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ABSTRACT
Combination schemes are gaining attention as an interesting way to
improve adaptive filter performance. In this paper we pay attention
to a particular convex combination scheme with nonlinear adapta-
tion that has recently been shown to be universal –i.e., to perform at
least as the best component filter– in steady-state; however, no the-
oretical model for the transient has been provided yet. By relying
on Taylor Series approximations of the nonlinearities, we propose a
theoretical model for the transient behavior of such convex combina-
tions. In particular, we provide expressions for the time evolution of
the mean and the variance of the mixing parameter, as well as for the
mean square overall filter convergence. The accuracy of the modelis
analyzed for the particular case of a combination of two LMS filters
with different step sizes, explaining also how our results can help the
designer to adjust the free parameters of the scheme.

Index Terms— Adaptive filters, convex combination, transient
analysis, LMS algorithm.

1. INTRODUCTION

Combinations of adaptive filters have recently attracted attention due
to their ability to improve transient and steady-state performance of
adaptive filters in stationary and non-stationary environments. The
first algorithm to attract attention was [1], which proposed a convex
combination of adaptive filters, and presented a model for the steady-
state performance of combinations of two LMS (least-mean square)
filters, as shown in Fig. 1. The output of the overall filter is given by

y(n) = η(n)y1(n) + [1 − η(n)]y2(n), (1)
whereη(n) is the mixing parameter, restricted to the interval[0, 1]
(thus the nameconvexcombination),yi(n), i = 1, 2, are the outputs
of the transversal filters, i.e.,yi(n) = u

T (n)wi(n), u(n),wi(n) ∈
R

M are respectively the common regressor vector, and the weight
vectors of each component filter. In order to restrict the mixing pa-
rameter to interval[0, 1] and to reduce gradient noise whenη ≈ 0 or
η ≈ 1, a nonlinear transformation and an auxiliary variablea(n) are
used.η(n) is defined as

η(n) =
1

1 + e−a(n)
, (2)

wherea(n) is updated to minimize the square of the overall error
e(n) = d(n) − y(n):

a(n + 1) = a(n) + µa

ˆ

y1(n) − y2(n)
˜

e(n)η(n)
ˆ

1 − η(n)
˜

. (3)

In practice,a(n) is restricted (by saturation of the above recursion)
to an interval[−a+, a+], since factorη(n)

ˆ

1 − η(n)
˜

in (3) would
virtually stop adaptation ifa(n) were allowed to grow too much. A
common choice in the literature isa+ = 4.
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Fig. 1. Convex combination of two transversal adaptive filters.

Several variations and improvements on the original idea were
later proposed, we give here only a short sample. Combinations of
two RLS (recursive least-square) or CMA (constant modulus) algo-
rithms were also proposed in other works, e.g. [2]. A combination
approach to variable-length adaptive filtering was presented in [3].
The new method was also used in the solution of practical problems,
as in [4]. More recently, a theoretical model for the combination
of filters of different families, such as one LMS and one RLS, was
proposed in [5]. All theses references provide models only for the
steady-state mean-square error (MSE) of the combination, without
models for the convergence of the mixing parameter to its optimum
value ( [1] does show that the combination converges to the desired
solutions). The transient performance of the mixing parameter is an
important issue, however. The combination will only perform well
if η(n) is able to choose, at each instant, the best combination of the
component filters. A normalized algorithm for the estimation of the
mixing parameter was proposed in [6] to improve the transient and
tracking performance ofη(n), showing very good results. However,
no theoretical model for the transient was provided.

A different combination approach was proposed more recently
in [7]. In that paper, the mixing parameter is free to be negative
or larger than one, so we have a more generalaffinecombination,
not necessarily convex. Two algorithms were proposed for the esti-
mation of the mixing parameter, and their performance was investi-
gated through simulations and comparisons with the optimum value.
A theoretical model for the transient of the mixing parameters of a
practical scheme for affine combinations was proposed in [8], which
also extended the normalization idea of [6] to the affine combination
algorithm. The adaptation rule for the mixing parameter in affine
combinations is simpler than that for convex combinations, since
there is no need for a nonlinear transformation to restrictη(n) to
interval[0, 1]. However, convex combinations appear to be less sen-
sitive to the choice ofµa, and have a built-in mechanism to reduce



the misadjustment due to the adaptation of the mixing parameter (the
factorη(1 − η) in (3)).

In this paper we propose a theoretical model for the convex
combination algorithm (2)–(3) that includes the transient behavior
of η(n). Large values ofµa are necessary to guarantee that the com-
bination will closely track the best filter at all times, but a too large
value will increase the excess mean-square error of the combination.
A theoretical model allows one to understand the influence of design
parameters on performance, giving tools for the designer to correctly
apply the algorithms.

2. APPROXIMATE UPDATE EQUATION

We assume for simplicity that all signals are real and that the in-
put is stationary, although the model can be easily extended to non-
stationary signals, as was done in [5], and also to complex signals.
Since the desired signald(n) and regressor vector are assumed sta-
tionary, they are related throughd(n) = w

T
o u(n) + v(n), where

wo is the unknown optimum coefficient vector (Wiener solution)
andv(n) has zero-mean, with varianceσ2

o , and is uncorrelated to
u(n). The regressor sequence{u(n)} is assumed zero-mean, sta-
tionary with covariance matrixR. The component filters compute
estimateswi(n), i = 1, 2 and errorsei(n) = d(n)−yi(n), yi(n) =
w

T
i (n)u(n) through an adaptive algorithm such as LMS (the model

below can be applied to many different algorithms). Define also
the error vectors̃wi(n) = wo − wi(n), and thea-priori errors
ea,i(n) = w̃

T
i (n)u(n), i = 1, 2.

Under these conditions,

y1(n) − y2(n) =
ˆ

w1(n) − w2(n)
˜T

u(n) = ea,2(n) − ea,1(n),

and (to simplify notation we omit the time indexn in some variables
in the remaining of the text)

e(n) = ηe1(n)+(1−η)e2(n) = ηea,1 +(1−η)ea,2 +v(n). (4)

The recursion fora(n) then reads (withη = η(a) = 1/(1+e−a(n)))

a(n + 1) = a(n) + µa

ˆ

(1 − η)e2
a,2 + (2η − 1)ea,1ea,2−

− ηe2
a,1 + (ea,2 − ea,1)v(n)

˜

η(1 − η).
(5)

We can rewrite this expression in a more convenient form defining

f1(a)
∆
= −η2(1 − η), f12(a)

∆
= η(2η − 1)(1 − η), (6a)

f2(a)
∆
= η(1 − η)2, fv(a)

∆
= η(1 − η), so that (6b)

a(n + 1) = a(n) + µa

ˆ

f1e
2
a,1 + f12ea,1ea,2+

+ f2e
2
a,2 + (ea,2 − ea,1)fvv(n)

˜

.
(7)

We will now find an approximate recursion for the expected value of
a(n). Since the distribution ofa(n) is unknown, we cannot compute
exactly expected values involving the nonlinear functions (6). We
therefore expand the nonlinear functions as Taylor series, around the

expected valuēa(n)
∆
= E{a(n)}:

fi(a) ≈ fi(ā) +
d fi

d a
(ā)

`

a − ā
´

, i = 1, 2, (8)

and similarly forf12 andfv. The derivatives can be evaluated as

g1
∆
=

d f1

d η
η′ = −

ˆ

2η(1 − η) − η2˜

η′, (9a)

g12
∆
=

d f12

d η
η′ = −(1 − 6η + 6η2)η′, (9b)

g2
∆
=

d f2

d η
η′ = (1 − η)(1 − 3η)η′, (9c)

gv
∆
=

d fv

d η
η′ =

`

1 − 2η
´

η′, (9d)

η′ ∆
=

d η

d a
=

e−a

(1 + e−a)2
. (9e)

Denotingf̄i(n) = fi(ā(n)), ḡi(n) = gi(ā(n)), i = 1, 2 (similarly
for f̄12, f̄v, ḡ12 andḡv), the approximate recursion fora(n) becomes

a(n + 1) ≈ a(n) + µa

h

`

f̄1 + (a − ā)ḡ1

´

e2
a,1+

+
`

f̄12 + (a − ā)ḡ12

´

ea,1ea,2 +
`

f̄2 + (a − ā)ḡ2

´

e2
a,2+

+
`

f̄v + (a − ā)ḡv

´

(ea,2 − ea,1)v(n)
i

. (10)

We use this recursion in the remainder of this section to study the
transient of the convex combination algorithm.

2.1. Convergence in the mean
We now take expected values on (10), using the following assump-
tions:

A-1. The noisev(n) has zero mean with varianceσ2
0 , and is inde-

pendent, identically distributed (iid) and independent of{u(n)}.

A-2. The auxiliary variablea(n) varies slowly enough for the condi-
tional expected valueE{ek

a,i(n)eℓ
a,ja(n)|a(n)} to be approximately

equal toE{ek
a,i(n)eℓ

a,j(n)}a(n), where i, j = 1, 2 and k, ℓ =
0 . . . 4, k + ℓ ≤ 4.

The first assumption is common in adaptive filter analysis, and
usually leads to good results [9]. The second follows from obser-
vations: simulations show thata(n) converges slowly compared to
variations in the inputu(n) (and thus to variations on thea-priori
errors) even for the large values of step-sizeµa usually employed.

Under these assumptions, we haveE{(a − ā)ḡiea,iea,j} ≈ 0,
i = 1, 2 (similarly for the terms involvinḡg12 andḡv}), so

ā(n + 1) ≈ ā(n) + µa

ˆ

f̄1ξ1(n) + f̄12ξ12(n) + f̄2ξ2(n)
˜

, (11)

whereξ1(n) = E{e2
a,1(n)}, ξ12(n) = E{ea,1(n)ea,2(n)}, ξ2(n) =

E{e2
a,2(n)}. ξ1(n) andξ2(n) are the mean-square errors of the com-

ponent filters, which are readily available in the literature (see, e.g.,
[9, 10]. The cross-termξ12(n) is also available, see [1, 5] (this last
reference gives models for combinations of several different adaptive
filtering algorithms). As in (3), we restrict̄a(n + 1) to the interval
[−a+, a+].

Defineη̄ = η(ā(n)), η̄′ = η′(ā(n)). Applying an approxima-
tion similar to the used in (7) to the overalla-priori errorea(n) =
ηea,1(n) + (1 − η)ea,2(n), we obtain

ea(n) ≈
h

η̄ + (a − ā)η̄′

i

ˆ

ea,1(n) − ea,2(n)
˜

+ ea,2(n), (12)

so, using Assumptions A-1 and A-2, we haveE{ea(n)} ≈ 0.



2.2. Mean-square analysis

Using (3) and (12) we can obtain a model for the excess mean-
square error (EMSE) of the combination. Squaring (12), taking the
expected value and using Assumptions A-1 and A-2, we obtain

E{e2
a(n)} ≈

h

η̄2 + σ2
aη̄′2

i

ˆ

ξ1(n) − 2ξ12(n) + ξ2(n)
˜

+

+ 2η̄
ˆ

ξ12(n) − ξ2(n)
˜

+ ξ2(n),
(13)

whereσ2
a(n) = E{

ˆ

a(n) − ā(n)
˜2
}. Despite the approximations,

this model gives accurate results, as will be shown in Sec. 3.
We now find an approximation forσ2

a(n), by squaring (10), tak-
ing the expected value, and subtracting the square of (11). During
the computation of the square of (10), we find third- and fourth-order
powers ofek

a,1(n)eℓ
a,2(n), with k + ℓ = 3 or 4. In order to evaluate

their means, we need a third assumption, also common in the liter-
ature, and which gives good results mainly when the length of the
component filters is large:

A-3. Thea-priori errorsea,1(n) andea,2(n) are jointly Gaussian,
which implies [11]

E{e4
a,i(n)} = 3ξ2

i (n), i = 1, 2 (14)

E{ek
a,1(n)eℓ

a,2(n)} = 0, if k + ℓ = 3, (15)

E{ek
a,1e

ℓ
a,2} =

8

>

<

>

:

3ξ1(n)ξ12(n), if k = 3, ℓ = 1,

3ξ12(n)ξ2(n), if k = 1, ℓ = 3,

2ξ2
12(n) + ξ1(n)ξ2(n), if k = ℓ = 2.

(16)

Using Assumptions A-1–A-3, the recursion forσ2
a(n) becomes

σ2
a(n + 1) =

`

1 + 2µaG1 + µ2
aG2

´

σ2
a(n) + µ2

aF, (17)

where

F = 2f̄2
2 ξ2

2 + f̄2
12(ξ

2
12 + ξ1ξ2) + 2f̄2

1 ξ2
1 + 4f̄12f̄2ξ12ξ2+

+ 4f̄1f̄2ξ
2
12 + 4f̄1f̄12ξ1ξ12 + f̄2

v (ξ1 − 2ξ12 + ξ2)σ
2
0 ,

G1 = ḡ1ξ1 + ḡ12ξ12 + ḡ2ξ2,

G2 = 3ḡ2
1ξ2

1 + (ḡ2
12 + 2ḡ1ḡ2)(2ξ2

12 + ξ1ξ2) + 6ḡ1ḡ12ξ1ξ12+

+ 6ḡ12ḡ2ξ12ξ2 + 3ḡ2
2ξ2

2 + ḡ2
v(ξ1 − 2ξ12 + ξ2)σ

2
0 .

Note that, sincea(n) ∈ [−a+, a+], the maximum possible value of
σ2

a is a2
+, so we restrictσ2

a(n + 1) in (17) to the interval[0, a2
+].

2.3. Normalized mixing parameter estimation

The models may be easily modified for the normalized mixing pa-
rameter estimation algorithm of [6]. In this case, (3) is modified to

a(n+1) = a(n)+
µa

p(n) + δ

`

y1(n)− y2(n)
´

e(n)η(1−η), (18)

whereδ is a regularization parameter (a small positive number), and
p(n) is an estimate of the power of the regressor for the mixing pa-
rameter estimation, obtained using a first-order low-pass filter with
0 ≪ λa < 1:

p(n + 1) = λap(n) + (1 − λa)
`

y1(n) − y2(n)
´2

=

= λap(n) + (1 − λa)
`

ea,2(n) − ea,1(n)
´2

.
(19)

In general, it is better to initialize the mixing parameter toa+

(so the combination will start following the fast filter). During the

first iterations, if the fast and slow filters are given the same initial
condition,p(n) would be small, which in turn would lead to a small
equivalent step-size and a large variance fora(n). Since this is not
desirable, it is better to initializep(n) with a relatively large value.

The averagēp(n)
∆
= E{p(n)} is given by

p̄(n + 1) = λap̄(n) + (1 − λa)
`

ξ1(n) − 2ξ12(n) + ξ2(n)
´

,

using the initial condition̄p(0) = p(0). In practice one choosesλa

close to 1 (e.g.,0.9). This implies thatp(n) varies slowly enough
for the simple approximation below to give good results:

µa

p(n) + δ
≈

µa

p̄(n) + δ

∆
= µ̃a(n). (20)

Our model for the normalized mixing parameter algorithm is there-
fore obtained simply by using̃µa(n) instead ofµa in (11) and (17).

In the next section we compare the performance of our models
with ensemble-average learning curves.

3. SIMULATIONS

In the simulations below we use two LMS filters to estimate a vector
wo, generated randomly before each series of simulations (using a
zero-mean Gaussian distribution with variance 1, without correlation
between the coefficients). Vectorwo is not changed during the com-
putation of each ensemble-average learning curve. The noisev(n) is
white Gaussian, with variance10−3, and the regressor vectoru(n)
is generated from a stationary sequence{u(n)} passing through a
tap-delay line, where

u(n + 1) = λuu(n) +
p

1 − λ2
uǫ(n),

where ǫ(n) is a white Gaussian sequence with unit variance (as
is the variance ofu(n)). In the EMSE plots below, we filter the
EMSE curves with a 5-tap moving-average filter to further smooth
the graphs, using Matlab’s filtfilt function to eliminate delay.

We first test the unnormalized recursion (3). The LMS filters
estimateM = 7 coefficients, usingµ1 = 0.08 (fast filter) and
µ2 = 0.008 (slow filter), with white regressors (λu = 0) with
σ2

u = 1. The mixing parameter is computed usingµa = 1, 000
(chosen so that the combination will track correctly the best filter at
all times). This is a challenging situation, since the combination al-
gorithm needs a very largeµa in order to switch to the slow filter at
the correct point. This largeµa in turn makes the variance ofa(n)
very large at the beginning of the simulation (sinceξ1 and ξ2 are
both quite large there). Fig. 3 shows the EMSE for the component
and combination and the theoretical models obtained taking or not
into accountσ2

a in (13).
We should remark that the estimation of rapidly growing vari-

ables is a difficult problem: a small error in the rate of growth will
quickly lead to a large estimation error. However, although the model
for the variance ofσ2

a significantly differs from the observed in the
simulations for smalln, the model for the variance ofη (and for the
combination EMSE) is still quite good, in part because the derivative
of η is small. The varianceσ2

a is large also during the transition from
the fast to the slow filter (the derivative ofη with respect toa is at its
largest value here). During the transition, again the predicted vari-
ance overestimates the simulation, but now (given the larger value of
the derivative ofη) this also affects the estimate ofσ2

η, and causes an
overshoot in the estimate of the combination EMSE. However, we
note that the EMSE model usingσ2

a = 0 in (13) remains close to the
ensemble-average curve. In all, we see that the model withσ2

a = 0
predicts well the combination EMSE even for such a large step-size,



confirming that the variance ofη does not have a large effect in the
overall error variance.

In the second example we use the normalized mixing parameter
estimation (20) withµa = 1, M = 25 coefficients, andλx = 0.8.
Fig. 3 shows that the normalized step-size chooses a small equivalent
step-sizẽµa at the beginning of the adaptation, thus stabilizing the
adaptation ofa(n), while reverting to a large step-size at the end,
in order for the algorithm to be able to switch from the fast to the
slow filter at the correct moment. The agreement between theory and
model is quite good, the only exception being an overestimation of
the variance ofa(n) during the switch from one component filter to
the other (but this effect is not as pronounced as in the unnormalized
case.)
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Fig. 2. (a) Theoretical and experimental EMSE for the combination of two
LMS filters with λx = 0, µ1 = 0.08, µ2 = 0.008, andµa = 1, 000;
(b) Ensemble-average ofa(n) andη(n), and theoretical models̄a andη̄; (c)
Ensemble-average and model forσ2

a(n) andσ2
η(n). Average of 500 realiza-

tions.

4. CONCLUSIONS

We proposed a model for the transient of convex combinations of
adaptive filters, illustrating our results with combinations of two
LMS filters. Although the problem is highly nonlinear and quite
challenging, we obtained quite good agreement between model and
theory, except for an overestimation of the variance of the auxiliary
variablea(n) in some instants.

We should note that we chose to present simulations for some
of the most difficult situations, in particular using a low noise vari-
ance, so the combination would need a largeµa to switch from the
fast to the slow filter at the right moment. In milder situations for
which smaller step-sizes may be used, the agreement between the-
ory and simulations is considerably better. However, even in the
difficult situations presented here, the models follow quite closely
the simulations.
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Fig. 3. (a) Theoretical and experimental EMSE for the combination of two
LMS filters with λu = 0.8, µ1 = 0.008, µ2 = 0.002, andµ̃a = 1, 000;
(b) Ensemble-average ofa(n) andη(n), and theoretical models̄a andη̄; (c)
Ensemble-average and model forσ2

a(n) andσ2
η(n); (d) Ensemble-average

and model for̃µa. Average of 50 realizations.


