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ABSTRACT
We propose a region-based multimodulus algorithm for blind equal-
ization of high-order quadrature amplitude modulation (QAM) sig-
nals. It treats nonconstant modulus constellations as constant modu-
lus ones, converging approximately to the Wiener solution. To avoid
divergence, it rejects non-consistent estimates of the transmitted sig-
nal. When compared to existing blind multimodulus-type algorithms
for equalization of QAM signals, it exhibits considerably lower mis-
adjustment, faster convergence, good tracking capability, without
compromising the computational cost. Its good behavior is illus-
trated through simulation results.

Index Terms— Adaptive equalizers, blind equalization, con-
stant modulus algorithm, nonlinearities.

1. INTRODUCTION

The most popular algorithm for blind equalization is the constant-
modulus algorithm (CMA). It is well-known that CMA does not
solve phase ambiguities introduced by the channel and has a rela-
tively large misadjustment when used to recover nonconstant mod-
ulus signals (see, e.g., [1] and the references therein). To jointly
recover the modulus and phase of the transmitted signal, the mul-
timodulus algorithm (MMA) was proposed in [2] and [3]. Instead
of minimizing the dispersion of the magnitude of the equalizer out-
put, MMA minimizes the dispersion of its real and imaginary parts
separately. Thus, it mitigates the intersymbol interference (ISI) and
simultaneously corrects the phase rotation, since it implicitly incor-
porates a phase-tracking loop. Although MMA provides better con-
vergence for high-order QAM signals, it still exhibits a large misad-
justment in the steady-state (though smaller than that of CMA).

To overcome the high misadjustment exhibited by CMA and
MMA, many algorithms have been proposed in the literature (see,
e.g., [4] and the references therein). One of these algorithms, called
Sliced MMA (S-MMA), incorporates the sliced symbols (outputs
of the decision device) in the multimodulus-based coefficient adap-
tation process [4]. Although the steady-state misadjustment of S-
MMA is much lower than that of MMA for high-order QAM sig-
nals, it is still relatively large when compared to the misadjustment
obtained in the equalization of constant modulus signals with MMA.

Another algorithm for blind equalization of QAM signals is the
soft decision-directed (SDD) algorithm [5]. It is based on the max-
imization of thea posteriori probability density function (pdf) of
the equalizer output. To reduce the computational cost, the com-
plex plane of a high-order QAM is divided into a set of regular re-
gions, each with four symbols. Thus, its computational cost is al-
ways equivalent to the 4-QAM case, since the pdf of the equalizer
output is locally estimated. Its main drawback is that, for a constel-
lation withM symbols, the adaptation process requireslog2(M)/2-
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stage switchings and each adaptation stage needs a different set of
parameters [5]. If the set of parameters is not properly chosen, SDD
can suffer from slow convergence and bad tracking capability.

A drawback of all blind algorithms mentioned above is conver-
gence to local minima or even divergence [1]. This can occur when
the step-size is not properly chosen or if the initialization is distant
from the optimal solution [6]. In order to avoid divergence, dual-
mode blind algorithms were recently proposed in [7, 8]. In the first
mode, these algorithms work as the normalized CMA [7] or as the
Shalvi-Weinstein algorithm [8], while in the second mode, they re-
ject non-consistent estimates of the transmitted signal.

In this paper, we propose a new blind algorithm for equalization
of high-order QAM signals that, in addition to the advantages of
[4, 5, 7, 8], converges approximately to the Wiener solution, which
generally provides a considerably lower misadjustment.

2. PROBLEM FORMULATION AND DM-MMA

Signala(n) is transmitted through an unknown channel, modeled by
a finite impulse response (FIR) filter with impulse response vector
h

T =[h0 h1 · · · hK−1] and additive white Gaussian noise (AWGN)
η(n), where the superscriptT stands for the transpose of a vector.
The received signalu(n) is therefore a distorted version ofa(n),
corrupted by intersymbol interference and noise. It passes through
an FIR filter, whose output is given byy(n) = u

T (n)w(n − 1),
whereu(n), w(n−1) ∈ C

N are the column input regressor and
coefficient vectors, respectively. The decision device computes from
y(n) a delayed estimate of the transmitted sequenceâ(n − ∆), ∆
being a positive integer. In blind equalization, the algorithms usually
update the equalizer coefficients using higher-order statistics of the
transmitted signal. Due to its simplicity, CMA is widely used in spite
of its slow convergence and possible divergence.

To avoid divergence, a normalized version of CMA was derived
in [7]. The algorithm, named DM-CMA, is given by

w(n) = w(n − 1) +
µ̃

δ + ‖u(n)‖2
[d(n) − y(n)]u∗(n), (1)

where0 < µ̃ < 2 is a step-size,δ is a small positive parameter,(·)∗
stands for the complex-conjugate,d(n) = x(n)y(n),

x(n) =

{ (

βσ2
a − |y(n)|2

)

/
(

βσ2
a − R

)

, if |y(n)|2 ≤ βσ2
a

0, otherwise,

σ2
a = E{|a(n)|2}, R = E{|a(n)|4}/E{|a(n)|2}, β = 2 (resp.,

β = 3) for complex (resp., real) data, andE{·} denotes the expecta-
tion operation. It is worth to note thatd(n) andy(n) are estimates of
the desired response. The consistency between these two estimates
will be ensured ifd(n) andy(n) have the same sign, which is equiv-
alent to requiring the correction factorx(n) to be always positive.
For sub-Gaussian constellations, as is the case for most constella-
tions used in digital communications, the denominator ofx(n) is
always positive andx(n) ≥ 0 occurs when|y(n)|2 ≤ βσ2

a. On the
other hand, if|y(n)|2 >βσ2

a, the algorithm leaves the calledregion
of interestand the estimated(n) is rejected, makingd(n) = 0.



This idea can also be extended to ensure the stability of MMA.
Using the multimodulus cost function [3], DM-MMA is obtained re-
placingd(n)−y(n) by [dR(n)+ jdI(n)]− [yR(n)+ jyI(n)] in (1),
yR(n) andyI(n) being the real and imaginary parts ofy(n), respec-
tively. The signalsdR(n) = xR(n)yR(n) anddI(n) = xI(n)yI(n)
depend on the statistics of the real and imaginary parts of the trans-
mitted signals, since

xR(n) =
3σ2

a,R − |yR(n)|2
3σ2

a,R − RR

, xI(n) =
3σ2

a,I − |yI(n)|2
3σ2

a,I − RI

,

σ2
a,R = E{a2

R(n)}, σ2
a,I = E{a2

I(n)}, RR = E{a4
R(n)}/σ2

a,R,
andRI = E{a4

I(n)}/σ2
a,I . DM-MMA requires8N + 12 real mul-

tiplications (×), 8N+7 real additions (+),1 real division (÷), and 2
comparisons per iteration.

Through simulations, it was shown in [7] that DM-CMA never
diverges. This property can also be extended to DM-MMA. Re-
cently, the same philosophy was applied to the Shalvi-Weinstein al-
gorithm (SWA) in [8]. In this case, assuming the persistence of exci-
tation condition, it was proved through a deterministic analysis that
DM-SWA is stable in infinite-precision arithmetic.

3. PROPOSED ALGORITHM
The complex plane is decomposed into a set ofM/4 minor 4-QAM
blocks as in the SDD algorithm of [5]. Each block or regular region
Ai contains four symbols, i.e.,Ak = {akm, m = 1, 2, 3, 4}, k =
1, 2, . . . , M/4, whereakm takes the value from theM -QAM sym-
bol set. The center ofAk is denoted asck = cR,k + jcI,k, with
cR,k andcI,k the real and imaginary parts ofck, respectively. With
(log2M−2) comparisons, it is possible to identify to which region
Ak the sample of the equalizer output belongs.

Variations in the modulus of the transmitted symbol are seen by
CMA as a kind of measurement noise [6]. The performance thus can
be improved if we trick the algorithm to interpret the input constella-
tion as if it had constant modulus. In order to treat the symbols of the
identified region as pertaining to a constant modulus constellation, a
translation operation is performed as follows. The center of the iden-
tified region is translated to the origin of the complex plane and the
rest of the constellation is forgotten. The translation operation works
as if the symbols of the translated region̄Ak belonged to a constant
modulus 4-QAM constellation. The translated output sample, de-
noted as̄yk = ȳR,k + jȳI,k = (yR − cR,k) + j (yI − cI,k), has (by
construction, except ify is too large, outside the original constella-
tion) modulus less than or equal to2

√
2, and the translated symbols

are given bȳakm = ±1 ± j. Considering both the real and imag-
inary components of the translated sample apart, the multimodulus
cost function with a unitary dispersion constant can be used. As the
information of the position ofAk is lost with the translation opera-
tion, in order to distinguish the regions, the cost function needs some
information about the position ofAk in the complex plane.

To obtain an algorithm which considers the translation opera-
tion and the information about the position ofAk, we propose the
following instantaneous cost function

Ĵ =
1

8

M/4
∑

ℓ=1

αℓ

[

|cR,ℓ|[1 − ȳ2
R,ℓ(n)]2 + |cI,ℓ|[1 − ȳ2

I,ℓ(n)]2
]

, (2)

whereαℓ = 1 only for the identified regionAk andαℓ = 0 for the
otherM/4 − 1 regions. Note that the multiplication factors|cR,k|
and|cI,k| carry the information about the position ofAk. The gradi-
ent ofĴ is given by [2,3]∇Ĵ =

∑M/4
ℓ=1 αℓēℓ(n)u∗(n), where

ēℓ(n) = |cR,ℓ|
[

d̄R,ℓ(n)−ȳR,ℓ(n)
]

+j|cI,ℓ|
[

d̄I,ℓ(n)−ȳI,ℓ(n)
]

(3)

d̄R,ℓ(n) = x̄R,ℓ(n)ȳR,ℓ(n), d̄I,ℓ(n) = x̄I,ℓ(n)ȳI,ℓ(n), (4)

x̄R,ℓ(n)=0.5
[

3−ȳ2
R,ℓ(n)

]

, andx̄I,ℓ(n)=0.5
[

3−ȳ2
I,ℓ(n)

]

. (5)

Replacingd(n)−y(n) by ēk(n) in (1), we obtain DM-RMMA. To
complete its derivation, the step-sizeµ̃ should be chosen. To sim-
plify the presentation, we assume real data.

If, at a certain iteration,‖w(n−1)‖ is so large thaty2(n) > 3
(note thatσ2

a = 1), we can guarantee that DM-RMMA is stable by
choosingµ̃ as follows. Outside the region of interest, the update
equation of DM-RMMA reduces to

w(n)=

[

I− µ̃|ck|
δ+‖u(n)‖2

u(n)uT (n)

]

w(n−1) +
µ̃|ck|cku(n)

δ+‖u(n)‖2
.

(6)
The matrix between brackets has all eigenvalues with absolute values
less than or equal to one if [9]

0 < µ̃<2/|ck| ≤ 2/|cmax|, (7)
wherecmax is center of the region farther away from the origin of
the complex plane of theM -QAM constellation. Note that|cmax| =√

2(
√

M − 2) for rectangular QAM. DM-RMMA can also be used
to recover non-rectangular QAM. In this case,|cmax| 6=

√
2(
√

M −
2).

The norm of the second term of the r.h.s. of (6) is bounded, i.e.,

0 ≤ µ̃|ck|ck‖u(n)‖
δ+‖u(n)‖2

≤ µ̃|cmax|cmax

δ
< ∞. (8)

Using (deterministic) exponential stability results for the LMS al-
gorithm [9], we conclude that DM-RMMA is stable if̃µ is chosen
in the interval (7). Although this result was obtained for real data,
several simulations suggest that it can also be used for complex data.

DM-RMMA is summarized in Table 1. DM-RMMA requires
only [4×, 2+, and(log2 M − 2) comparisons] per iteration in addi-
tion to DM-MMA.

Table 1. Summary of DM-RMMA

Initialize the algorithm by setting:

w(0)=[ 0 · · · 0 1 + j 0 · · · 0 ]T ; 0 < µ̃ < 2/|cmax|
for n = 1, 2, . . ., compute:

y(n) = u
T (n)w(n − 1) (9)

Identify the regionAk, setαk = 1, and compute:

ȳR,k(n)=yR(n)−cR,k; ȳI,k(n)=yI(n)−cI,k (10)

x̄R,k(n)=1.5−0.5ȳ2
R,k(n); x̄I,k(n)=1.5−0.5ȳ2

I,k(n) (11)

if x̄R,k(n) ≥ 0 and x̄I,k(n) ≥ 0

d̄R,k(n)= x̄R,k(n)ȳR,k(n); d̄I,k(n)= x̄I,k(n)ȳI,k(n) (12)

else

d̄R,k(n)= d̄I,k(n)=0; (13)

end

ēR,k(n)= d̄R,k(n)−ȳR,k(n); ēI,k(n)= d̄I,k(n)−ȳI,k(n) (14)

ē(n) = αk [|cR,k|ēR,k(n) + j|cI,k|ēI,k(n)] (15)

w(n) = w(n − 1) + µ̃(δ + ‖u(n)‖2)−1 ē(n)u∗(n) (16)

end

To give further insight about the proposed algorithm, the error-
functions of MMA, S-MMA, and RMMA are depicted in Fig. 1 for
the real part of 64-QAM (the figure for the imaginary counterpart
is identical). The error-function of MMA (resp., S-MMA) has ze-
ros whenyR is null or wheny2

R is equal (resp., close) to the dis-
persion constant. S-MMA exhibits increased contours in the error
function, resulting in a smaller steady-state misadjustment than that
of MMA [4]. For both MMA and S-MMA, the error-function is
not zero when the equalizer output is equal to the symbol of the



nonconstant-modulus constellation. On the other hand, the error-
function of RMMA presents nulls at the coordinates of the centers
of each regionAk and at the coordinates of the symbols of the con-
stellation. The nulls at the coordinates of the constellation symbols
allow RMMA to treat nonconstant modulus signals as constant mod-
ulus signals.
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Fig. 1. Error-function for MMA, S-MMA, and RMMA, considering the real
part of a 64-QAM constellation. RMMA plot scale 2.7:1, enlarged to ease
zero-crossings visualization.

A drawback of DM-RMMA is that it still has the typical slow
convergence of MMA. At the beginning of convergence, the coef-
ficient vectorw is very distant from the optimum solution, and the
equalizer output often falls in a wrong region, mainly in the pres-
ence of noise. This wrong decision is fed back and the algorithm
takes many iterations to converge. To improve its convergence, we
have to take into account not only the regionAk, where the sam-
ple of equalizer output falls, but also the regions in its neighbor-
hood. To avoid a large increase in the computational cost, we as-
sume the influence of onlyKr more regions besidesAk, as shown
in Fig. 2-(a). Note thatKr can be equal to 2, 3, or 4, depending
on the position ofAk. The factorsαℓ of (2) must be nonzero for
theKr regions in the neighborhood ofAk. When the decision error
ed(n) = â(n − ∆) − y(n) is large, the influence of the regions of
the neighborhood inAk should be greater than whened(n) is small.
With this in mind, we consider the mean-squared decision error es-
timated asξ(n) = λξ(n − 1) + (1 − λ)e2

d(n), where0 ≪ λ < 1

is a forgetting factor, and chooseαℓ = 4−p(n), with 2 ≤ p(n) ≤ 10
calculated through a hyperbolic tangent function, i.e.,

p(n) = 7.1467
1 − e8[ξ(n)−0.03]

1 + e8[ξ(n)−0.03]
+ 9.1467. (17)

This function was experimentally chosen and is shown in Fig. 2-(b).
Through simulations, we observe that the good behavior of the algo-
rithm can be ensured with this function for different environments.

To distinguish this algorithm from that of Table 1, we denote it as
DM-RMMA 5. Thus, after the identification of regionAk, Eqs. (10)-
(14) of Table 1 should be evaluated forAk and forKr regions in its
neighborhood. Then, (15) should be replaced by

ē(n) =

k+Kr
∑

ℓ=k

αℓ [|cR,ℓ|ēR,ℓ(n) + j|cI,ℓ|ēI,ℓ(n)] (18)

with αℓ = αk = 1 for the regionAk which contains the sample
y(n) andαℓ = 4−p(n) for the regions in the neighborhood ofAk.

Similarly to DM-RMMA, the step-sizẽµ for DM-RMMA 5 should
be chosen. Assuming again the real case, the update equation of
DM-RMMA 5 outside the region of interest can be rewritten as

w(n)=

[

I− µ̃γ

δ+‖u(n)‖2
u(n)uT (n)

]

w(n−1) +
µ̃ρu(n)

δ+‖u(n)‖2
.

(19)

whereγ = |ck|+4−p(n)
k+Kr
∑

ℓ=k

|cℓ|, andρ=ck|ck|+4−p(n)
k+Kr
∑

ℓ=k

cℓ|cℓ|.

The second term of the r.h.s. of (19) is bounded. Inspired in the
results of [9], to ensure the stability of DM-RMMA5, µ̃ should be
chosen in the interval

0 < µ̃ < 2/γ < 1.6/|cmax|. (20)
In the worst case (Kr =4), DM-RMMA 5 requires[73×, 32+,

8÷, and 9 comparisons] per iteration in addition to DM-RMMA.
To decrease the computational cost, DM-RMMA5 can be switched
to DM-RMMA when ξ(n) ≤ 0.1. Simulation results show that this
switching does not cause a degradation of performance.
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Fig. 2. (a) Local regions for RMMA adaptation (Kr = 4); the center of
each local region is indicated by∗, and the constellation symbols by•; (b)
the exponentp(n) as a function of mean-squared decision error in dB.

4. SIMULATION RESULTS
DM-RMMA and DM-RMMA5 are compared to DM-MMA and the
Wiener solution. The equalizer hasN =21 taps and was initialized
with the typical center spike in all simulations. Due to space reasons,
the algorithms DM-MMA, DM-RMMA, and DM-RMMA5 are de-
noted respectively as DM, R1-DM, and R5-DM in the legends of
the figures. Furthermore, the following adaptation parameters were
used in all simulations:µDM−MMA = 4×10−3, µDM−RMMA =
µDM−RMMA5

=10−2, andλ=0.9. The delay of the Wiener filter
was set to∆ = 11. The step-sizes of the algorithms were chosen
to obtain a tradeoff between convergence rate and steady-state mis-
adjustment. In some cases, to facilitate the visualization, the curves
were filtered by a moving-average filter with 500 taps.

Fig. 3-a shows the mean-squared decision error (E{e2
d(n)}) es-

timated from the ensemble-average of 200 independent runs. We
assume 256-QAM, absence of noise, and that, at iterationn = 2.5×
105, the channel[0.28 0.92 0.28] is changed to[0.35 0.87 0.35].
DM-MMA presents a high misadjustment due to nonconstant modu-
lus signals. DM-RMMA5 and DM-RMMA outperform DM-MMA,
converging to the Wiener solution. Although they achieve the
same steady-state solution, DM-RMMA5 converges faster than
DM-RMMA, due to the use of the regions in the neighborhood of
Ak. Fig. 3-b shows the ensemble-average of the exponentp(n).
Whenp(n) ≈ 10, DM-RMMA 5 could be switched to DM-RMMA
without performance degradation.

Fig. 4 shows the symbol error rate (SER) as a function of the
signal-to-noise ratio (SNR). We assume the channel[0.28 0.92 0.28],
256-QAM (Fig. 4-a), and 1024-QAM (Fig. 4-b). For 256-QAM, the
performance of DM-RMMA5 is close to that of the Wiener filter,
outperforming DM-MMA, whose SER tends to10−3. For 1024-
QAM, DM-MMA presents a SER lower-bounded by10−1. For
SNR < 32 dB, the algorithms and the Wiener filter present a high
SER and can not be used in practical situations. For32 < SNR <
38 dB, DM-RMMA5 is outperformed by DM-MMA, however, this



behavior could be improved if more regions in the neighborhood
of Ak were taken into account, since for low SNR, the equalizer
output can fall in a wrong region with high probability. Possibly,
to take the estimate of the coefficient vector closer to the Wiener
solution, the number of regions in the neighborhood ofAk should
be increased for low SNR. This disadvantage occurs only for high
SER values (>10−1), at which the equalizers would be useless. For
SNR>38 dB, DM-RMMA5 gets close to the Wiener filter. It should
be noticed that, in practical situations, uncoded 1024-QAM signals
requireSNR>40 dB for attaining SER<10−7.

Fig. 5 showse2
d(n) assuming the time-variant channelH(z, n)

= 1 + z−110.008 sin(2 × 10−5πn), absence of noise, and 1024-
QAM. DM-RMMA 5 tracks the channel variation, presentinge2

d(n)
at least 10 dB lower than that of DM-MMA, which does not con-
verge. DM-RMMA converges only aroundn=5.8×105, afterwards
following DM-RMMA 5.

To show the robustness of DM-algorithms, Fig. 6 showse2
d(n),

under a disturbed received signal, assuming the channel [0.28 0.92
0,28], absence of noise, and 256-QAM. At iterations1.25×105 and
2.5× 105, the received signal is disturbed by a spike with amplitude
1010. All the algorithms do not diverge. DM-MMA converges for
a moderate level ofe2

d(n) only after the second spike. DM-RMMA
converges to the same level ofe2

d(n) of that of DM-RMMA5, but
after a large number of iterations.

5. CONCLUSION
We have proposed an algorithm for blind equalization of high-order
QAM signal. The simulation results show that the proposed algo-
rithm presents a stable behavior and converges approximately to the
Wiener solution. A proof of the return to the region of interest and
the stability analysis for the complex case are under research. It
should be stressed that the behavior of the proposed algorithm for
1024-QAM signals is worse than that of the DM-MMA for low SNR
values, but this situation can be improved by considering additional
neighbors. New studies are being carried on in this direction, con-
sidering also different channels. Finally, it is important to emphasize
that the idea presented here can be extended to other blind algorithms
such as SWA.
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