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Abstract

In practical implementations of estimation algorithms, designers usually have information about the range in

which the unknown variables must lie, either due to physical constraints (such as power always being nonnegative)

or due to hardware constraints (such as in implementations using fixed-point arithmetic). In this paper we propose a

fast (that is, whose complexity grows linearly with the filter length) version of the dichotomous coordinate descent

recursive least-squares adaptive filter which can incorporate constraints on the variables. The constraints can be in

the form of lower and upper bounds on each entry of the filter, or norm bounds. We compare the proposed algorithm

with the recently proposed normalized non-negative least mean squares (LMS) and projected-gradient normalized

LMS filters, which also include inequality constraints in the variables.

Index Terms

adaptive filter, box constraint, inequality constraint, non-negativity, RLS-DCD.

I. INTRODUCTION

In estimation problems of practical importance, one often has a priori information about the range in which

the solution must lie. This knowledge may take the form of equality constraints, such as the requirement that the

solution lies in a given subspace (as in the case of the generalized sidelobe canceller [1]), or may take the form

of inequality constraints. One important example of the latter is box constraints, that is, imagine that one must

compute estimates h(i) for an unknown, possibly time-varying parameter vector ho(i) ∈ R
N taking into account

constraints of the type

an ≤ hn(i) ≤ bn, (1)

with known bounds −∞ < an < bn < ∞, where hn(i) represents the n-th entry of vector h(i). Note that either

the lower or upper bound might not be present (e.g., we might require only a non-negativity constraint hn(i) > 0

[2]).

The constraints may arise from physical limitations on the variables [3]—such as the maximum range of an

actuator [4]—or the non-negativity of image pixels and sound intensities [5], or may be due to design choices and
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limitations in the hardware used to implement the estimator itself (such as in fixed-point implementations). The use

of constraints has a number of advantages — it may [6]:

• allow the use of simpler models [3];

• avoid the appearance of “unfeasible” or “un-physical” solutions that could arise due to noisy measurements;

• reduce the variance of estimates;

• increase the convergence speed of algorithms.

Although modified Kalman filters with inequality constraints have received considerable attention [7], in the

adaptive filtering literature the focus has been on equality constraints [8]. Adaptive filtering algorithms with non-

negativity constraints have recently been proposed in [2], [6], [9], and can also be obtained through appropriate

model choices using projection onto convex sets as described in [10] (see also [2]). The non-negative least mean

squares (NNLMS) algorithm and its variants proposed in [2], [6], [9] perform well, but may be sensitive to outliers

due to a term proportional to the power 1 + γ of the weight entries (i.e., h1+γ
n (i)) with 0 < γ ≤ 1 in their update

laws. This may lead to instability, similarly to what occurs for the constant-modulus algorithm (CMA) [11]. This

supra-linear term makes the stability of the algorithm dependent on the initial condition h(0) [6], as also occurs

in the CMA algorithm [11]. The projected-gradient NLMS algorithm also described in [2] allows for more general

(convex) inequality constraints and does not suffer from this problem, but can converge slowly when the input

signal is highly correlated.

In this paper we describe a novel approach for adaptive filtering with either box constraints, as in (1), or

norm constraints, as in (2) below. Our algorithm is a modification of the RLS-DCD algorithm proposed in [12],

which is a numerically-stable, low-cost alternative to the recursive least-squares algorithm (RLS) based on the

dichotomous coordinate-descent (DCD) method for solving least-squares and other convex optimization problems.

Being based on a Hessian (RLS) approach, instead of a gradient (LMS) approach as in [2], [6], [9], the algorithms

proposed here converge faster than gradient-based algorithms. The DCD and RLS-DCD algorithms are optimized

for implementation using finite-precision arithmetic (particularly in custom or semi-custom implementations, such

as in FPGAs) [13], [14]. The use of DCD makes the algorithms numerically stable with low cost (linear on the

filter length N ), and also allows for easy implementation in hardware.

We initially describe our method in terms of box constraints (1), and later extend it to bounded norm constraints

such as

‖Dh(i)‖ ≤ τ, (2)

where D = diag(d1, . . . , dN ) for any constants dn > 0 and τ > 0. ‖ · ‖ is a vector norm, such as ℓ1, ℓ2 or ℓ∞. For

example, sparsity-inducing algorithms [15]–[18] can be obtained using the ℓ1 norm in (2); using the ℓ2 (Euclidean)

norm and dn = 1 is equivalent to requiring that the solution h(i) stay inside a sphere of radius τ ; and using the

ℓ∞ (maximum) norm, (2) reduces to (1) with −an = bn = τ/dn.

A box-constrained version of the DCD algorithm is described in [19], applied to multiuser detection. In Section

II we first briefly describe the RLS-DCD algorithm and then propose modifications to the box-constrained DCD
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algorithm from [19] that allow for general bound constraints (such as in (2)) and make it more suitable for adaptive

filtering. We then use this result to propose an RLS-DCD algorithm incorporating box (1) or bound (2) constraints.

In Section III, we compare our algorithms with those proposed in [2]. Finally, in Section IV we conclude the paper.

II. CONSTRAINED RLS-DCD ALGORITHM

Given two sequences
{
z(i) ∈ R

}∞

i=1
and

{
x(i) ∈ R

N
}∞

i=1
, we seek a vector h(i) that solves the constrained

least-squares (LS) problem

h(i + 1)
∆
= arg min

h∈Ai

i∑

k=1

λi−k
[
z(k)− xT (k)h

]2
+ λiδ‖h‖22, (3)

where 0 < λ < 1 is a forgetting factor, δ > 0 is a regularization term, and Ai is a convex constraint, such as

(1) or (2). The index i in Ai indicates that, in general, the constraint may change over time. However, we only

consider a time-invariant A in this paper. For each time instant i, the cost function in (3) is a convex, differentiable

cost function with convex constraints, a kind of problem for which coordinate descent optimization converges and

performs well [20], [21].

An iterative solution to (3) can be found by modifying the derivation of the RLS-DCD algorithm [12] as follows.

Define the autocorrelation matrix R(i) and cross-correlation vector p(i) by the recursions for i ≥ 1

R(i) = λR(i− 1) + x(i)xT (i), R(0) = δI, (4)

p(i) = λp(i− 1) + z(i)x(i), p(0) = 0. (5)

Since z2(k) does not depend on h, (3) can be rewritten as

h(i+ 1) = argmin
h∈A

{
1

2
hTR(i)h − hTp(i)

}
. (6)

Assuming that an approximation ĥ(i) to h(i) is available, we now search for an updated approximation ĥ(i+ 1).

Let h = ĥ(i) +∆h. Disregarding the terms that do not depend on ∆h, the argument of (6) can be written as

1

2
∆hTR(i)∆h+∆hTR(i)ĥ(i)−∆hTp(i)

=
1

2
∆hTR(i)∆h− λ∆hTr(i) + e(i)∆hTx(i),

were the residue r(i) and error e(i) at time i are given by

r(i)
∆
= p(i− 1)−R(i− 1)ĥ(i), e(i)

∆
= z(i)− xT (i)ĥ(i).

Define q(i) = λr(i) + e(i)x(i). We conclude that (6) is equivalent to letting h(i+ 1) = ĥ(i) +∆h(i), where

∆h(i) = arg min
∆h, s.t.

ĥ(i)+∆h∈A

{
1

2
∆hTR(i)∆h−∆hT q(i)

}
. (7)

An approximate solution to (7) can be obtained efficiently using the DCD algorithm [22]. DCD is a coordinate
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descent optimization method, with parameters adjusted so that multiplications and divisions are avoided (replaced

by additions and bit shifts), making the algorithm easy to implement in semi-custom hardware [4], [13], [23]. In

general ‖∆h(i)‖∞ will be small compared to ‖ĥ(i)‖∞, which implies that only a few DCD iterations applied to

the problem (7) are necessary to obtain a ∆̂h(i) such that ĥ(i + 1)
∆
= ĥ(i) + ∆̂h(i) is a good approximation to

h(i + 1). Note that for implementations in general-purpose computers or in DSPs, other versions of coordinate-

descent optimization algorithms [21] would be equally effective.

The DCD algorithm in [12] does not take constraints into account. Fortunately, the inclusion of convex constraints

in coordinate descent algorithms is simple [20]: at each DCD iteration, we need to check if the new candidate

solution lies within the constraints. If it does not, the update is not performed. A box-constrained version of DCD

was proposed in [19], but based on a cyclic version of DCD, which is not the best for adaptive filtering [12].

In Table I we introduce a leading box-constrained DCD algorithm (BDCD). At each iteration a better approxi-

mation to (7) is computed, updating a single entry of h. The coordinate chosen for update is the one corresponding

to the largest absolute entry in the current residue r (steps 1 and 12 in Table I). Note that the algorithm in Table I

is designed to operate directly on h, not on ∆h, thus simplifying the check of the constraints in step 7.

The algorithm’s inputs are a matrix R, vector q, initial guess h, and parameters H , Mb and Nu. The initial step

size α = H > 0 should be a power of two to reduce complexity (so all multiplications and divisions become bit

shifts). The algorithm will work with any value of H , but will need fewer iterations when H corresponds to the

most significant bit required to store h. Choosing H as a power of two, Mb will be the number of bits used to

represent the solution. Nu is the maximum number of vector operations (operations that involve N additions, see

steps 1, 9 and 12 in Table I); Nu is used to limit the computational cost of the algorithm. Steps 14-16 in Table I

are used to avoid the algorithm getting stalled when a constraint becomes active, that is, if the test in step 7 is

false. In this case the algorithm reverts to a cyclic DCD scheme for one iteration.

The main loop of the adaptive filtering algorithm, which we call the RLS-BDCD algorithm, is described in

Table II. Step 5 is a call to the BDCD algorithm of Table I.

We need now to consider the update of R(i−1) in step 3 of Table II. The update of R(i−1) following directly (4)

is an O(N2) task. However, if x(i) is a tap-delay line, that is, if x(i) =
[
x(i) x(i− 1) . . . x(i −N + 1)

]T
,

then R(i) can be computed in O(N) operations, as follows [12]

R(i) =


 [ρ(i)]1,1

[
ρT (i)

]
2:N

[ρ(i)]2:N [R(i − 1)]1:N−1,1:N−1


 , (8)

where [a]m:n represents the entries m to n from vector a, and similarly for matrices, and vector ρ(i) is the first

column of R(i), with update ρ(i) = λρ(i− 1) + x(i)x(i).

The complexity of the RLS-BDCD algorithm is upper bounded by 5N multiplications plus (Nu+3)N additions.

If λ = 1− 2−b with an integer b > 0, then the complexity is upper bounded by 3N multiplications and (Nu+5)N

additions (see [12] for more details).
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TABLE I
LEADING BOX-CONSTRAINED DCD ALGORITHM (BDCD).

Step Inputs: h, q, R, Nu, Mb, constraint set.
Initialization: r ← q; m← 0; µ← 1; α← H , jc ← 1

1 j = argmaxn=1,...,N |rn|
2 if |rj | < (α/2)Rj,j , then
3 α← α/2 and m← m+ 1
4 if m > Mb, then the algorithm stops
5 else,
6 w = hj + sign(rj)α
7 if w ∈ [aj , bj ]
8 hj = w

9 r ← r − sign(rj)αR
(q)

10 µ← µ+ 2
11 if µ > Nu the algorithm stops
12 j = argmaxn=1,...,N |rn|
13 else,
14 j = jc
15 if jc < N , then jc ← jc + 1
16 else, jc ← 1
17 Go to step 2

TABLE II
RLS-BDCD ALGORITHM.

Step Given ĥ(1), R(0) = δI , δ > 0

Let r(1) = −R(0)ĥ(1)
Repeat for i ≥ 1:

1 y(i) = ĥ
T
(i)x(i)

2 e(i) = z(i)− y(i)
3 Update R(i− 1) to R(i)
4 q(i) = λr(i) + e(i)x(i)
5 Apply the BDCD algorithm to the problem in

(7) with h← ĥ(i), R← R(i), q ← q(i),
and appropriate constraint set to obtain

ĥ(i+ 1)← h and r(i+ 1)← r

Norm constraints

With norm constraints as in (2), it is convenient to introduce a new variable c to store the current value of the

constraint measure. The algorithm in Table I is modified as follows to obtain the NDCD algorithm of Table III:

• Initialization: Let c← ‖Dĥ(1)‖1 (if using ℓ1 norm) or c← ‖Dĥ(1)‖22 (if using ℓ2 norm).

• Step 5: Apply the norm-constrained DCD algorithm (NDCD) from Table III with ĥ(i), R(i) and q(i) to obtain

ĥ(i + 1), r(i+ 1), and the updated constraint measure c.

The NDCD algorithm, summarized in Table III, is similar to the BDCD algorithm, but with an extra step to

update c (step 7). This can be implemented cheaply in the case of ℓ1 or ℓ2 norms, since only one entry of h is

modified.

ℓ1 norm: c← c+ dj(|hj + sign(rj)α| − |hj |).

ℓ2 norm: c← c+ d2j(2sign(rj)αhj + α2).
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TABLE III
LEADING NORM-CONSTRAINED DCD ALGORITHM (NDCD).

Step Inputs: h, q, R, c, Nu, Mb, constraint set.
Initialization: r ← q; m← 0; µ← 1; α← H , jc ← 1

1 j = argmaxn=1,...,N |rn|
2 if |rj | < (α/2)Rj,j , then
3 α← α/2 and m← m+ 1
4 if m > Mb, then the algorithm stops
5 else,
6 w = hj + sign(rj)α
7 s← updated constraint
8 if s ≤ τ
9 hj = w, c = s

10 r ← r − sign(rj)αR
(q)

11 µ← µ+ 2
12 if µ > Nu the algorithm stops
13 j = argmaxn=1,...,N |rn(i)|
14 else,
15 j = jc
16 if jc < N , then jc ← jc + 1
17 else, jc ← 1
18 Go to step 2

Replacing the call to the BDCD algorithm in step 5 in Table II with a call to the NDCD algorithm, we arrive at

the RLS-NDCD algorithm. Multiplications are avoided if the dn are chosen as powers of two. In this case, the

computational complexity of the RLS-NDCD algorithm is similar to that of the RLS-BDCD algorithm.

III. NUMERICAL RESULTS

We now compare the proposed algorithms with unconstrained RLS [8], [24], unconstrained RLS-DCD [12], and

with the NNLMS and projected gradient NLMS algorithms of [2] in identification scenarios, i.e., when z(i) =

hT
o x(i)+ v(i), where ho is an unknown weight vector, and v(i) is additive white noise. We plot ensemble-average

estimates of the mean-square deviation (MSD), i.e., the expected value E{‖ĥ(i) − ho‖
2
2}, against the time index

i. The weight vector ho is modified at the middle of the simulation run in order to compare the tracking ability of

the algorithms.

Fig. 1 compares the RLS-BDCD (with constraints 0 ≤ hn ≤ 1), unconstrained RLS-DCD, and classical RLS

algorithms. Vector ho contains N = 100 taps uniformly distributed in the interval [0, 1]. The length of h(i) is also

N = 100. The input signal x(i) is white Gaussian with unit variance. All filters use λ = 0.99; Nu is set to 8; and

the noise variance is σ2 = 4. When the noise variance is small, the RLS-DCD and RLS-BDCD algorithms behave

similarly (not shown here); however with a large noise variance the use of the box constraints helps reduce the

variance of the estimate, without compromising the convergence speed, as seen in Fig. 1.

Fig. 2 compares the RLS-BDCD algorithm (Nu = 2, λ = 0.992) with the normalized NNLMS (N-NNLMS)

(η = 0.9444) and projected-gradient NLMS (PG-NLMS) (µ = 0.2160) algorithms from [2]. In this example

the filter length is N = 15, the input x(i) is an autoregressive process with unit variance, generated as x(i) =

0.95x(i−1)+w(i), where w(i) is a zero-mean iid Gaussian process. ho was generated from a uniform distribution
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Fig. 1. MSD performance of RLS, RLS-DCD and RLS-BDCD, σ2 = 4.
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Fig. 2. Comparison of MSD performance for RLS-BDCD, normalized NNLMS and projected gradient NLMS.

in the interval [0, 1]. The constraints for the RLS-BDCD and PG-NLMS algorithms were set to 0 ≤ hn (no upper

bound) to match the behavior of N-NNLMS, which enforces positive entries to the estimated vector. The adaptive

filters start from an initial condition at the origin, except for the normalized NNLMS, which is initialized with all

coefficients set to 0.1 (NNLMS should not be initialized at the origin). The noise variance is σ2 = 0.01. The filter

parameters were chosen to guarantee the same steady-state MSD. It can be seen that the RLS-BDCD algorithm

outperforms both the normalized NNLMS and the PG-NLMS algorithms.

In Fig. 3, ho contains one random negative element. In this case, the optimum constrained solution h∗ to (3)

is not ho. We computed h∗ theoretically to plot the ensemble-average learning curves E{‖ĥ(i) − h∗‖22}. The

conditions are the same as those of Fig. 2, except that η = 0.4 for N-NNLMS and µ = 0.15 for PG-NLMS. The

RLS-BDCD algorithm again converges faster.
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Fig. 3. Comparison of MSD performance when the signal is generated by a model in which ho contains one negative entry. The MSD is
computed with respect to the solution to the constrained optimization problem.

An example of the performance of the RLS-NDCD algorithm is presented in Fig. 4. In this case the signal is

generated using a vector ho of length N = 100 in which only ten random entries are nonzero. Each nonzero entry

is obtained randomly, using a Gaussian distribution. The vector ho is then normalized to unit ℓ2 norm (the resulting

ℓ1 norm is 2.49). The same vector ho is used for all simulation trials. We consider the unconstrained RLS-DCD

and ℓ1-constrained RLS-NDCD algorithms, with λ = 0.992, and constraint bounds τ = 2.6 and 3.5. Fig. 4 shows

that the norm constraint results in improved performance, either in terms of convergence rate or steady-state MSD.
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Fig. 4. Comparison of MSD performance of RLS-DCD and RLS-NDCD using ℓ1-norm with τ = 2.6 and τ = 3.5, for the estimation of a
sparse vector.
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IV. CONCLUSION

We described a new family of adaptive filters that is able to easily incorporate different kinds of inequality

constraints, such as box constraints or norm bounds. Several different norm bounds can be used, such as ℓ1 and

ℓ2 norms. The algorithms are extensions of the RLS-DCD algorithm, and thus have fast convergence and low cost

(their computational complexity grows only linearly with filter length), while remaining numerically stable.

The new algorithms were compared to other methods described in the literature through simulations, showing

advantages in terms of convergence rate and steady-state performance.
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