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Analysis of the Hierarchical LMS Algorithm
Vítor H. Nascimento, Member, IEEE

Abstract—We analyze the recently proposed hierarchical least
mean-square (HLMS) algorithm, providing expressions for its
steady-state mean-square error (MSE). We find conditions for the
hierarchical structure to be equivalent to the optimal (full-length)
Wiener solution. When these conditions are not satisfied, we show
that HLMS will compute biased estimates. Our analysis also shows
that even when these conditions hold, the MSE obtained using
HLMS may be much larger than that obtained using LMS, since
the potentially large MSEs at the subfilters in the first hierarchical
level directly affect the output MSE.

Index Terms—Adaptive filters, estimation, least mean-square
methods, least square methods, stochastic systems.

I. INTRODUCTION

A S IS WELL KNOWN, the least mean-square (LMS) algo-
rithm has several desirable properties, which explains the

algorithm’s widespread use: LMS is easily implemented, has a
low computational cost, is robust to numerical errors, and has
good tracking performance. Its one drawback is its slow initial
convergence, especially in situations where there is strong cor-
relation between the entries of the regressor vector [1], [2].

An approach to fight this problem was proposed recently: the
hierarchical LMS (HLMS) algorithm [6], [7]. This method at-
tempts to obtain a faster convergence by splitting the LMS filter
into several (level-1) independent LMS subfilters (see Fig. 1).
The output of each subfilter is sent to another (level-2) LMS
subfilter, which weighs each subfilter output to obtain an overall
output (other intermediate levels may also be used).

In this letter, we present an analysis of the HLMS algorithm,
showing under which conditions the overall filter response con-
verges to the Wiener solution. We also provide a stochastic anal-
ysis and derive expressions for the overall mean-square error
(MSE) under these conditions. Our analysis shows that in many
situations, the HLMS algorithm converges in the mean to a
biasedestimate of the optimal Wiener solution. In addition,
there is a tendency for the level-2 subfilter to amplify the mis-
adjustment error in the level-1 subfilters, which results in a high
output MSE.

II. HLMS A LGORITHM

To keep the analysis short, we discuss in this letter only a
two-level version of the HLMS algorithm (Fig. 1), although
more levels would be possible [6]. In the figure, level 1 has two
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Fig. 1. HLMS structure with two hierarchical levels (level 1: two length-3
subfilters, level 2: one length-2 subfilter).

length-3 subfilters, and level 2 consists of a single length-2 sub-
filter. The overall filter length is .

In general, we split a filter with taps into (level
1) length- subfilters. Theth subfilter in level 1 has coef-
ficient vector (superscript

denotes vector transposition). The output of theth level-1
subfilter is , and the error is . The single subfilter
in level 2 has coefficients ,
output , and error .

The inputs to the filter are the sequences (the
regressor sequence) and (the desired sequence),
which we assume to be real and zero-mean. From the
regressor sequence, we define the vectors

, ,

and split , where each

is a length- vector. With these definitions, we

have , ,

, and . The
update equations for each subfilter is

(1)

(2)

where and are the step sizes for levels 1 and 2,
respectively.

III. OPTIMAL OVERALL SOLUTION

In this section, we find the optimal (Wiener) solution for each
subfilter, and we compare the optimal overall filter with the full
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length Wiener solution. That is, we use the hierarchical filter
structure, but choose the best weights for each subfilter, as-
suming knowledge of the statistics of the input signals, without
adaptation.

We begin by defining the regressor covariance matrix

E ...
...

...
...

where E represents the expectation operator,

E , and E .
Note that since is a symmetric matrix, .

It is well known from linear estimation theory that, given two
zero-mean stationary sequences and , there is a
vector such that [4]

(3)

where is a noise uncorrelated with , and with variance
E . The vector may be computed by

solving the system of linear equations

E E (4)

These results can also be applied to the level-1 subfilters,
as follows: assume that satisfies (3) and (4). Then, in order to
compute the optimal solution for the th level-1 subfilter,
we need and

E E

is invertible if is nonsingular [3]; therefore, the optimal
weight vector for the th level-1 subfilter is given by

If we split in subvectors, such that ,
then

(5)

Note that, in general, .
The optimal level-2 regressor vector is therefore given by

(6)

In order to compute the optimal level-2 coefficients, we must
evaluate E

...
...

... (7)

and also the cross correlation E

(8)

The optimal level-2 coefficient vector must satisfy
. (We did not write , since in

general may be singular. When the filters are allowed to
adapt, becomes nonsingular.)

The optimal subfilters for levels 1 and 2 are equivalent to a
single length- filter, . Denoting the entries of by ,
for , we have

In general, this equivalent filter willnot be equal to the op-
timal length- filter . Thus, the optimal coefficients for the
HLMS algorithm will result in an MSElarger than that obtained
by the optimal solution, . There are situations, however, for
which the optimal HLMS coefficients result in an equivalent
overall filter that is equal to . One case is when only one of
the is nonzero—i.e., when the optimal filter has an effective
length equal to . The other situation is when for

. The first case would result in being singular, so for
now we consider only the second.

When for , the expressions for (5) and
(7) reduce to

...
...

...

Expression (8) for does not change, and thus, whenis
invertible, , and .

IV. STOCHASTICANALYSIS OF THEHLMS ALGORITHM

In order to continue our analysis of the HLMS algorithm, we
now evaluate the output MSE, i.e.,

E E

with the usual independence assumptions [2] (recall that—for
LMS—these assumptions give reasonable approximations for
small step sizes [5]).

1) The sequences and are independent,
identically distributed (i.i.d.).

2) The noise sequence is also
i.i.d. and is independent of .

In addition to the independence assumptions, we as-
sume that .

3) for , so that , and .

A. Analysis of Level-1 Subfilters

Under the above assumptions, we can use standard inde-
pendence theory results to evaluate E
E . For this, we need to compute the min-
imum variance of the estimation error for each of the level-1
subfilters, i.e., [defining

]

E E

E
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From assumption 3) above, (5), and recalling that is inde-
pendent of [and thus also of ], we have

(9)

Note that may be orders of magnitude larger than.

When we try to approximate using the LMS re-
cursion (1) with step size , the estimation error will be, under
the above assumptions, larger than . Using standard results
from LMS theory [1] we obtain

(10)

where is the trace of matrix , i.e., the sum of the main
diagonal elements. Although (10) is approximate (it holds only
for “sufficiently small” ), it shows that the excess MSE

is proportional to the optimum LMS error

(11)

This has an important effect on the behavior of the HLMS algo-
rithm, as we shall see soon.

B. Analysis of the Level-2 Subfilter

Using (1) to estimate , the statistics of are
no longer stationary, which makes the analysis considerably
more involved. We study here only the behavior of the level-2
subfilter after steady state is reached, i.e., we assume that
the level-1 subfilters have already converged, with MSE
given by (10). With this assumption, we must find the new
steady-state level-2 autocorrelation matrix . Defining

, and recalling that under our
assumptions is independent of , in steady
state

E E

E

The second term in this expression is exactly the steady-state
excess MSE given by (11). Since the are strictly positive,

is invertible and equal to

...

The cross correlation vector does not change and is still
given by (8). The optimal level-2 weights are now

(12)

This expression shows that the level-2 subfilter gives less weight
to level-1 subfilters with large excess MSE (in comparison to
the optimum variance of . While this seems a sensible

Fig. 2. HLMS applied to i.i.d. inputs, with step sizes� = � = 10 . For
comparison, we also plot the NLMS learning curve with� = 1. Average of
50 curves.

thing to do, it also implies that the HLMS algorithm converges
to abiasedoverall solution, even if the hierarchical structure can
describe the optimal Wiener solution. The bias worsens asis
increased.

Since the optimum estimation error variance of the
level-1 subfilters may be much larger than, this bias may be
quite significant unless is maintained relatively small. This
is contrary to the goal of the hierarchical structure, which is to
obtain faster convergence. The examples in Section V show
that this problem may be serious.

Before turning to the examples, let us find an approximate
expression for the overall MSE for HLMS. First, we assume that
the level-2 coefficients are fixed and equal to the optimum ones
given by (12), and find the minimum MSE obtainable when the
level-1 subfilters adapt

E E

(13)

The inputs to the level-2 subfilter are not i.i.d. even if is
an i.i.d. sequence. However, for small we may approximate
the level-2 MSE using the independence theory formula, which
gives

(14)

V. SIMULATIONS

Our first example is a length-32 filter with and
. The input sequence is Gaussian, with autocorrelation

. The optimum vector has entries ,
and the noise has variance . The learning curves for
HLMS with step sizes and also for nor-
malized-LMS with are shown in Fig. 2. Using expres-
sions (9), (11), (13), and (14), we conclude that varies from

2.5–5.5. varies from 0.049–0.11. The theoretical output
MSE is ; from the ensemble-average learning
curve, we obtained . If is reduced to ,
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Fig. 3. HLMS applied to equalization problem, with step sizes� = 0:005

and� = 0:05, and NLMS with� = 1. Average of 30 curves.

from (14) we find . Simulating this situation,
an experimental was obtained.

Next, we have a channel equalization example. The channel
has a transfer function and
a white Gaussian input with unitary variance, with Gaussian
output noise with variance .

Notice that in this example, , so our analysis in
Section IV does not hold. Note, however, how the HLMS al-
gorithm, although converging initially very fast, has E in-
creasing between . Later, the algorithm starts
reducing E again, but stops at a higher level than NLMS.
This kind of behavior can be seen in [6, Figs. 2 and 3], but for
the curve labeled “LMS”. There was perhaps a mislabeling in

[6], since this would be a very unusual behavior for LMS, which
is well known to converge monotonically [2].

VI. CONCLUSION

We analyzed the performance of the recently proposed
HLMS algorithm, providing expressions for the steady-state
MSE under certain conditions. Our analysis shows that in
general, the HLMS algorithm computes biased estimates for
the optimum length- estimation filter. This bias may be
quite large and worsens as the convergence speed of the level-1
subfilters is increased. This means that in some applications,
the reason for using HLMS (faster convergence) may be
achieved only at the cost of a much larger MSE. However,
other simulations show that, in a situation where the noise
level is very high, this effect may be masked, making HLMS’
performance reasonable.
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