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ABSTRACT v(n)

Combination schemes are gaining attention as an interesting way to - w, o d(n)
improve adaptive filter performance. In this paper we pay attention
to a particular convex combination scheme with nonlinear adapta- P _e.l_(F]) ““““ o
tion that has recently been shown to be universal —i.e., to perform at : 4 .
least as the best component filter— in steady-state; however, no the- ! - e(n) D :
oretical model for the transient has been provided yet. By relying I w,(n) Yi(n) -
on Taylor Series approximations of the nonlinearities, we propose a | n(n) !
theoretical model for the transient behavior of such convex combina- u(n) | ! ¥ ()
tions. In particular, we provide expressions for the time evolution of ! )l \
the mean and the variance of the mixing parameter, as well as for the ! w,(n) ¥, () 1(n) :
mean square overall filter convergence. The accuracy of the rizodel I ? !
analyzed for the particular case of a combination of two LMS filters : e(n X !

1 \ .

with different step sizes, explaining also how our results can help the P
designer to adjust the free parameters of the scheme.

Index Terms— Adaptive filters, convex combination, transient
analysis, LMS algorithm.

Fig. 1. Convex combination of two transversal adaptive filters.

1. INTRODUCTION Several variation_s and improvements on the original _idea_l were
o o . later proposed, we give here only a short sample. Combinations of
Comb_lnatl_o_ns of_adaptlve fllter_s have recently attracted attention dugyo RLS (recursive least-square) or CMA (constant modulus) algo-
to their ability to improve transient and steady-state performance gfthms were also proposed in other works, e.g. [2]. A combination
adaptive filters in stationary and non-stationary environments. Thgpproach to variable-length adaptive filtering was presented in [3].
first algorithm to attract attention was [1], which proposed a convexrhe new method was also used in the solution of practical problems,
combination of adaptive filters, and presented a model for the steadys in [4]. More recently, a theoretical model for the combination
state performance of combinations of two LMS (least-mean squarey filters of different families, such as one LMS and one RLS, was
filters, as shown in Fig. 1. The output of the overall filter is given by proposed in [5]. All theses references provide models only for the
y(n) = nn)y1(n) + [1 — n(n)ly2(n), (1)  steady-state mean-square error (MSE) of the combination, without
wheren(n) is the mixing parameter, restricted to the interjéall] models for the convergence of the mixing parameter to its optimum
(thus the nameonvexcombination)y; (n), i = 1, 2, are the outputs ~ value ( [1] does show that the combination converges to the desired
of the transversal filters, i.ey; (n) = u” (n)w;(n), u(n), w;(n) € solutions). The transient performance of the mixing parameter is an
RM are respectively the common regressor vector, and the weighifiportant issue, however. The combination will only perform well
vectors of each component filter. In order to restrict the mixing paif 7(n) is able to choose, at each instant, the best combination of the
rameter to interval0, 1] and to reduce gradient noise wher: 0 or component filters. A normalized algorithm for the estimation of the

n ~ 1, anonlinear transformation and an auxiliary variaifle) are ~ Mixing parameter was proposed in [6] to improve the transient and
used.n(n) is defined as tracking performance of(n), showing very good results. However,
n(n) 1 2) no theoretical model for the transient was provided.

1+eam)’ . -

wherea(n) is updated to minimize the square of the overall error. A different combination gpproach was pr_oposed more recer_1t|y
. in [7]. In that paper, the mixing parameter is free to be negative

e(n) = d(n) —y(n): or larger than one, so we have a more genaffihe combination,
a(n+1) = a(n) + pa[y1(n) — y2(n)]e(n)n(n)[1 — n(n)]. (3) ot necessarily convex. Two algorithms were proposed for the esti-
mation of the mixing parameter, and their performance was investi-
In practice,a(n) is restricted (by saturation of the above recursion)gated through simulations and comparisons with the optimum value.
to an intervall—a., a4 ], since factom(n) [1 - n(n)] in (3) would A theoretical model for the transient of the mixing parameters of a
virtually stop adaptation if.(rn) were allowed to grow too much. A practical scheme for affine combinations was proposed in [8], which

common choice in the literature ds. = 4. also extended the normalization idea of [6] to the affine combination
- ) ) algorithm. The adaptation rule for the mixing parameter in affine
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the misadjustment due to the adaptation of the mixing parameter (thend similarly for 12 and f,,. The derivatives can be evaluated as
factorn(1 —n) in (3)).

In this paper we propose a theoretical model for the convex a0 a2 Lﬁn' =—[2n(1 —n) - 772]77/7 (9a)
combination algorithm (2)—(3) that includes the transient behavior dn
of n(n). Large values ofi, are necessary to guarantee that the com- adfiz , 2y 1
bination will closely track the best filter at all times, but a too large g12 = dn === 60+ 607, (9b)
value will increase the excess mean-square error of the combination. adfe, ,
A theoretical model allows one to understand the influence of design 92 = g, (1 =n)(1=3n)n, (9¢)
parameters on performance, giving tools for the designer to correctly df
apply the algorithms. g0 2 i “n' = (1-2n)7, (9d)

d e’
2. APPROXIMATE UPDATE EQUATION n A = (9¢)

da (1+e9)?’

We assume for simplicity that all signals are real and that the in- _

put is stationary, although the model can be easily extended to nofenotingfi(n) = fi(a(n)), gi(n) = gi(a(n)), i = 1,2 (similarly
stationary signals, as was done in [5], and also to complex signalfor fi2, fv, g12 andg.), the approximate recursion fatn) becomes
Since the desired signd(n) and regressor vector are assumed sta-

tionary, they are related througl{n) = wlu(n) + v(n), where  a(n+ 1) = a(n) + pa [(fl +(a—a)g1)el +

w, is the unknown optimum coefficient vector (Wiener solution) _ N _ v
andv(n) has zero-mean, with variane€, and is uncorrelated to + (frz + (a—a)gr2)ear€ar + (f2 + (@ — @)72) ez 0+
u(n). The regressor sequen¢a(n)} is assumed zero-mean, sta- 7 =

ti(gnz):lry with covariance matrig%.( T)ge component filters compute (o + (@ = a)g) (ea2 - e“’l)v(n)] (10)
estimatesv;(n),7 = 1,2 and errorg;(n) = d(n)—yi(n), yi(n) =

w{ (n)u(n) through an adaptive algorithm such as LMS (the mode
below can be applied to many different algorithms). Define alsd
the error vectorsv;(n) = w, — w;(n), and thea-priori errors
ea.i(n) = Wi (n)u(n),i=1,2.

Under these conditions,

\We use this recursion in the remainder of this section to study the
ransient of the convex combination algorithm.

2.1. Convergence in the mean
We now take expected values on (10), using the following assump-
tions:

y1(n) — y2(n) = [wi(n) — w2(n)] "u(n) = ea2(n) — ea1(n),  A-l. The noises(n) has zero mean with varianeg, and is inde-
pendent, identically distributed (iid) and independenfuafn)}.

and (to simplify notation we omit the time indexin some variables

in the remaining of the text) A-2. The auxiliary variable:(n) varies slowly enough for the condi-

tional expected valuB{e’ ;(n)e’, ;a(n)|a(n)} to be approximately
equal toE{e” ;(n)e’ .(n)}a(n), wherei,j = 1,2 andk,l =
e(n) = nex () + (1= mea(n) = news +(1—neas+oln). @) ooy potgm (e}t J

The recursion for.(n) then reads (withy = 7(a) = 1/(1+e~™)) The first assumption is common in adaptive filter analysis, and
usually leads to good results [9]. The second follows from obser-

5 vations: simulations show thain) converges slowly compared to
a(n+1) = a(n) + pa[(1 = meaws + (20 = Dearear= (5) variations in the inputi(n) (ang t)hus to vgriations )(;n tm}%riori
—nea 1+ (ea — ea,1)v(n)|n(1 —n). errors) even for the large values of step-gizeusually employed.
Under these assumptions, we h&§(a — @)gi€a,i€q,;} ~ 0,
We can rewrite this expression in a more convenient form defining ¢ = 1, 2 (similarly for the terms involvingj:» andg. }), so

A a(n+1) =~ a(n) + pa [flfl(n) + fizéia(n) + f2§2(n)}7 (11)

1>

—n*(1—mn), fiz(a)
n(l—n)?, fo(a)

n2n—-1)(1-n), (6a)

_ whereg; (n) = E{eg 1 (n)}, §12(n) = E{ea1(n)ea2(n)}, &2(n) =
(1=m), sothat (6b) E{eZ 5(n)}. £&1(n) andéz(n) are the mean-square errors of the com-
ponent filters, which are readily available in the literature (see, e.g.,

Ji(a)
Ja(a)

1>
1>

a(n+1) = a(n) + pa[frez 1 + f12€a1€a,2+ [9,10]. The cross-terngi2(n) is also available, see [1, 5] (this last
) ©) reference gives models for combinations of several differenitaca
+ faeaz + (€a2 — €an) fov(n)]. filtering algorithms). As in (3), we restriet(n + 1) to the interval

We will now find an approximate recursion for the expected value of ~a+> a,+]' _ _ . . ) )

a(n). Since the distribution af(n) is unknown, we cannot compute _P&finé7 = n(a(n)), 7" = n'(a(n)). Applying an approxima-

exactly expected values involving the nonlinear functions (6). Wdion similar to the used in (7) to the overalipriori errore, (n) =

therefore expand the nonlinear functions as Taylor series, around tga:1(12) + (1 = n)ea,2(n), we obtain

expected valua(n) £ E{a(n)}:
P (n) = E{a(n)} ea(n) & [7‘) +(a— a)ﬁ/] [a1(n) = €a2(n)] + €az(n), (12)

dfi _ N ) .
dJ; (@(a—a),i=1,2, (8)  so, using Assumptions A-1 and A-2, we haile, (n)} ~ 0.

fila) = fi(a) +



2.2. Mean-square analysis

Using (3) and (12) we can obtain a model for the excess mea
square error (EMSE) of the combination. Squaring (12), taking th
expected value and using Assumptions A-1 and A-2, we obtain

E{ei(m)} ~ [ + o2ii”| [61(n) — 2612 (n) + €2(n)] +
+ 271 [€12(n) — &2(n)] + &2(n),

(13)

whereo?(n) = E{[a(n) — a(n)]*}. Despite the approximations,
this model gives accurate results, as will be shown in Sec. 3.
We now find an approximation fer?(n), by squaring (10), tak-

ing the expected value, and subtracting the square of (11). During

first iterations, if the fast and slow filters are given the same initial
condition,p(n) would be small, which in turn would lead to a small

r]e'quivalent step-size and a large variancedfor). Since this is not
Yesirable, it is better to initialize(n) with a relatively large value.

The average(n) 2 E{p(n)} is given by
p(n+1) = Xap(n) + (1 = Aa) (62(n) — 212(n) + &2(n)),

using the initial conditiorp(0) = p(0). In practice one chooses,
close to 1 (e.g.0.9). This implies thafp(n) varies slowly enough
for the simple approximation below to give good results:

A

i e L COX

p(n)+6  p(n)+6

(20)

the computation of the square of (10), we find third- and fourth-order

powers ofel ; (n)ef, »(n), with k + ¢ = 3 or 4. In order to evaluate

Our model for the normalized mixing parameter algorithm is there-

their means, we need a third assumption, also common in the litefere obtained simply by using. (n) instead ofu, in (11) and (17).

ature, and which gives good results mainly when the length of the

component filters is large:

A-3. Thea-priori errorse,,1(n) ande, 2(n) are jointly Gaussian,
which implies [11]

E{eai(n)} =3¢ (n), i=1,2 (14)
E{el1(n)ebo(n)} =0, ifk+£=3, (15)
3¢1(n)é12(n), ifk=3,(=1,
E{el el 2} = < 3612(n)éa(n), if k=1,0=3, (16)
2t (n) + &1(n)éa(n), Fhk=10=2.

Using Assumptions A-1-A-3, the recursion ot (n) becomes

oa(n+1) = (14 2paG1 + paGs)oia(n) + paF,  (17)

where

F=2f3¢5 + fla(&a + &1&2) + 2f767 + Af12 fobinbo+
+ 4f1 fobTs + Af1 fro€1&12 + fo(€1 — 2612 + 52)03,
G1 = 5161 + g12é12 + G262,
G2 = 3g1€7 + (12 + 20192) (2612 + £162) + 65171261612+
+ 67129261282 + 35565 + o (&1 — 2612 + &2)05.

Note that, since(n) € [—a4, a4 ], the maximum possible value of
o2 isa?, so we restrict2(n + 1) in (17) to the interval0, a3 ].

2.3. Normalized mixing parameter estimation

The models may be easily modified for the normalized mixing pa
rameter estimation algorithm of [6]. In this case, (3) is modified to

Ha

aln+1) = a(n)—!—p(n) 5

(y1(n) —y2(n))e(n)n(1—n), (18)

In the next section we compare the performance of our models
with ensemble-average learning curves.

3. SIMULATIONS

In the simulations below we use two LMS filters to estimate a vector
w,, generated randomly before each series of simulations (using a
zero-mean Gaussian distribution with variance 1, without correlation
between the coefficients). Vecter, is not changed during the com-
putation of each ensemble-average learning curve. The nfiges
white Gaussian, with variance) 3, and the regressor vectarn)
is generated from a stationary sequetiaén)} passing through a
tap-delay line, where

u(n+1) = Ayu(n) + /1 — A2e(n),
where ¢(n) is a white Gaussian sequence with unit variance (as
is the variance ofu(n)). In the EMSE plots below, we filter the
EMSE curves with a 5-tap moving-average filter to further smooth
the graphs, using Matlab’s filtfilt function to eliminate delay.

We first test the unnormalized recursion (3). The LMS filters
estimateM = 7 coefficients, using.; = 0.08 (fast filter) and
12 0.008 (slow filter), with white regressors\(, = 0) with
o2 = 1. The mixing parameter is computed usipg = 1,000
(chosen so that the combination will track correctly the best filter at
all times). This is a challenging situation, since the combination al-
gorithm needs a very large, in order to switch to the slow filter at
the correct point. This large. in turn makes the variance afn)
very large at the beginning of the simulation (singeand &. are
both quite large there). Fig. 3 shows the EMSE for the component
and combination and the theoretical models obtained taking or not
into account? in (13).

We should remark that the estimation of rapidly growing vari-
ables is a difficult problem: a small error in the rate of growth will
quickly lead to a large estimation error. However, although the model
for the variance of? significantly differs from the observed in the
simulations for smalh, the model for the variance of (and for the

whered is a regularization parameter (a small positive number), an¢ombination EMSE) is still quite good, in part because the derivative
p(n) is an estimate of the power of the regressor for the mixing pacof 1, is small. The variance? is large also during the transition from
rameter estimation, obtained using a first-order low-pass filter withhe fast to the slow filter (the derivative giwith respect ta: is at its

0K A\ < 1t

p(n+1) = Xap(n) + (1 = Xa) (y1(n) — y2(n))
= Xap(n) + (1 — Xa)(€a2(n) — ea,l(n))2.

2

(19)

In general, it is better to initialize the mixing parameterato
(so the combination will start following the fast filter). During the

largest value here). During the transition, again the predicted vari-
ance overestimates the simulation, but now (given the larger value of
the derivative of)) this also affects the estimatemfﬁ, and causes an
overshoot in the estimate of the combination EMSE. However, we
note that the EMSE model using = 0 in (13) remains close to the
ensemble-average curve. In all, we see that the modelagith: 0
predicts well the combination EMSE even for such a large step-size,



confirming that the variance of does not have a large effect in the
overall error variance.

In the second example we use the normalized mixing parameter[3]
estimation (20) withu, = 1, M = 25 coefficients, and\, = 0.8.
Fig. 3 shows that the normalized step-size chooses a small equivalent
step-sizeli, at the beginning of the adaptation, thus stabilizing the [4]
adaptation ofu(n), while reverting to a large step-size at the end,
in order for the algorithm to be able to switch from the fast to the 5]
slow filter at the correct moment. The agreement between theory ano[
model is quite good, the only exception being an overestimation of
the variance ofi(n) during the switch from one component filter to
the other (but this effect is not as pronounced as in the unnormalized
case.)

(6]

(7]
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Fig. 2. (a) Theoretical and experimental EMSE for the combinatiomwaf t
LMS filters with A, = 0, u1 = 0.08, u2 = 0.008, andu, = 1,000;
(b) Ensemble-average afn) andn(n), and theoretical modetsandij; (c)
Ensemble-average and model &g (n) andag (n). Average of 500 realiza-
tions.
4. CONCLUSIONS

We proposed a model for the transient of convex combinations of
adaptive filters, illustrating our results with combinations of two
LMS filters. Although the problem is highly nonlinear and quite
challenging, we obtained quite good agreement between model and
theory, except for an overestimation of the variance of the auxiliary
variablea(n) in some instants.

We should note that we chose to present simulations for some
of the most difficult situations, in particular using a low noise vari-
ance, so the combination would need a largeto switch from the
fast to the slow filter at the right moment. In milder situations for
which smaller step-sizes may be used, the agreement between the-
ory and simulations is considerably better. However, even in the
difficult situations presented here, the models follow quite closely
the simulations.

5. REFERENCES

[2] J. Arenas-Garcia and A. R. Figueiras-Vidal, “Improveéhdlequal-

ization via adaptive combination of constant modulus alparg,” in
Proc., ICASSP 20Q6oulouse, France, pp. I1I-756—111-759.

Y. Zhang and J. Chambers, “Convex combination of adaptitersi
for a variable tap-length LMS algorithmlEEE Signal Process. Lett.
vol. 13, no. 10, pp. 628-631, Oct. 2006.

C. Lopes, E. Satorius, and A. H. Sayed, “Adaptive cartiecking
for direct-to-earth mars communications,”@onf. Rec. 40th Asilomar
Conf. on Sign., Syst. and Compacific Grove, CA, USA, Oct. 2006.
M. T. M. Silva and V. H. Nascimento, “Improving the trackimgpa-
bility of adaptive filters via convex combinationEEE Trans. Signal
Process.vol. 56, no. 7, pp. 3137-3149, Jul. 2008.

L. Azpicueta-Ruiz, A. Figueiras-Vidal, and J. ArenasiGia, “A nor-
malized adaptation scheme for the convex combination of twptaeea
filters,” in Proc., ICASSP 2008 as Vegas, NV, USA, pp. 3301-3304.
N. J. Bershad, J. C. M. Bermudez, and J.-Y. Tourneret, ‘finecom-
bination of two LMS adaptive filters—transient mean-squaaysis,”
IEEE Trans. Signal Processiol. 56, no. 5, pp. 1853-1864, May 2008.
R. Candido, M. T. M. Silva, and V. H. Nascimento, “Affine coma-
tions of adaptive filters,” irConf. Rec. of the 42nd Asilomar Conf. on
Sign., Syst. & Comp2008.

[9] A.H. SayedFundamentals of Adaptive Filtering Wiley, 2003.

P. S. R. Diniz,Adaptive Filtering: Algorithms and Practical Imple-
mentation 3rd ed. Springer, 2008.

A. Papoulis Probability, Random Variables, and Stochastic Processes
2nd ed. McGraw-Hill, 1984.

10 : .
Fast filter
0 Slow filter
Combination
& -10 — — — Theory .
= — — — Theory —— 0°=0
w -20 a
%)
>
W -30
-40
-50
1 2 3 4 5
En (sim.)
Ea (sim.)
- = —En(th)
— — —Eaf(th.)
-4
0 1 2 3 4 5

< 4

= 103 T T u
S 102 Ensemble average

10 ;
% — — — Theoretical
e 0
5 10 ~ = (d
z 0 1 2 3 4
10 10 10 10 10

Fig. 3. (a) Theoretical and experimental EMSE for the combinatiomaf t
LMS filters with A, = 0.8, p1 = 0.008, p2 = 0.002, andfi, = 1,000;

) - ] (b) Ensemble-average afn) andn(n), and theoretical modetsand; (c)
[1] J. Arenas-Gaii@, A. R. Figueiras-Vidal, and A. H. Sayed, “Mean- Ensemble-average and model tof(n) ando?(n); (d) Ensemble-average

square performance of a convex combination of two adaptiveditt
IEEE Trans. Signal Processiol. 54, no. 3, pp. 1078-1090, Mar. 2006.

and model forz, . Average of 50 realizations.



