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ABSTRACT stage switchings and each adaptation stage needs a different set of

We propose a region-based multimodulus algorithm for blind equalparameters [5]. If the set of parameters is not properly choseb, SD
ization of high-order quadrature amplitude modulation (QAM) sig-can suffer from slow convergence and bad tracking capability.

nals. It treats nonconstant modulus constellations as constant modu- A drawback of all blind algorithms mentioned above is conver-
lus ones, converging approximately to the Wiener solution. To avoidjence to local minima or even divergence [1]. This can occur when
divergence, it rejects non-consistent estimates of the transmitted sithte step-size is not properly chosen or if the initialization is distant
nal. When compared to existing blind multimodulus-type algorithmsfrom the optimal solution [6]. In order to avoid divergence, dual-
for equalization of QAM signals, it exhibits considerably lower mis- mode blind algorithms were recently proposed in [7,8]. In the first
adjustment, faster convergence, good tracking capability, withoumode, these algorithms work as the normalized CMA [7] or as the
compromising the computational cost. Its good behavior is illus-Shalvi-Weinstein algorithm [8], while in the second mode, they re-

trated through simulation results. _ o ject non-consistent estimates of the transmitted signal.
Index Terms— Adaptive equalizers, blind equalization, con- In this paper, we propose a new blind algorithm for equalization
stant modulus algorithm, nonlinearities. of high-order QAM signals that, in addition to the advantages of

1 INTRODUCTION [4,5,7,8], converges app_roximately to th(_e Wigener solution, which
generally provides a considerably lower misadjustment.

The most popular algorithm for blind equalization is the constant-

modulus algorithm (CMA). It is well-known that CMA does not 2. PROBLEM FORMULATION AND DM-MMA

solve phase ambiguities introduced by the channel and has a rel&ignala(n) is transmitted through an unknown channel, modeled by

tively large misadjustment when used to recover nonconstant mod finite impulse response (FIR) filter with impulse response vector

ulus signals (see, e.g., [1] and the references therein). To jointlh” =[ho h1 - - hx—1] and additive white Gaussian noise (AWGN)

recover the modulus and phase of the transmitted signal, the muiy{n), where the superscrif stands for the transpose of a vector.

timodulus algorithm (MMA) was proposed in [2] and [3]. Instead The received signak(n) is therefore a distorted version afn),

of minimizing the dispersion of the magnitude of the equalizer out-corrupted by intersymbol interference and noise. It passes through

put, MMA minimizes the dispersion of its real and imaginary partsan FIR filter, whose output is given hy(n) = u” (n)w(n — 1),

separately. Thus, it mitigates the intersymbol interference (ISI) ansvhereu(n), w(n—1) € C” are the column input regressor and

simultaneously corrects the phase rotation, since it implicitly incor-coefficient vectors, respectively. The decision device computes fro

porates a phase-tracking loop. Although MMA provides better cony(n) a delayed estimate of the transmitted sequetice— A), A

vergence for high-order QAM signals, it still exhibits a large misad-being a positive integer. In blind equalization, the algorithms usually

justment in the steady-state (though smaller than that of CMA).  update the equalizer coefficients using higher-order statistics of the
To overcome the high misadjustment exhibited by CMA andtransmitted signal. Due to its simplicity, CMA is widely used in spite

MMA, many algorithms have been proposed in the literature (seef its slow convergence and possible divergence.

e.g., [4] and the references therein). One of these algorithms, called To avoid divergence, a normalized version of CMA was derived

Sliced MMA (S-MMA), incorporates the sliced symbols (outputs in [7]. The algorithm, named DM-CMA, is given by

of the decision device) in the multimodulus-based coefficient adap- o it «

tation process [4]. Although the steady-state misadjustment of S- w(n) =wn-1)+ 0+ |lu(n)[? ld(n) =yl u’(m), (D)

MMA is much lower than that of MMA for high-order QAM sig- where0 < ji < 2 is a step-size] is a small positive parametefr)*

nals, it is still relatively large when compared to the misadjustmenttands for the complex-conjugatén) = z(n)y(n),

obtained in the equalization of constant modulus signals with MMA. _ [ (802 —|y(n)|?)/(Bo? = R), if |y(n)]® < Bo?
Another algorithm for blind equalization of QAM signals is the (1) = 0, otherwise

soft decision-directed (SDD) algorithm [5]. It is based on the max- o 2 . 4 2 o

imization of thea posteriori probability density function (pdf) of Ua—g)?c;{r‘igﬁ‘ I}&](%re; E;{g{ﬁ)n ggtg/ g%g(f ()j‘eié)ti s?hs é)r(ese%t’a_

the equalizer output. To reduce the computational cost, the conﬁ " P P ) P

: L ! on operation. Itis worth to note thdfn) andy(n) are estimates of
p!ex plane of a high-order QAM is d'V'd.ed Into a se} of regular " the desired response. The consistency between these two estimates
gions, each with four symbols. Thus, its computational cost is al- . - . S .
- ; . will be ensured itd(n) andy(n) have the same sign, which is equiv-
ways equivalent to the 4-QAM case, since the pdf of the equalizer - g o
h . ) . alent to requiring the correction factefn) to be always positive.
output is locally estimated. Its main drawback is that, for a constel:

) ; . For sub-Gaussian constellations, as is the case for most constella-
lation with M symbols, the adaptation process requices (1) /2- tions used in digital communications, the denominator:@t) is
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This idea can also be extended to ensure the stability of MMAReplacingd(n) —y(n) by éx(n) in (1), we obtain DM-RMMA. To
Using the multimodulus cost function [3], DM-MMA is obtained re- complete its derivation, the step-sizeshould be chosen. To sim-
placingd(n)—y(n) by [dr(n) + jdr(n)] — [yr(n) + jyr(n)] in (1),  plify the presentation, we assume real data.
yr(n) andy;(n) being the real and imaginary partsydfn), respec- If, at a certain iteration||w(n—1)| is so large thay?(n) > 3
tively. The signalsir(n) = zr(n)yr(n) andd:(n) = z;(n)y:(n) (note thats2 = 1), we can guarantee that DM-RMMA is stable by
depend on the statistics of the real and imaginary parts of the transhoosing;i as follows. Outside the region of interest, the update

mitted signals, gince 2 ) s () equation of DM-RMMA reduces to
305 r — |lyr(n)| 3051 — |yr(n) = Y
zr(n) = —5————, (n) = 3 ) w(n)= I—i’u'%‘ u(n)u” (n)|w(n—1) + 7,u|ck\cku(n).
: Soli—Ra Sras - )= = S a2 O =)+ SR
oar = E{ar(n)}, oo, = E{ai(n)}, Rr = E{ar(n)}/0q g, . . . Sﬁ
andR; = E{a}(n)}/o2 ;. DM-MMA requires8N + 12 real mul-  The matrix between brackets has all eigenvalues with absolute values
tiplications (x), 8N +7 real additions (+)] real division ¢-), and 2 less than or equal to one if [9]
comparisons per iteration. 0 < a<2/lck| < 2/|cmax|s (7

~ Through simulations, it was shown in [7] that DM-CMA never wherec,,,. is center of the region farther away from the origin of
diverges. This property can also be extended to DM-MMA. Re-the complex plane of th#/-QAM constellation. Note thgm.| =
cently, the same philosophy was applied to the Shalvi-Weinstein aI\-@( /M — 2) for rectangular QAM. DM-RMMA can also be used

gorithm (SWA) in [8]. In this case, assuming the persistence of exci: recover non-r naular OAM. In thi (/M —
tation condition, it was proved through a deterministic analysis th c; ecover non-rectangular QAM. In this cafigu..| 7# v/2(

DM-SWA is stable in infinite-precision arithmetic. The norm of the second term of the r.h.s. of (6) is bounded, i.e.,

3. PROPOSED ALGORITHM 0< flex|ek|lu(n)]| - | Cmax |Cmax < o (®)

The complex plane is decomposed into a setff4 minor 4-QAM = dt|u(n)||Z — ) '
blocks as in the SDD algorithm of [5]. Each block or regular regionUsing (deterministic) exponential stability results for the LMS al-
A; contains four symbols, i.edr, = {axm,m = 1,2,3,4}, k = gorithm [9], we conclude that DM-RMMA is stable if is chosen
1,2,..., M/4, whereay,, takes the value from th&/-QAM sym- in the interval (7). Although this result was obtained for real data,
bol set. The center ofl;, is denoted agx = cgr,, + jcr,i, With several simulations suggest that it can also be used for complex data.
cr,,r ande; , the real and imaginary parts ef, respectively. With DM-RMMA is summarized in Table 1. DM-RMMA requires
(log, M —2) comparisons, it is possible to identify to which region only [4x, 2+, and(log, M — 2) comparisons] per iteration in addi-
Ay, the sample of the equalizer output belongs. tion to DM-MMA.

Variations in the modulus of the transmitted symbol are seen by Table 1. Summary of DM-RMMA

CMA as a kind of measurement noise [6]. The performance thus cgn
be improved if we trick the algorithm to interpret the input constella-
tion as if it had constant modulus. In order to treat the symbols of th
identified region as pertaining to a constant modulus constellation,
translation operation is performed as follows. The center of the iden- for , = 1,2, ..., compute:
tified region is translated to the origin of the complex plane and the -

rest of the constellation is forgotten. The translation operation work y(n) =u (n)w(n —1) ©)
as if the symbols of the translated regidp belonged to a constant Identify the regionAy, seta, = 1, and compute:

modulus 4-QAM constellation. The translated output sample, de- ., (n)=yx(n)—crr; Frr(n)=y:(n)—crs (10)
noted agjr = Yrx + jUrr = (Yr — crx) + J (Y1 — crr), has (by _ o _ o
construction, except if is too large, outside the original constella- Zr(n)=1.5=0.5gr(n); T1r(n)=1.5-0.5g7,.(n)  (11)

Initialize the algorithm by setting:
w(0)=[0---0 144 0---0]"; 0< fi <2/|Cmax]|

1"2 L m(u

tion) modulus less than or equal2q/2, and the translated symbols if Tri(n)>0 and T;x(n) >0

are given byax,, = £1 £ j. Considering both the real and imag- () =7 - - d — - 12
inary components of the translated sample apart, the multimodulus r (M) =Tn(M)fri(n); drn(0) =21 (n)Fre(n) (12)
cost function with a unitary dispersion constant can be used. As the ~ €/S€

information of the position ofi,, is lost with the translation opera- dry(n)=dp(n)=0; (13)

tion, in order to distinguish the regions, the cost function needs sone o4

information about the position of;, in the complex plane. _ -
To obtain an algorithm which considers the translation operal ~ €rk(n)=drx(n)—=rx(n); €rx(n)=dir(n)=yrx(n) (14)

tion and the information about the position 4f;, we propose the e(n) = ok [|crnlerr(n) + jlenlens(n)] (15)
following instantaneous cost function - -1 2 *
9 e w(n) = w(n—1)+ a8 +[lu(n)|*) " &n)u’(n)  (16)
J= 2 Y arllendl = Fro) +lendl -G )], @) | end
=
wherea, = 11 only for the identified regiom;, anda, = 0 for the To give further insight about the proposed algorithm, the error-

otherM /4 — 1 regions. Note that the multiplication factokss, | functions of MMA, S-MMA, and RMMA are depicted in Fig. 1 for
and|c; .| carry the information about the position df,. The gradi-  the real part of 64-QAM (the figure for the imaginary counterpart
ent of J is given by [2,3]V.J = Eé‘i/l‘* aée(n)u*(n), where is identical). The error-function of MMA (resp., S-MMA) has ze-

_ _ ros whenyy, is null or wheny? is equal (resp., close) to the dis-
ee(n) = lerel [dre(n) =gre(n)] +ilerel [dre(n)—gre(n)] (3)  persion constant. S-MMA exhibits increased contours in the error
dre(n) = Tre(n)gre(n),  die(n) = T10(n)gre(n), (4)  function, resulting in a smaller steady-state misadjustment than that
B = o 5 of MMA [4]. For both MMA and S-MMA, the error-function is
Zre(n)=0.5 [3=7r.(n)] , andz;,(n)=0.5 [3=7i.(n)]. (5)  not zero when the equalizer output is equal to the symbol of the



nonconstant-modulus constellation. On the other hand, the error-_ o) T Iy
function of RMMA presents nulls at the coordinates of the centerdVnerey= cx|+4 > leel, andp=cex| +4 > ereel.

i H =k =k
of each regiond;. and at the coordinates of the symbols of the con-+1.. <ocond term of the rh.s. of (19) is bounded. Inspired in the

stellation. The nulls at the coordinates of the constellation symbols o -
) esults of [9], to ensure the stability of DM-RMMA i should be
allow RMMA to treat nonconstant modulus signals as constant mod- (9] y H

chosen in the interval

ulus signals. -
9 0< /i <2/v < 1.6/|cmax|- (20)
100 In the worst casek,. =4), DM-RMMA 5 requires[73x, 32+,
8-+, and 9 comparisonsper iteration in addition to DM-RMMA.
60 To decrease the computational cost, DM-RMMean be switched
to DM-RMMA when ¢(n) < 0.1. Simulation results show that this
N 28 switching does not cause a degradation of performance.
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Fig. 1. Error-function for MMA, S-MMA, and RMMA, considering the a¢ 1ok : A; -
part of a 64-QAM constellation. RMMA plot scale 2.7:1, egled to ease o __o|lle of o __o Re 4
zero-crossings visualization. »
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A drawback of DM-RMMA is that it still has the typical slow N ': ¢
convergence of MMA. At the beginning of convergence, the coef- * . _3E! S e * . -30 -20 ‘10dB 0 10
ficient vectorw is very distant from the optimum solution, and the -t &n) (dB)

: : : P _Fig. 2. (a) Local regions for RMMA adaptation’{,, = 4); the center of
equallzfer O.Utputl_?lften falls Ig a. V\./ron.g ;egl%n, rknaln(ljy Ilqn thle pr.ehs each local region is indicated by and the constellation symbols ley (b)
ence o n0|s_e. g IS wrong decision 'S_ € ac_ and the algorit Mhe exponenp(n) as a function of mean-squared decision error in dB.
takes many iterations to converge. To improve its convergence, we

have to take into account not only the regidn, where the sam- 4. SIMULATION RESULTS

ple of equalizer output falls, but also the regions in its neighborpy.RMMA and DM-RMMA 5 are compared to DM-MMA and the
hood. To avoid a large increase in the computational cost, we asyjener solution. The equalizer haé= 21 taps and was initialized
sume the influence of onlj’, more regions besidedy, as shown \yith the typical center spike in all simulations. Due to space reasons,
in Fig. 2-(a_): Note that, can be equal to 2, 3, or 4, depending e algorithms DM-MMA, DM-RMMA, and DM-RMMA; are de-

on the position ofd,. The factorsa, of (2) must be nonzero for , iaq respectively as DM, R1-DM, and R5-DM in the legends of

the K. regions in the neighborhood of.. When the decision error 6 figures. Furthermore, the following adaptation parameters were
ea(n) = a(n — A) — y(n) is large, the influence of the regions of | saq'in all SIMUIAtionsyias—arara = 4 X 102, poas—rasara =

the neighborhood i, should be greater than when(n) is small. poai—raiaias — 1072, andA = 0.9. The delay of the Wiener filter

With this in mind, we consider the mean-squared decision error esy45 set toA — 11. The step-sizes of the algorithms were chosen

timated af(n) = A¢{(n — 1) + (1 — Meg(n), where0 < X <1 15 ghyain a tradeoff between convergence rate and steady-state mis-

is a forgetting factor, and choose = 477", with2 < p(n) <10 adjustment. In some cases, to facilitate the visualization, the curves

calculated through a hyperbolic tangent function, i.e., were filtered by a moving-average filter with 500 taps.

1 — 8[6(n)=0.03] Fig. 3-a shows the mean-squared decision eiffdef(n)}) es-

1 + e8lE(m)—0.03] +9.1467. (17) timated from the ensemble-average of 200 independent runs. We

This function was experimentally chosen and is shown in Fig. 2-(b)aSSUme 256-QAM, absence of noise, and that, at iteratier2.5 x

Through simulations, we observe that the good behavior of the algg0”» the channe[0.28 0.92 0.28] is changed td0.35 0.87 0.35].

rithm can be ensured with this function for different environments. PM-MMA presents a high misadjustment due to nonconstant modu-
To distinguish this algorithm from that of Table 1, we denote it as!US Signals. DM-RMMA and DM-RMMA outperform DM-MMA,

DM-RMMA 5. Thus, after the identification of regiofy,, Egs. (10)-  converging to the Wlene_r solution. Although they achieve the

(14) of Table 1 should be evaluated fdr, and for, regions inits  S&me steady-state solution, DM-RMMAconverges faster than

p(n) = 7.1467

neighborhood. Then, (15) should be replaced by DM-RMMA, due to the use of the regions in the neighborhood of
kLK Ag. Fig. 3-b shows the ensemble-average of the expopeny.
é(n) = Z ac[|crel@re(n) + jlene|ne(n)] (18) Whenp(n) ~ 10, DM-RMMA5.couId be switched to DM-RMMA
—r without performance degradation.
with ay = aj, = 1 for the regionA, which contains the sample  Fig. 4 shows the symbol error rate (SER) as a function of the
y(n) anday, = 47" for the regions in the neighborhood f,. signal-to-noise ratio (SNR). We assume the chafth2g 0.92 0.28],

Similarly to DM-RMMA, the step-sizgi for DM-RMMA 5 should  256-QAM (Fig. 4-a), and 1024-QAM (Fig. 4-b). For 256-QAM, the
be chosen. Assuming again the real case, the update equation Rffformance of DM-RMMA is close to that of thg Wiener filter,
DM-RMMA 5 outside the region of interest can be rewritten as ~ outperforming DM-MMA, whose SER tends td)~~. For 1024-

QAM, DM-MMA presents a SER lower-bounded Hyp~—'. For
iy T apu(n) SNR < 32 dB, the algorithms and the Wiener filter present a high
w(n)=I- 5+ lu(n)|? u(n)u (n) (w(n—1) + 5+ [u(n)[? SER and can not be used in practical situations. For: SNR <
(19) 38 dB, DM-RMMA 5 is outperformed by DM-MMA, however, this



behavior could be improved if more regions in the neighborhood
of A, were taken into account, since for low SNR, the equalizer
output can fall in a wrong region with high probability. Possibly, ¥, _‘_
to take the estimate of the coefficient vector closer to the Wiener E i

solution, the number of regions in the neighborhood4afshould i‘?, 3
be increased for low SNR. This disadvantage occurs only for high Z 0 s *
SER values¥10~1), at which the equalizers would be useless. For Dy
SNR > 38 dB, DM-RMMA 5 gets close to the Wiener filter. It should w 60 o—o0om
be noticed that, in practical situations, uncoded 1024-QAM signals +o +RI-DM
. L —7 (@) 'V—% R5-DM
requireSNR > 40 dB for attaining SER<10™". 804 = — -%\Wiener
Fig. 5 shows:3(n) assuming the time-variant chanrfél z, n)
= 14 27'0.008sin(2 x 10~°7n), absence of noise, and 1024- 100 2 4 5
QAM. DM-RMMA 5 tracks the channel variation, presentirgn) z
at least 10 dB lower than that of DM-MMA, which does not con- F ) (b)
verge. DM-RMMA converges only aroung= 5.8 x 10°, afterwards 0 5 2 5
fO”OWing DM-RMMA 5. iterations % 10°

To show the robustness of DM-algorithms, Fig. 6 shejie), Fig. 3. (a) E{e3(n)} for DM-MMA, DM-RMMA, DM-RMMA 5.  (b)
under a disturbed received signal, assuming the channel [0.28 0.925(n)}; 256-QAM; ensemble average of 200 runs.

0,28], absence of noise, and 256-QAM. At iteratidrz5 x 10° and
2.5 x 10°, the received signal is disturbed by a spike with amplitude

10*°. All the algorithms do not diverge. DM-MMA converges for -1
a moderate level of?(n) only after the second spike. DM-RMMA
converges to the same level @f(n) of that of DM-RMMA;, but & 2 =
after a large number of iterations. w3 y W
5. CONCLUSION g g
We hav_e proposed an alggrithm for blind equalization of high-ordel -5 o—oom o—oom
QAM signal. The simulation results show that the proposed algo —6 | v—7R5-DM —6l ¥—Rs-DM
rithm presents a stable behavior and converges approximately to tl # % Wiener (@ * % Wiener (b)
Wiener solution. A proof of the return to the region of interest and o 20 30 40 50 60 o 20 30 40 50 60
the stability analysis for the complex case are under research. SNR(dB) SNR(dB)

should be stressed that the behavior of the proposed algorithm fgfig 4, | og of SER as a function of SNR for (a) 256-QAM (b) 1024-QAM.
1024-QAM signals is worse than that of the DM-MMA for low SNR

values, but this situation can be improved by considering additional
neighbors. New studies are being carried on in this direction, con-
sidering also different channels. Finally, it is important to emphasize
that the idea presented here can be extended to other blind algorithms
such as SWA.
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