 vector of the desired signal, respectively, where M is the length of a sliding window.

Consider the generalized PAPA recursion [4]:

RQ(n) = δIM + X(n)Q(n)XT (n), (2)

e(n) = d(n)−X(n)ĥ(n− 1), (3)

ĥ(n) = ĥ(n− 1) + µQ(n)XT (n)R−1
Q (n)e(n), (4)

where µ > 0 is a step-size parameter, δ > 0 is a regularization parameter, and n > 0 is the time index. The PAPA

can be implemented replacing the matrix inversion R−1
Q (n) and further multiplication of it by the error vector e(n)

in (4), with the solution of the M ×M system of equations RQ(n)ε(n) = e(n) [21], [22] as shown in Table I.
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TABLE I
GENERAL STRUCTURE OF PAPA ADAPTIVE FILTERS

Initialization: ĥ(0) = 0N,1

for n = 1, 2, . . .

1. Update Q(n) using ĥ(n− 1)
2. RQ(n) = δIM + X(n)Q(n)XT (n)
3. e(n) = d(n)−X(n)ĥ(n− 1)
4. Solve RQ(n)ε(n) = e(n) w.r.t. ε(n)
5. ĥ(n) = ĥ(n− 1) + µQ(n)XT (n)ε(n)

The N × N matrix Q(n) is typically chosen as a diagonal matrix Q(n) = diag{q(n)} and the vector q(n)

of its diagonal elements relates to the impulse response estimate ĥ(n − 1) obtained at time instant (n − 1); this

relationship is different for different PAPAs. The key idea for the choice of the vector q(n) is that its elements

qi(n) should be large if the corresponding |hi(n − 1)| are large; e.g., in the IPAPA adaptive filter, the elements

qi(n) (i = 0, . . . , N − 1) are given by [4], [23]

qi(n) =
1− κ

2N
+

1 + κ

2
|ĥi(n− 1)|

||ĥ(n− 1)||1 + ε
, (5)

where ε > 0 is a small number to avoid division by zero, −1 ≤ κ < 1, and

||ĥ(n− 1)||1 =
N−1∑

i=0

|ĥi(n− 1)|

is the `1-norm of the vector ĥ(n− 1).

If Q(n) is an identity matrix, i.e., Q(n) = IN , we arrive at the classical regularized affine projection algorithm

(APA) [24].

B. Classical SRLS adaptive filter

The classical SRLS algorithm at every time instant n finds an estimate h̃(n) of the impulse response h(n) as a

solution to the N ×N system of normal equations [25], [26]

R(n)h̃(n) = b(n), (6)

where R(n) = XT (n)X(n) and b(n) = XT (n)d(n). The matrix R(n) can be rank-deficient and then solving

the equation in (6) can be ill-posed. To stabilize the SRLS solution, diagonal loading (regularization) is used, so

instead of (6), a modified system is solved,

RW (n)h̃(n) = b(n), (7)

where RW (n) = R(n) + W(n), W(n) = δIN , and δ is the regularization parameter.
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Further improvement can be achieved if the final estimate ĥ(n) of h(n) is obtained using the recursion

ĥ(n) = (1− µ)ĥ(n− 1) + µh̃(n), (8)

where µ is a step-size parameter (0 < µ ≤ 1). When µ = 1, we have ĥ(n) = h̃(n) and we arrive at the classical

SRLS algorithm as defined by (6). For µ < 1, the estimate ĥ(n) is the result of averaging in time by linearly

combining the current estimate h̃(n) with the weight µ and the previous estimate ĥ(n− 1) with the weight 1− µ.

The closer µ is to zero, the larger the memory of the algorithm. See also [26] on using such a step-size parameter

in recursive least squares (RLS) adaptive filters.

C. Relation between the regularized APA and SRLS adaptive filters

In [24], a relation has been shown between the regularized APA and the SRLS algorithm. More specifically, it

is shown that the regularized APA recursion (2)–(4) with Q(n) = IN can be implemented as the following SRLS

recursion

RW (n) = δIN + XT (n)X(n), (9)

e(n) = d(n)−X(n)ĥ(n− 1), (10)

ĥ(n) = ĥ(n− 1) + µR−1
W (n)XT (n)e(n). (11)

Substituting (10) in (11), we can represent this recursion in another form, which will be useful for our further

consideration,

ĥ(n) = (1− µ)ĥ(n− 1)

+ µR−1
W (n)

[
b(n) + δĥ(n− 1)

]
, (12)

or

ĥ(n) = (1− µ)ĥ(n− 1) + µh̃(n), (13)

where again b(n) = XT (n)d(n), and h̃(n) is a solution to the system of equations

RW (n)h̃(n) = b(n) + δĥ(n− 1). (14)

Thus, the APA can be implemented using either the usual APA recursion (2)–(4) with Q(n) = IN or the regularized

SRLS recursion (9)–(11).

Note that the regularized SRLS recursion (8) with the system (7) is similar to the recursion (13) with the
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system (14), except that the system (14) contains an extra term δĥ(n− 1). This term plays a stabilizing role when

M < N .

D. Complexity of PAPA and SRLS adaptive filters

Let us consider the complexity of these two implementations. For PAPA, the computation of matrix RQ(n)

requires in general O(M2N) operations per time instant; this however can be reduced to O(MN) using a specific

choice of the matrix Q(n) as done for the memory PAPA [4]. The other steps for small M at most require O(MN)

operations. Therefore, for small M , the PAPA complexity can be thought of as at least O(MN) operations per

time instant. For large M , the matrix inversion R−1
Q (n) may require up to O(M3) operations per time instant

and it will dominate the complexity; however, approximate techniques can be used for this purpose to reduce the

complexity [9], [18] (see below). We show in Section V that large values of M however are useful for improving

the PAPA identification performance (see Fig. 2 and Fig. 5).

More specifically, for the IPAPA adaptive filter, the complexity of computing the matrix RQ(n) (see step 2 in

Table I) is about (M2N + MN)/2 multiplications and (M2N + MN −M2)/2 additions [18]; this is the most

significant contribution to the IPAPA complexity. For the MIPAPA, computing the matrix RQ(n) requires about

(2MN −N) multiplications and 2MN −2M −N additions [18]. Solving the system of equations at step 4 in both

the adaptive filters can be efficiently done using the DCD algorithm with Nu ≈ 5M DCD iterations, thus requiring

about 10M2 additions [9], [18]. The other steps of the adaptive filters involve: computation of the error vector e(n)

at step 3, requiring MN multiplications and MN additions; the filter update at step 5, requiring MN multiplications

and MN additions; and updating Q(n) at step 1, requiring N multiplications and 2N additions. Summarizing this

analysis, we can conclude that the IPAPA complexity is approximately 0.5M2N + 2.5MN multiplications and

0.5M2N + 2.5MN + 9.5M2 additions. For the MIPAPA adaptive filter, the complexity is approximately 4MN

multiplications and 4MN + 10M2 additions.

Regarding the SRLS recursion, due to the matrix inversion in (11) or, alternatively, solving the system in (14),

the complexity is in general O(N3). Using the matrix inversion lemma [27], this can be reduced down to O(N2)

operations per time instant, which is still too high in practice. However, the approximate and numerically stable

implementation of the regularized SRLS algorithm based on DCD iterations and proposed in [22] has a complexity

of O(NuN), while retaining the SRLS performance even with a small number of DCD iterations Nu. Therefore, if

M is high compared to the parameter Nu, it can be less costly to use the SRLS recursion than the APA recursion,

while avoiding possible numerical instabilities inherent to fast implementations of the exact algorithms.

In the next section, we extend the relation between APA and SRLS recursions to a more general relation between

the PAPA and specific SRLS recursions. We then exploit this result to obtain a reduced-complexity implementation

of the PAPA adaptive filters.
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III. RELATION BETWEEN PAPA AND SRLS RECURSIONS

We now show that the PAPA recursions can be transformed into specific SRLS recursions. We first apply the

matrix inversion lemma [27] to the matrix RQ(n) in (2) and obtain

R−1
Q (n) =

1
δ
IM − 1

δ
X(n)[δQ−1(n) + R(n)]−1XT (n). (15)

Multiplying R−1
Q (n) by XT (n) and denoting W(n) = δQ−1(n) and RW = R(n) + W(n), we obtain

XT (n)R−1
Q (n) =

1
δ
XT (n)− 1

δ
R(n)R−1

W (n)XT (n). (16)

Multiplying both sides in (16) by vector e(n) from the right and denoting z(n) = XT (n)e(n), after some algebra

we arrive at

XT (n)R−1
Q (n)e(n) =

1
δ
z(n)− 1

δ
R(n)R−1

W (n)z(n)

=
1
δ
W(n)R−1

W (n)z(n). (17)

Substituting (17) in (4) and taking into account that W(n) = δQ−1(n), we arrive at an equivalent form of the

PAPA recursion:

ĥ(n) = ĥ(n− 1) + µR−1
W (n)z(n). (18)

We now take into account that

z(n) = XT (n)[d(n)−XT (n)ĥ(n− 1)] (19)

= XT (n)d(n)−R(n)ĥ(n− 1) (20)

to modify the recursion in (18) as

ĥ(n) = (1− µ)ĥ(n− 1)

+ µR−1
W (n)

[
b(n) + W(n)ĥ(n− 1)

]
. (21)

Denoting

h̃(n) = R−1
W (n)

[
b(n) + W(n)ĥ(n− 1)

]
, (22)

the final estimate can again be represented in the form

ĥ(n) = (1− µ)ĥ(n− 1) + µh̃(n). (23)
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TABLE II
SRLS-VDL ADAPTIVE FILTER

Initialization: ĥ(0) = 0N,1 R(0) = 0N,N

for n = 1, 2, . . .
1. R(n) = XT (n)X(n)
2. Update the matrix W(n)
3. RW (n) = R(n) + W(n)
4. b(n) = XT (n)d(n)
5. Solve RW (n)h̃(n) = b(n) + W(n)ĥ(n− 1)
6. ĥ(n) = (1− µ)ĥ(n− 1) + µh̃(n)

If Q(n) = IN and, consequently, W(n) = δIN , from (23) we obtain, as a particular case, the SRLS recursion (14)

corresponding to the classical APA.

The sequence of steps described above can be summarized into the adaptive algorithm shown in Table II. We call

it an SRLS adaptive algorithm with time-variant and tap-variant diagonal loading (SRLS-VDL), since the diagonal

weighting matrix W(n) varies with time n and its diagonal elements are nonuniform. At every time instant n,

the SRLS-VDL algorithm generates an estimate ĥ(n) which is exactly the same as that generated by the PAPA,

provided that W(n) = δQ−1(n). This is just a different set of operations (different implementation) leading to the

same result. Note that the matrix Q(n) defines a specific PAPA. If W(n) does not satisfy this equality, the estimate

will be equal to that produced by another PAPA, whose matrix Q(n) satisfies the equality Q(n) = δ−1W−1(n).

In general, this implementation is not simpler than the implementation using the PAPA recursion given by (2)–(4).

However, to the algorithm in Table II, we can apply the approach described in [22] and further exploited in [6],

[28], [29] to arrive at a low-complexity approximation of the SRLS-VDL adaptive filter, as shown in the next

section.

IV. LOW-COMPLEXITY IMPLEMENTATION OF THE SRLS-VDL ALGORITHM: SRLS-VDL-DCD ALGORITHM

In Appendix I, we show that the SRLS-VDL algorithm presented in Table II can be approximately implemented

using the SRLS-VDL-DCD adaptive filter presented in Table III. Here, ỹ(n) is the output of the adaptive filter and

ỹM (n) is a delayed output; consequently, ẽ(n) is the a priori error and ẽM (n) is a delayed a priori error. The vector

r(n) is the residual vector that takes into account that the system of equations RW (n)h̃(n) = b(n)+W(n)ĥ(n−1)

is solved with ˆ̃h(n− 1) as a warm-start. Note that if the system at step 8 is solved exactly or the number of DCD

iterations is not limited then the SRLS-VDL-DCD adaptive filter will produce exactly the same results as the

SRLS-VDL or PAPA adaptive filter. However, such an approach would not bring any reduction in the complexity.

Since we can use the previous solution as an initial condition, a small number Nu of DCD iterations is enough to

achieve a performance close to that of the PAPA adaptive filter, thus reducing the complexity.

The most suitable version of the DCD algorithm for adaptive filtering is the leading DCD algorithm [22], [30].
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TABLE III
SRLS-VDL-DCD ADAPTIVE FILTER

Initialization: ĥ(0) = 0N,1, ĥ(−1) = 0N,1,
ˆ̃h(0) = 0N,1, r(0) = 0N,1, R(0) = 0N,N × ±
for n = 1, 2, . . .

1. R(n) = XT (n)X(n) 2N 2N
2. Update the matrix W(n) Pw,m Pw,a

3. ỹ(n) = ˆ̃hT (n− 1)x(n) N N

4. ỹM (n) = ˆ̃hT (n− 1)x(n−M) N N
5. ẽ(n) = d(n)− ỹ(n) − 1
6. ẽM (n) = d(n−M)− ỹM (n) − 1
7. r(n) = r(n− 1) + ẽ(n)x(n)− ẽM (n)x(n−M) 5N 5N

+W(n)ĥ(n− 1)−W(n− 1)ĥ(n− 2)

−∆W(n)ˆ̃h(n− 1)
8. Solve [R(n) + W(n)]∆h̃(n) = r(n) using − 2NuN

DCD iterations to obtain ∆ˆ̃h(n) and update

r(n) and ˆ̃h(n) = ˆ̃h(n− 1) + ∆ˆ̃h(n)

9. ĥ(n) = (1− µ)ĥ(n− 1) + µ
ˆ̃h(n) 2N N

It requires about 2NuN additions and no multiplications or divisions. This algorithm is based on a fixed-point

representation of the solution in an amplitude interval [−H, +H] with Mb bits; see more details on the DCD

algorithm, e.g., in [17], [22].

We now estimate the complexity of the SRLS-VDL-DCD algorithm in Table III. The matrix update at step 1

requires 2N multiplications and 2N additions (see [22] for details). The filtering steps 3 and 4 each require N

multiplications and N additions. Computation of the residual vector r(n) at step 7 requires 5N multiplications and

5N additions. Step 8 involves computing R(n)+W(n) and applying the DCD algorithm, including updating r(n)

and ˆ̃h(n), that requires 2NuN additions (see [22] and [17] for more details). The update at step 9 involves 2N

multiplications and N additions.

Computation of the diagonal elements of the weight matrix W(n) at step 2 is specific for each specific PAPA

adaptive filter. E.g., if we use the SRLS-VLD-DCD algorithm in order to approximately implement the IPAPA

adaptive filter, then the weights are defined by elements qi given by equation (5). Direct computation according

to (5) would require O(N) operations. However, at each time instant, only a few (Nu) filter taps are updated.

Consequently, only Nu elements of W(n) need to be updated with a complexity of O(Nu). Since Nu ¿ N , this

complexity, i.e., the number of multiplications Pw,m and number of additions Pw,a, can be neglected.

By summarizing this complexity analysis, we see that the SRLS-VDL-DCD algorithm can be implemented with

11N multiplications and (10 + 2Nu)N additions. It is important to notice that the number of multiplications is a

fixed value that only depends on the number of filter taps N and does not depend on the number of DCD iterations
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Fig. 1. MSD performance of the IPAPA adaptive filter for different values of the projection order M averaged over 10 realizations of
AR(1) input signal of unit variance with AR parameter 0.8. Parameters of the scenario: N = 512, K = 100, SNR = 30 dB. The other
IPAPA parameters are: κ = 0.99, ε = 10−4, δ = 1, µ = 0.5/M .

Nu. Only the number of additions increases proportionally to the number of DCD iterations.

V. NUMERICAL RESULTS

In this section, we present results of computer simulation of the proposed SRLS-VDL-DCD adaptive filter. We

compare the Mean Square Deviation (MSD) performance of this adaptive filter against the IPAPA adaptive filter.

As the input regressors x(n), we use a real speech signal sampled at a rate of 8000 Hz, each sample represented

with 14 bits. The impulse response of the unknown system h(n) is of length N = 512; only K = 100 of its

elements are non-zero. They are kept constant during the first 8000 instants (equivalent to 1 s) and then changed.

The change is in both positions and values of the non-zero taps. Positions of the K non-zero elements in h(n)

are chosen randomly. These elements are generated as independent Gaussian zero-mean random numbers of unit

variance and then h(n) is normalized to have the unity norm. The MSD is calculated as

MSD(n) =
||h(n)− ĥ(n)||22

||h(n)||22
(24)

and plotted against the time index n; here, || · ||2 denotes the `2–norm.

Before presenting simulation results for speech signals, we first consider a case of the input to the adaptive filter

being an autoregressive random process of the first order, AR(1). Fig. 1 shows the MSD performance of the IPAPA

adaptive filter for such a case with the AR parameter 0.8. It can be seen that for the chosen step-size µ = 0.5/M

the convergence rate for all values of the projection order M is approximately the same; we chose the inverse

dependence of µ on M to keep the convergence rate about the same for all M . However, the steady-state MSD

performance improves as M increases. This indicates that it is beneficial to use the IPAPA with large values of M .
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Fig. 2. MSD performance of the IPAPA adaptive filter for different values of the projection order M for one realization of the input speech
signal. Parameters of the scenario: N = 512, K = 100, SNR = 45 dB. The other IPAPA parameters are: κ = 0.99 and δ = 104, ε = 10−4.
The step size µ is adjusted for every M to achieve the best performance. The top blue curve in the plot shows the input speech signal used
for the identification.
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Fig. 3. MSD performance of the IPAPA adaptive filter for different values of the step-size parameter µ for one realization of the input
speech signal. Parameters of the scenario: N = 512, K = 100, SNR = 45 dB. The other IPAPA parameters are: M = 512, κ = 0.99 and
δ = 104, ε = 10−4.

Fig. 2 demonstrates the improvement of the IPAPA performance with increased M for a real speech signal.

Note that the speech samples are represented as integer numbers with 14 bits; e.g., the maximum magnitude of the

speech signal is equal to 16260 at time instant 9933. Therefore the regularization parameter δ is set to a large value,

δ = 104. For every M , the step-size parameter µ is adjusted to guarantee the best performance. These values of µ

are slightly different from those in Fig. 1. In the case of M = 1, we arrive at the improved proportionate NLMS

(IPNLMS) algorithm [4], [23]; this algorithm shows an inferior performance compared to the IPAPA performance

for higher values of M .

Fig. 3 shows the dependence of the MSD performance on the step-size µ to illustrate how, in our simulations,
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IPAPA:   κ = 0.995
IPAPA:   κ = 0.99
IPAPA:   κ = 0.9
IPAPA:   κ = 0.5
IPAPA:   κ = 0.0
IPAPA:   κ = −0.5

Fig. 4. MSD performance of the IPAPA adaptive filter for different values of the parameter κ for one realization of the input speech signal.
Parameters of the scenario: N = 512, K = 100, SNR = 45 dB. The other IPAPA parameters are: M = 512, µ = 1.5 · 10−3, δ = 104,
ε = 10−4.

the step-size parameter is adjusted to achieve ‘the best performance’. Note that µ usually compromises between

the convergence rate and steady-state MSD, and thus ‘the best performance’ does not exist. In our case, we try to

achieve a low steady-state MSD without loosing too much in the convergence rate. In Fig. 3, it can be seen that,

after the change of the impulse response, the convergence rate for µ = 0.0015 is close to that for higher µ, whereas

for µ < 0.0015, the convergence rate decreases considerably. Therefore, we choose µ = 0.0015 as a compromise

step-size value.

Fig. 4 shows the dependence of the MSD performance on the parameter κ defining the matrix Q(n) in the

IPAPA. In the IPNLMS algorithm (IPAPA with M = 1), good results are achieved for κ = 0 and κ = −0.5 [23].

However, for the high projection order (M = 512), in this scenario, the parameter κ needs to be close to unity.

Therefore, for our simulation, we chose κ = 0.99.

Fig. 5 confirms this trend of improvement of the IPAPA performance with an increase in the projection order M .

In this figure, we plot the average MSD obtained for different projection orders (from M = 1 to M = N = 512).

The ensemble-averaged MSD is obtained using L = 10 different extracts (about 5-second long each) of the same

speech signal as was used to generate results in Fig. 2. A large improvement in the performance is achieved when

moving from M = 1 to 8, 32, 128 and 512, with differences of more than 5 dB between the cases M = 8 and

M = 512.

Fig. 6 presents simulation results for the SRLS-VDL-DCD algorithm. It shows that, for the case of M = 512,

that when the number of DCD iterations increases, the performance approaches that of the IPAPA with the same

value of M . A small number of DCD iterations (Nu = 8 in this case) are enough to approach closely the IPAPA

performance. However, the complexity of the SRLS-VDL-DCD adaptive filter is significantly lower than the IPAPA
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IPAPA: M = 1,  µ = 0.5
IPAPA: M = 8,  µ = 0.1
IPAPA: M = 32,  µ = 0.02
IPAPA: M = 128,  µ = 0.002
IPAPA: M = 512,  µ = 0.0015

Fig. 5. MSD performance of the IPAPA adaptive filter for different values of the projection order M , averaged over 10 input speech signals.
Parameters of the scenario are: N = 512, K = 100, SNR = 45 dB. The other IPAPA parameters are: κ = 0.99 and δ = 104, ε = 10−4.
The step size µ is adjusted for every M to achieve the best performance.
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SRLS−VDL−DCD: N
u
 = 2

SRLS−VDL−DCD: N
u
 = 8

IPAPA or SRLS−VDL: M = 128
IPAPA or SRLS−VDL: M = 512

Fig. 6. MSD performance of the SRLS-VDL-DCD algorithm with different numbers of DCD updates Nu for one input speech realization.
Parameters of the scenario: N = 512, K = 100, SNR = 45 dB. The other parameters are: M = 512 (apart from the IPAPA with M = 128),
κ = 0.99 and δ = 104, ε = 10−4, µ = 1.5 · 10−3 for M = 512 and µ = 2.5 · 10−3 for the IPAPA with M = 128.

complexity. In this figure, we show the performance of both the IPAPA and also the ideal implementation of the

SRLS-VDL adaptive filter; indeed, the performance of both algorithms is exactly the same.

Fig. 7 presents similar results for a lower SNR: SNR = 25 dB. It can be seen that, again a small number of

DCD iterations (Nu = 8) are enough to approach closely the IPAPA performance.

While Fig. 6 shows results for a single speech realization, Fig. 8 shows the MSD obtained by averaging the

MSD performance for 10 input speech realizations, as in Fig. 5. The ensemble-averaged curves show the same

behavior as in Fig. 6, confirming that a small number, Nu = 16, of DCD iterations is sufficient to approximate the

performance of the exact SRLS-VDL adaptive filter, and Nu = 8 already achieves a good performance, compared

to that of the IPAPA with M = 128.
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SRLS−VDL−DCD: N
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 = 4

SRLS−VDL−DCD: N
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 = 8
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 = 16

IPAPA

Fig. 7. MSD performance of the SRLS-VDL-DCD algorithm with different numbers of DCD updates Nu for one input speech realization.
Parameters of the scenario: N = 512, K = 100, SNR = 25 dB. The other parameters are: M = 512, κ = 0.99, δ = 104, ε = 10−4, and
µ = 6 · 10−4.
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SRLS−VDL−DCD: N
u
 = 2

SRLS−VDL−DCD: N
u
 = 4

SRLS−VDL−DCD: N
u
 = 8

SRLS−VDL−DCD: N
u
 = 16

IPAPA or SRLS−VDL: M = 128
IPAPA or SRLS−VDL: M = 512

Fig. 8. MSD performance of the SRLS-VDL-DCD adaptive filter with different numbers of DCD updates Nu, averaged over 10 input
speech signals. Parameters of the scenario: N = 512, K = 100, SNR = 45 dB. The other parameters are: M = 512 (apart from the IPAPA
with M = 128), κ = 0.99, δ = 104, ε = 10−4, µ = 1.5 · 10−3 for M = 512 and µ = 2.5 · 10−3 for the IPAPA with M = 128.

Fig. 9 shows the complexity (number of multiplications and additions) of the IPAPA, MIPAPA, and SRLS-VDL-

DCD adaptive filters for the case of N = 512 and Nu = 16. It is seen that for the projection order M = 2, the

number of multiplications of the SRLS implementation is close to that of the PAPA implementations. For M ≥ 3,

the PAPA implementations require more multiplications than the SRLS implementation. With large values of M ,

the complexity of the SRLS implementation is orders of magnitude less than that of PAPA.

Fig. 10 compares the performance of SRLS-VDL-DCD and IPAPA, choosing parameters so that their complexities

will be similar (in fact, SRLS-VDL-DCD has slightly lower complexity, see Fig. 11). In this situation, Fig. 10 shows

that with just two (Nu = 2) DCD iterations the SRLS-VDL-DCD adaptive filter with M = 512 already performs

similarly or better than IPAPA with M = 4.
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Fig. 9. Comparison of complexity (number of multiplications and additions) of the IPAPA, MIPAPA and SRLS-VDL-DCD adaptive filters
against the projection order M ; N = 512, Nu = 16.
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SRLS−VDL−DCD: M = 512, N
u
 = 2

IPAPA: M = 3,   µ = 0.3
IPAPA: M = 4,   µ = 0.3
IPAPA: M = 6,   µ = 0.22

Fig. 10. MSD performance of the SRLS-VDL-DCD adaptive filter (M = 512, Nu = 2, µ = 1.5 · 10−3) against the IPAPA adaptive filter
with small values of M , averaged over 10 input speech signals. Parameters of the scenario: N = 512, K = 100, SNR = 45 dB. The other
parameters are: κ = 0.99, δ = 104, and ε = 10−4.

Therefore, the new algorithm provides more flexibility in designing adaptive filters. As our examples have shown,

SRLS-VDL-DCD with a large value of M can be designed (by choosing Nu) to have the same performance, but

with a smaller complexity even than IPAPA with small M . On the other hand, by increasing Nu, the performance

of SRLS-VDL-DCD approaches that of IPAPA with large M , but now with a significant reduction in complexity.

VI. CONCLUSION

In this paper we studied the influence of the affine projection order in proportionate affine projection adaptive fil-

ters for sparse system identification, showing that, contrary to common practice, large projection orders (comparable

to the length of the impulse response to be estimated) may result in better identification performance.
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Fig. 11. Comparison of complexity (number of multiplications and additions) of the IPAPA, MIPAPA and SRLS-VDL-DCD adaptive filters
against the projection order M ; N = 512, Nu = 2.

We proceeded to propose new implementations for PAPAs that allow the use of large projection orders, while

keeping the complexity low (in fact, even for small projection orders, the new algorithms can be designed to have

similar performance and lower complexity compared to previous low-complexity PAPA implementations). The key

to the low-cost algorithms is the connection we make between PAPA and sliding-window RLS with specific time-

and tap-varying diagonal loading. Viewing PAPA as a sliding-window RLS allows one to find at each time instant

a good initial condition to the low-cost DCD algorithm for solving a system of equations, so that only a small

number of iterations is necessary to compute the filter estimates.

One drawback of using high projection order is the increased memory size for saving the input autocorrelation

matrix. For standard PAPA implementations, the memory size is O(M2), whereas in our case it is O(N2). If memory

is an issue, one would prefer to use the standard PAPA implementation with small M . However, if performance is

more important and/or complexity is the limiting factor, the new implementation would be preferable.

APPENDIX: SRLS-VDL-DCD ADAPTIVE FILTER

Based on the SRLS-VDL recursion, we now derive a recursion for the SRLS-VDL-DCD adaptive filter, which

can be approximately implemented with a complexity of O(NuN) operations per time instant using DCD iterations.

We notice that, for every sample n, the current estimate h̃(n) can be found as a solution to the system of

equations:

RW (n)h̃(n) = g(n), (25)

where g(n) = b(n) + W(n)ĥ(n− 1). Assume that an approximate solution ˆ̃h(n− 1) to the system

RW (n− 1)h̃(n− 1) = b(n− 1) + W(n− 1)ĥ(n− 2) (26)
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was found for the time instant (n− 1). We now want to use ˆ̃h(n− 1) as a warm start (initialization) for finding

an approximate solution ˆ̃h(n) for time instant n as

ˆ̃h(n) = ˆ̃h(n− 1) + ∆h̃(n). (27)

To find the vector ∆h̃(n), we need to solve a system of equations

RW (n)∆h̃(n) = r(n), (28)

where r(n) = g(n)−RW (n)ˆ̃h(n− 1). Assuming that there exist ∆g(n) and ∆RW (n) so that

g(n) = g(n− 1) + ∆g(n), (29)

RW (n) = RW (n− 1) + ∆RW (n), (30)

we can represent the vector r(n) as

r(n) = g(n− 1) + ∆g(n)

− RW (n− 1)ˆ̃h(n− 1)−∆RW (n)ˆ̃h(n− 1)

= rr(n− 1) + ∆g(n)−∆RW (n)ˆ̃h(n− 1), (31)

where rr(n− 1) denotes a residual vector given by

rr(n− 1) = g(n− 1)−RW (n− 1)ˆ̃h(n− 1). (32)

The idea of a low-complexity implementation of the adaptive algorithm is in finding an approximate solution to

the system in (28). This can be done using a few (Nu) DCD iterations, each of complexity O(N). If the other steps

in the algorithm can also be done with a complexity of O(N), then the whole algorithm complexity would be of

O(N). However, obtaining the vector r(n) in (31) involves a matrix-vector multiplication, which in general is of

complexity O(N2), and computation of other vectors that if implemented directly would also involve significant

complexity. Below we derive recursions which allow reducing the complexity.

We first notice that the vector rr(n− 1) is a by-product calculated in the DCD algorithm, and can be considered

already available.

We now find a recursion for computation of ∆g(n). Denoting ∆b(n) = b(n)− b(n− 1), we can write

∆g(n) = ∆b(n) + W(n)ĥ(n− 1)−W(n− 1)ĥ(n− 2). (33)
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From b(n) = X(n)d(n) we obtain that

∆b(n) = d(n)x(n)− d(n−M)x(n−M). (34)

Taking into account that W(n) is a diagonal matrix, we can see that computation of

∆g(n) = d(n)x(n)− d(n−M)x(n−M)

+ W(n)ĥ(n− 1)−W(n− 1)ĥ(n− 2) (35)

requires a complexity O(N).

The term ∆RW (n)ˆ̃h(n− 1) in (31) can be written as

∆RW (n)ˆ̃h(n− 1) = [∆R(n) + ∆W(n)] ˆ̃h(n− 1), (36)

where ∆W(n) = W(n)−W(n− 1). We notice that

∆R(n) = x(n)xT (n)− x(n−M)xT (n−M) (37)

and

∆R(n)ˆ̃h(n− 1) = ỹ(n)x(n)− ỹM (n)x(n−M), (38)

where

ỹ(n) = xT (n)ˆ̃h(n− 1), (39)

ỹM (n) = xT (n−M)ˆ̃h(n− 1). (40)

We further denote

ẽ(n) = d(n)− ỹ(n), (41)

ẽM (n) = d(n−M)− ỹM (n), (42)

and finally obtain the following recursion for computation of the right-hand part of the system of equations in (28):

r(n) = rr(n− 1) + ẽ(n)x(n)− ẽMx(n−M)

+ W(n)ĥ(n− 1)−W(n− 1)ĥ(n− 2)

− ∆W(n)ˆ̃h(n− 1). (43)
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Summarizing the above recursions, we arrive at the SRLS-VDL-DCD adaptive filter that allows a low-complexity

implementation of the SRLS-VDL algorithms and, consequently, the low-complexity PAPA implementation. The

structure of the SRLS-VDL-DCD adaptive filter is presented in Table III.
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